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Abstract

Background: How can a clinician and patient incorporate survival and toxicity information into 

a single expression of comparative treatment benefit? Sloan et al. recently extended the ½ standard 

deviation concept for judging the clinical importance of findings from clinical trials to survival and 

tumor response endpoints. A new method using this approach to combine survival and toxicity 

effect sizes from clinical trials into a quality-adjusted effect size is presented.

Methods: The quality-adjusted survival effect size (QASES) is calculated as survival effect size 

(ESS) minus the calibrated toxicity effect sizes (EST) (QASES=ESS-EST). This combined effect 

size can be weighted to adjust for the relative emphasis placed by the patient on survival and 

toxicity effects.

Results: As an example, consider clinical trial NCCTG 89–20-52 which randomized patients to 

once-daily thoracic radiotherapy (ODTRT) versus twice-daily treatment of thoracic radiotherapy 

(TDRT) for the treatment of lung cancer. The ODTRT vs. TDRT arms had median survival time of 

22 vs. 20 months (p=0.49) and toxicity rate of 39% vs. 54%, (p<0.05). The QASES of 0.18 

standard deviations translates to a quality-adjusted survival difference of 5.7 months advantage for 

the ODRT arm over the TDRT treatment arm (22(16.3) months), p<0.05). Similar results are 

presented for the four possible case combinations of significant/non-significant survival and 

toxicity benefits using completed clinical trials.
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Conclusions: We used a novel approach to re-analyze clinical trial data to produce a single 

estimate for each treatment that combines survival and toxicity data. The QASES approach is an 

intuitive and mathematically simple yet robust approach.
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INTRODUCTION

How can a clinician and patient incorporate survival and toxicity information into a singular 

expression of comparative treatment efficacy? If an anti-cancer agent, for example, has a 

positive effect on survival but impacts an increased symptom burden on patients, how can 

one integrate these disparate information sources into a scientifically supportable decision? 

Clinicians routinely make such integrations using experience, professional opinion and 

literature reviews but the process is highly individualized and ad hoc [1]. This lack of 

standardization leaves open the question as to what constitutes a clinically meaningful 

treatment effect in terms of a composite, complex entity encompassing both survival and 

toxicity.

Quality-adjusted life years (QALYs) represent an attempt to measure disease burden that 

accounts for both the quality and quantity of life lived [2]. QALY-adjusted survival analysis 

builds upon the Kaplan-Meier approach to survival analysis by attributing a value to each 

day that reflects the quality of that day. Traditionally, survival curves and toxicity tables are 

analyzed separately and the lack of integration between the two endpoints leads to 

questioning of the usefulness of QALYS in clinical settings. The issue of calibration is a 

major barrier to the routine use of QALYs in survival analysis. The Q-TWiST method 

divides overall survival (OS) into three states: toxicity (TOX), time without symptoms or 

toxicity before relapse (TWiST) and time from disease progression or relapse to death 

(REL) [3]. The overall survival time (OS) for a patient can then be written as: OS = TOX + 

TWiST + REL. Days with toxicity and days after relapse are considered to be of less value 

and are given less weight in the analyses. This method has been successfully implemented, 

for example, in the analysis of breast cancer trials [4] to examine the benefit of adjuvant 

chemotherapy treatment versus its toxic effects.

Unfortunately, issues in calibration arise in application of the QALY model to clinical data 

[5]. In the initial application of the Q-TWiST assignation, every toxicity incident was 

assumed to last for a period of three months. Upon reflection, such a severe impact of 

toxicity was necessary to magnify the toxicity impact on the QALY calculations so that the 

overall survival results could be adjusted sufficiently to observe a significant effect. 

Similarly, Sloan and colleagues demonstrated that the mixture of utility parameters had to be 

extreme to see quantitatively distinguishable results in the QALY model when applied to a 

clinical trial where the survival curves were on top of one another but the toxicity incidence 

rates were doubled from one treatment to the next [6]. In another Q-TWiST study of 

cyclophosphamide, epirubicin, fluorouracil versus cyclophosphamide, methotrexate, 

fluorouracil treatment for premenopausal women with nodepositive breast cancer, Radice 
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(2005) found that there was no combination of utility values that would produce a 

statistically significant comparison between treatments despite the fact that an intuitive 

inspection of the data would lead one to believe that a clinically relevant difference might 

well exist [7]. A recent review by Tate and Skrepnek found that only six of 284 studies that 

employed QALY estimates reported significant findings and highlighted a number of 

methodological weaknesses [8].

