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Simple Summary: Mosquitoes (Diptera: Culicidae) spread disease and pose a significant risk to
public health around the world. While there are currently many control measures available, many
are typically unsafe for humans and other animals, and they are becoming less effective against
mosquitoes. We tested a compound called propylene glycol (1,2 propanediol) for its toxicity to three
species of mosquitoes that serve as vectors of human pathogens. Propylene glycol is a compound
that the FDA has designated as generally regarded as safe (GRAS) for human consumption, meaning
it is approved for use in everyday household products. Through a series of assays in which we fed
mosquitoes propylene glycol, we found that this compound is highly toxic to all three mosquito
species examined and can drastically reduce the survivorship of laboratory populations. Our results
suggest that propylene glycol could be a safe and effective substance to be used in the context of
attractive toxic sugar baits (ATSBs) as a means of controlling mosquitoes near human habitations.

Abstract: Arthropod control mechanisms are a vital part of public health measures around the world
as many insect species serve as vectors for devastating human diseases. Aedes aegypti (Linnaeus, 1762)
is a widely distributed, medically important mosquito species that transmits viruses such as yellow
fever, Dengue, and Zika. Many traditional control mechanisms have become less effective due to
insecticide resistance or exhibit unwanted off-target effects, and, consequently, there is a need for
novel solutions. The use of attractive toxic sugar baits (ATSBs) has increased in recent years, though
the toxic elements are often harmful to humans and other vertebrates. Therefore, we are investigating
propylene glycol, a substance that is generally regarded as safe (GRAS) for human consumption.
Using a series of feeding assays, we found that propylene glycol is highly toxic to Ae. aegypti adults
and a single day of exposure significantly reduces the survivorship of test populations compared with
controls. The effects are more pronounced in males, drastically reducing their survivorship after one
day of consumption. Additionally, the consumption of propylene glycol reduced the survivorship
of two prominent disease vectors: Aedes albopictus (Skuse, 1894) and Culex pipiens (Linnaeus, 1758).
These findings indicate that propylene glycol could be used as a safe and effective alternative to
pesticides in an ATSB system.

Keywords: toxin; ATSB; GRAS; Aedes aegypti; Aedes albopictus; Culex pipiens; vector control; insecticide
resistance

1. Introduction

The control of invasive and dangerous arthropod vectors is a pressing goal in ento-
mology. Ae. aegypti, commonly known as the yellow fever mosquito, is widely established
in the tropics, subtropics, and temperate zones and will likely spread to new regions as
climate change and global trade continue to shape our world [1–5]. In addition to yellow
fever, Ae. aegypti females are vectors for other serious flaviviruses, such as Dengue and
Zika [6,7]. These diseases impose a heavy burden in Asia, Africa, and South America, with
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a prominent risk of viral outbreaks every year [8,9]. Some studies have estimated that ap-
proximately 390 million cases of Dengue occur annually [10] and while outbreaks of yellow
fever and Zika are less prominent, epidemics are still possible [11]. Another mosquito
of public health concern is Ae. albopictus, a highly invasive species that is competent for
transmitting numerous viruses and is a known vector for Chikungunya [12]. Lastly, Cx.
pipiens is a competent vector for a number of arboviruses, including Japanese encephalitis
virus and West Nile virus [13]. Collectively, these species are responsible for a significant
portion of vector-borne disease transmission worldwide. Their encroachment into new
regions, therefore, poses a significant public health risk [14–16].

One control measure that has been proven effective in the management of localized
mosquito populations is the use of attractive toxic sugar baits (ATSBs) [17–20]. While
conventional control methods have led to problems, such as insecticide resistance and off-
target effects, ATSBs are designed to have more specific effects on the desired species and to
minimize the non-lethal exposure to insecticides [21,22]. These are devices that combine an
attractant to lure insets with a toxin to control adult mosquito populations [23–25]. However,
one remaining issue with ATSBs is that the insecticides commonly used in the system are
potentially harmful to humans and continue to contribute to insecticide resistance [26–31].
Therefore, as Ae. aegypti mosquitoes threaten to spread disease throughout the world,
novel insecticides that are safe for humans are increasingly important [32,33]. An ideal
insecticide substitute would be safe to humans, have a different mode of action than the
most frequently used commercially available insecticides, lead to population decrease, and
disrupt disease cycles [34–36].