In a more recent paper discussing the power of QALY analyses, Sloan et al. demonstrated 

that the Q-TWiST method has may have impractical power considerations [9]. For example, 

they showed via a series of simulations, that a quadrupling of toxicity would be required to 

have 80% power to detect a statistically significant difference in survival time in many 

clinical trial designs. Such an imbalance of toxicity incidence across arms would cause a 

trial to cease long before such an effect size was observed. This invites the question as to 

whether the QALY approach as presently designed and implemented has practical 

applicability.

Across various QOL settings, 1/2 standard deviation (SD) has been shown to be clinically 

meaningful [10]. Sloan et al. recently extended the ½ standard deviation concept to clinical 

trials and derived a ½ standard deviation calibration method for survival and tumor response 

endpoints. This method expresses survival differences and tumor response rates in terms of 

standard deviations. We can express toxicity in terms of standard deviations as well 

producing a toxicity effect size. This paper extends that idea to combine the survival and 

toxicity effects into one quality-adjusted survival effect size.

METHODS

We have previously shown the mathematical underpinnings of the survival and tumor 

response effect size calculation [11] and include herein a brief synopsis in appendix 1. 

Similar to tumor response effect sizes, toxicity effect sizes can be calculated assuming the 

adverse event follows a binomial distribution. We build upon that method by providing the 

integration of the two effect sizes, survival and toxicity, into a single quality-adjusted effect 

size (Figure 1).

Combined (Calibrated) Effect Size

The combined effect size is calculated as the survival effect size minus the toxicity effect 

size. The subtraction is necessary to account for the difference in impact of the survival time 

from the toxicity rate (i.e., one is positive; one is negative in terms of QALY survival). This 

combined effect size can be computed for each toxicity event or for overall toxicity and also 

can be weighted to adjust to vary the magnitude of toxicity calibration.

Total E f f ect Size =
w1ESA − w2ESB

w1 + w2
where 0 ≤ w1, w2 ≤ 1.

This calibrated effect size can be used to back-calculate a difference in overall survival that 

adjusts for the effects of toxicity.
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Δ OS = Calibrated Total Effect Size * Standard Deviation of the Reference Arm

RESULTS

To illustrate our method of calibrated effect sizes (or Quality-Adjusted Survival Effect Size 

(QASES)), we consider an exemplary trial in which there are differing toxicity profiles 

between the reference and treatment arms but no difference in overall survival. A phase III 

clinical trial carried out by the North Central Cancer Treatment Group, NCCTG 89–20-52, 

randomized patients to once-daily thoracic radiotherapy (ODTRT) versus twice-daily 

treatment of thoracic radiotherapy (TDRT) for the treatment of lung cancer [12]. The 

NCCTG is now part of the Alliance for Clinical Trials in Oncology. Table 1 gives a 

summary of the trial. The ODTRT arm had a median survival time of 22 months and overall 

toxicity profile of 39%. The TDTRT arm had a median survival time of 20 months and 

overall toxicity profile of 54%. The difference in overall survival was not significant 

(p=0.49).

The standard deviation of the overall survival endpoint of the reference group is 31.74 

months, with overall survival difference of −2 months. This equates to an effect size of 

−0.06 months/SD. The standard deviation of toxicity of the reference group is 0.49, with 

toxicity difference of 0.15. This equates to an effect size of 0.3 months/SD. We can now 

adjust the survival effect size for this medium toxicity effect size. Given weights w1=1 and 

w2=1, the effect size is −0.18 i.e. considering toxicity events as well as the overall survival 

outcome the effect size is 0.18 in favor of the control arm (ODTRT).

This calibrated effect size can then be used to back calculate the difference in survival that 

accounts for toxicity, or in other words, a quality-adjusted survival effect size (QASES).

ΔMedian OS = 0.18 ∗ 22
ln2 = − 5.7 months. The quality-adjusted survival difference is −5.7 

months. This is equivalent to a median quality-adjusted OS for the TDRT arm of 16.3 

months compared to 22 months in the ODTRT arm, which would have been statistically 

significant had these been unadjusted mean survival times.

Table 2 further demonstrates how the combined effect sizes and back-calculated difference 

in survival time vary as the survival and toxicity weights, w1 and w2, change where w1 + 

w2=1. The weight w1=0 is completely toxic and w1=1 is no toxicity. In this example, the 

combined effect size with zero weight given to toxicity produces the least negative combined 

effect size −0.06 and a back calculated difference in the quality-adjusted survival time 

between the two arms of −1.9 (20.1 months versus 22 months). Regardless of the 

combination of weights chosen, the adjusted survival difference is still in favor of the ODRT 

arm. This is expected given a non-significant overall survival difference and an increased 

toxicity profile. However, the difference in overall survival benefit is now adjusted for the 

toxicity. We will demonstrate other cases in which a minimal significant survival benefit can 

be reduced given increased toxicity events as well other possible scenarios.

Examination of the 4 QASES Cases

In this section, we attempt to present exemplary results of the QASES approach via 

taxonomy of possible combinations of survival and toxicity results. For any given trial, the 
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survival data and toxicity data for a given clinical trial will be either significantly in favor of 

one treatment arm or statistically nonsignificant in terms of p-values. There are four possible 

cases that will arise in the combination of significant and non-significant survival and 

toxicity comparisons between treatment arms: both are non-significant, both are significant, 

the survival comparison is significant but the toxicity comparison is not, and the survival 

comparison is non-significant but the toxicity comparison is (Figure 1). The first case was 

exemplified in the previous section by the randomized clinical trial (RCT) with a non-

significant survival comparison and synergistic toxicity comparison. In general, the first 

case, the treatment arm does not provide a significant increase in overall survival time and 

no significant decrease in overall adverse events (−/−). The second case is a RCT with a 

non-significant survival comparison but antagonistic toxicity comparison. In this case, the 

treatment arm does not provide a significant increase in overall survival but it does 

significantly reduce the adverse event rate (−/+). The third case is a RCT with a significant 

survival comparison but antagonistic toxicity comparison. In this case, the treatment arm 

provides a significant overall survival benefit but also a significant increase in toxicity (+/−). 

The fourth and final case is a RCT with a significant survival comparison and a synergistic 

toxicity comparison. In this case, the treatment arm significantly increases the overall 

survival time as compared to the control arm and there is a nonsignificant difference in the 

toxicity profiles or ideally a decrease in adverse events (+/+).

We apply our method of the quality-adjusted survival effect size to each of these cases using 

exemplary trials over the last decade. For each trial, a subset of exemplary toxicities reported 

from the trial results manuscript rather than a thorough examination of all toxicities reported 

for each trial.

Case 1. Non-significant survival benefit and a significant synergistic toxicity comparison 
(−/−)

(Our first example described above)

Case 2. Non-significant survival benefit but antagonistic toxicity comparison (−/+)

In this case we consider a trial in which there was a minimal, non-significant increase in 

median overall survival accompanied by a significant improvement in the toxicity profile. 

S-1 is a fourth generation oral fluoropyrimidine approved in Japan, Korea, Singapore, and 

China for the treatment of advanced gastric adenocarcinoma and in Japan and Korea for 

adjuvant therapy of gastric adenocarcinoma after a curative resection. With the hypothesis 

that S-1 in cisplatin/S-1 could improve overall survival, safety, and convenience compared to 

cisplatin/infusional fluorouacil, a non-Asian global phase III trial was initiated in March 

2005 in the FLAGS trial [13].

The median overall survival time of the cisplatin/S-1 treatment group was 8.6 months 

compared to 7.9 months in the cisplatin/fluorouracil intravenous infusion control group (log-

rank p=0.2; hazard ratio 0.92; 95% CI, 0.80–1.05). Difference in median survival time was 

0.7 months. This produced an effect size of 0.06. For this calibration, the adverse event rates 

for neutropenia, fatigue, diarrhea and stomatitis were considered. The toxicity levels were 

less in the treatment group than in the control group for neutropenia (60% versus 83%), 
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stomatitis (6% versus 30%) and diarrhea (29% versus 38%). The fatigue toxicity levels were 

about equal in the treatment and control group (39% versus 39%). The combined quality-

adjusted effect size increases to 0.32, 0.29 and 0.13 standard deviations once the impact of 

neutropenia, stomatitis and diarrhea respectively is included with weights w1 and w2=1. The 

quality-adjusted median survival time difference under the same weighting is larger than the 

overall survival difference for all adverse events except for fatigue (Table 1). Figure 2 

demonstrates the range of quality-adjusted survival differences for each toxicity event with 

the restraint w1 + w2=1, where w1=1 equates to the reported median overall survival 

difference. The quality-adjusted survival difference begins at 3.65 months for neutropenia, 

3.33 months for stomatitis and 1.43 months for diarrhea survival weight, w1, equal to zero, 

for the treatment vs. control group. The quality-adjusted median survival time advantage 

decreases as the weight of survival increases. If toxicity is considered an important factor in 

quality of life for the patient, this drug could be considered for the patient over the standard 

treatment although the difference in survival is minimal.

Case 3. Significant survival benefit but antagonistic toxicity comparison (+/−)

The third case is a clinical trial with significant difference in overall survival but an 

increased toxicity in the treatment arm.

The National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) in cooperation 

with Australasian Gastrointestinal Tumor Group (AGITG) conducted a phase III trial 

compare erlotinib plus Gemcitabine with gemcitabine Alone in patients with advanced 

pancreatic cancer [14]. The median overall survival in the erlotinib plus Gemcitabine arm 

was 6.24 months compared to 5.91 months in the gemcitabine alone arm (hazard ratio 0.82; 

p=0.038). The difference in median overall survival is 0.33 months, which is a difference of 

10 days and translates into an effect size of 0.04 standard deviations. The adverse events that 

were considered for the calibration are diarrhea, fatigue, stomatitis, and composite measure 

of any toxicity of grade 3 or 4. The percentages were greater in the treatment group for each 

event: diarrhea (56% versus 41%), fatigue (89% versus 86%), stomatitis (23% versus 14%) 

and any toxicity (grade 3/4) (62% versus 57%).

The quality-adjusted effect sizes with weights w1=1 and w2=1 reduced to −0.13 standard 

deviations for diarrhea, −0.02 standard deviations for fatigue, −0.11 standard deviations for 

stomatitis and −0.03 standard deviations for any grade 3 or 4 toxicity (Table 1). These 

quality-adjusted effect sizes correspond to a reduction in the median overall survival 

difference from 0.33 months to quality-adjusted survival differences of −1.13 months for 

diarrhea, −0.20 months for fatigue, −0.94 months for stomatitis and −0.27 months for any 

grade 3 or 4 toxicities. A negative difference in quality-adjusted survival time or effect size 

represents a benefit in the control arm compared to the treatment arm. A secondary 

weighting scheme of w1 + w2=1 was applied to the quality-adjusted Effect Size in 0.2 

increments. The results are shown in Figure 2. A survival weight equal to one, w1=1, 

corresponds to a toxicity weight equal to zero and an adjusted median survival difference 

equal to the original difference in median overall survival. The adjusted median survival 

difference is negative for the three adverse events beginning at w1=0 and require a large 

weight (greater than 60%) on survival to produce a positive survival difference. A positive 
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difference in survival occurs at about w1=0.7 for fatigue and any grade 3/4 toxicity and at 

w1=0.9 for stomatitis and diarrhea.

Case 4. Significant survival benefit and synergistic toxicity comparison (+/+)

The Clinical Evaluation of Pertuzumab and Trastuzumab (CLEOPATRA) study was 

designed to assess the efficacy and safety of pertuzumab plus trastuzumab plus docetaxel, as 

compared with placebo plus trastuzumab plus docetaxel, as first-line treatment for patients 

with HER2-positive metastatic breast cancer [15]. The median overall survival in the control 

group is 18.5 versus 12.4 months in the control group (hazard ratio for death 0.62; p<0.001). 

This corresponds to a difference of 6.1 months in overall survival between the two arms and 

an effect size of 0.34 standard deviations. The adverse events that were considered were 

diarrhea, neutropenia and fatigue. The percentages were greater in the treatment group for 

diarrhea (66.8% versus 46.3%), and marginally larger for neutropenia (52.8% versus 49.6%) 

and fatigue (37.6% versus 36.8%). The quality-adjusted effect sizes with weights w1=1 and 

w2=1 reduced to −0.04 standard deviations for diarrhea, 0.14 standard deviations for 

neutropenia and 0.16 standard deviations for fatigue (Table 1). These quality-adjusted effect 

sizes correspond to a reduction in the median overall survival difference from 6.1 months to 

−0.63 months for diarrhea, 2.48 months for neutropenia, and 2.9 months for fatigue. A 

secondary weighting scheme of w1 + w2=1 was applied to the Quality-adjusted Effect Size 

in 0.2 increments. The results are shown in Figure 2. A survival weight equal to one, w1=1, 

corresponds to a toxicity weight equal to zero and an adjusted median survival difference 

equal to the original difference in median overall survival. The adjusted median survival 

difference is negative for the three adverse events beginning at w1=0 and a positive 

difference in survival occurs at about w1=0.1 for neutropenia and fatigue i.e. a 90% weight 

on toxicity is required to produce negative difference in the quality-adjusted survival. 

However, the weight on survival must be greater than 0.5 for a positive survival difference in 

quality-adjusted survival when considering diarrhea as an adverse event.

DISCUSSION

The impact of experimental treatments on the human experience is not restricted to a simple 

prolongation of life (or lack thereof), but rather is a combination of quantity and quality of 

life. It is difficult however to distill the impact on both quantity and quality of life into a 

single summary statistic. The QASES method demonstrated in this manuscript attempts to 

overcome this challenge by transforming survival and toxicity comparisons into a single 

metric by expressing results in terms of a quality-adjusted survival effect size described in 

terms of standard deviations. This method allows for calibration of individual adverse events 

and survival effect sizes as well as overall toxicity combined with survival. The QASES 

metric has the potential to facilitate more effective communication between patients and 

clinicians concerning what is best for the patients in terms of an overall patient-relevant 

outcome, by combining both survival and quality of life. The method allows for patients to 

incorporate their personal views on the relative weighting they ascribe to quantity and 

quality of life with reference to treatment choices, and using this approach, physicians can 

provide information to the patients that they need to make these assessments.
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One potential future application of this method in the clinic would be to develop this method 

further, obtain patient ratings of toxicities/harms against benefits, provide estimates for an 

average patient, comparing various treatment regimens by this single statistic. We envision 

that with simplified graphic displays on touchscreens developed using existing data from 

various treatments, where patient can input their values/preferences regarding the 

importance of various harms/benefits to them, it can produce an individualized statistic/s for 

patients to help them make personalized decisions. Such decisions will be based on more 

explicit information and will likely align better with their preferences, values and goals. 

Health care providers can provide information to the patients that they need to make these 

assessments.

One advantage of the QASES method is the simplicity/generalizability of the approach, 

which only requires summary statistics for survival and toxicity results for a given clinical 

trial. While all of the examples in this paper are in the realm of cancer, the methods apply 

equally as well to other diseases. Further work is underway to facilitate the presentation of 

the QASES results in real time in a clinical setting via computerized decision-making 

applications.

As with any statistic, there are limitations with the QASES method. For example, in 

unscrupulous hands, the method could be misapplied by only including toxicities that favor a 

given treatment. Further, in the case where a treatment imparts a non-significant overall 

survival effect but an improved toxicity profile, the resultant increase in quality-adjusted 

survival is not actually going to result in living longer, but better, and it will be important to 

make that distinction. This, in patient terms, may be described as a “fuller (more satisfying) 

life” rather than a “longer life”. Similarly, since this method is based on group effect sizes, it 

cannot precisely reflect each individual patient’s specific likelihood of success given certain 

treatment options. The QASES method should not be used without considering all aspects of 

care and well-being such as economic, social, and regulatory variables.

The groundbreaking work of Gelber and colleagues pioneered the combination of survival 

and toxicity data and involves much more complicated modeling and estimation procedures 

[16]. The QASES method is not intended to replace or disrespect that exemplary body of 

work. In fact, the QASES method was developed as a result of findings obtained by applying 

the original Gelber QALY model to the first example study in this manuscript [2]. That work 

led us to uncover parametric calibrations that would be necessary to exist to optimally apply 

the Gelber model [9]. The QASES is a simple metric that is intended as a potential 

alternative to the more complicated Gelber model without having to delve into strong 

distributional assumptions. Both techniques aspire to the larger objective of effectively 

calibrating, interpreting and communicating results of clinical trials to both clinicians and 

patients.

The QASES method is also intended to compliment clinical judgment, not replace it. In 

response to ASCO’s recently published estimates for clinically meaningful benchmarks for 

treatment efficacy [17], we applied the QASES method to compare the clinical subjective 

with the statistical objective estimates of treatment efficacy [9]. Our results indicated that the 

clinician benchmarks were expressing the belief that even statistically small effect sizes have 
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a place in defining success for new cancer treatments. We further identified that the 

estimates for colorectal cancer were notably larger than for other diseases. It is in this 

complimentary manner that the QASES method can be used to calibrate, compare and 

interpret various approaches estimate the effect of anti-cancer treatments.
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APPENDIX 1

Mathematical Underpinnings for the Survival Endpoints Effect Size

Distribution

Assume the survival time, x, follows an exponential distribution of f (x) = 1
t e

x
t  where x≥1 

and t=mean overall survival time. Then it follows directly that E(x) = t, Var(x) = t2,Sd(x) = t 

and finally that 1
2Sd(x) = t

2 . Given that t=median overall survival time, then Sd(x) = t
ln2  and 

1
2Sd(x) = t

2ln2 .

Effect Size

The calibrated effect size is the difference in overall survival between the two arms (i.e. 

treatment arm OS – reference arm OS) divided by the standard deviation of the reference 

arm survival time.

Example

Consider the following illustration. Women treated with monotherapy lapatinib experienced 

a median overall survival of 9.5 months compared with 14 months when treated with the 

combination (median HR: 0.74, p=0.026). The difference in survival times between the arms 

can be calibrated to 0.36 standard deviations ((14.5–9.5)/(9.5/ln2)). This is a small/medium 
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effect size according to the Cohen guidelines of small (0.2), medium (0.5), and large (0.8) 

effect sizes (Cohen, 1988).

Mathematical Underpinnings for the Toxicity Effect Size

Distribution

Assume the amount of toxicity in a clinical trial follows a Binomial distribution with 

parameters n and p where p is probability of a toxic event. Then it follows directly that 

E(x) = p, Var(x) = p(1 − p), Sd(x) = p(1 − p) and finally that 1
2Sd(x) = 1

2 p(1 − p). The 

sample proportion, p = x
n  can be used as an unbiased estimate of p.

Effect Size

The calibrated effect size for the adverse events is the difference in toxicity between the two 

arms (i.e. toxicity in treatment- toxicity in control) divided by the standard deviation of the 

reference group.

Additional examples are provided in S1 for survival and S2 for toxicity below.

S1:

½ Standard Deviation of Median Survival Time

SD Difference for Median Survival Analysis Median survival = 6 months Median survival = 1 year

SD 8.7 months 17.3 months

½ SD 4.3 months 8.7 months

¼ SD 2.2 months 4.3 months

1/5 SD 1.7 months 3.5 months

S2:

½ Standard Deviation of Toxicity

SD Difference for Adverse Event Rates Adverse Event Rate = 50% Adverse Event Rate = 25%

SD 8.7 months 17.3 months

½ SD 4.3 months 8.7 months

¼ SD 2.2 months 4.3 months

1/5 SD 1.7 months 3.5 months
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Figure 1: 
Illustration of four possible combinations of overall comparative effectiveness of any two 

treatments for a given accounting for major benefit, survival (yes, no) and major harm, 

toxicity (yes, no).
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Figure 2: 
Y-axis represents median survival difference between comparator treatments for the four 

possible case examples, indicating significant differences in survival (yes, no) and toxicity 

(yes, no). X-axis shows the relative weighting of survival (0–1) to toxicity (0–1). Each line 

with in each panel represents different QALY estimates for specific toxicity outcomes (e.g. 

nausea, fatigue etc.). Each line starts on the left weighing survival at 0 (w1=0) and toxicity at 

1 (w2=1); at the right, weighing survival at 1 (w1=1) and toxicity at 0 (w2=0).
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