Since 1958, the FDA has curated a list of food and cosmetic additives that are generally
regarded as safe (GRAS). These substances are additives that no longer require formal
FDA review, as their safety for humans has long been established by qualified experts [37].
The compounds are typically intended for the preservation of packaged food or for the
postharvest management of produce. While these substances are safe for humans, it has
been shown that some GRAS compounds have negative effects on arthropods [38]. This
paper explores one GRAS substance, propylene glycol, as a potential substitute for other
insecticides [39–41]. Propylene glycol, a food additive used as a solvent and preservative
for food colors and flavors, was selected as an initial GRAS compound to test because it
is almost completely without odor or flavor, readily mixes with water, and is relatively
accessible. Some more specific uses of propylene glycol include as a pharmaceutical solvent
for oral, topic, and injected medicines, as well in personal care products, such as toothpaste
and hand sanitizer, in addition to in cleaning products [42,43]. However, some studies
have shown that propylene glycol can cause contact dermatitis in a small percent of people
and that rapid, large intravenous doses can be toxic [44–47]. While these health effects
necessitate more research, the consensus is that propylene glycol is safe for human use and
consumption [48].

For this study, we assessed Ae. aegypti adult survivorship over time when challenged
with propylene glycol in the context of sucrose solutions. In our initial tests, we examined
the effects of three concentrations of propylene glycol under two distinct feeding paradigms:
ad libitum and 24 h availability. Daily survivorship is one important factor that influences
population dynamics, and it is the only one that was considered in this study [49]. Other
factors, such as birth and death rates, immigration, and emigration, were not examined, as
our study was limited to laboratory conditions. We also assessed the effect of propylene
glycol on Ae. albopictus and Cx. pipiens adults to explore its potential toxicity to other
prominent disease vectors. We established that even at 5%, the lowest concentration tested,
propylene glycol could eliminate an entire population in seven days when offered ad
libitum. At higher concentrations, the effect was more pronounced. Moreover, populations
of all three species were significantly reduced when propylene glycol was presented for only
24 h. Additionally, we observed greater lethality in Ae. albopictus and Cx. pipiens, indicating
that propylene glycol can be used as an insecticide for a variety of mosquito vectors.
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2. Materials and Methods

Mosquito Rearing: Aedes aegypti and Aedes albopictus larvae were collected from stand-
ing water in small outdoor containers at a private residence in McLennan County, Texas,
near the city of McGregor. Larvae were reared to adulthood, and species identities were
confirmed by adult morphological characters. Colonies of the “McGregor” strains were
established in the laboratory and maintained under standard conditions: 27 ◦C, 70% RH,
12:12 LD, 5% sucrose (w/v) in distilled water ad libitum. Females were fed defibrinated
sheep blood (Hemostat Laboratories, Dixon, CA, USA) using a membrane feeding system
(Hemotek Ltd., Blackburn, UK). Lab strains of Culex pipiens, which were originally col-
lected and colonized at Ohio State University, were provided as eggs by the laboratory of
Dr. Cheolho Sim at Baylor University. They were maintained under the same conditions as
the Aedes species.

Ad libitum Trials: At pupal stage, mosquitoes were divided into cages (BugDorm-1;
MegaView Sci. Co. Ltd., Taiwan) of approximately 50 individuals and provided with 25 mL
of 5% sucrose solution (w/v) in a glass bottle with a cotton wick extending approximately
one inch out of the bottle. The number of mosquitoes used was dependent upon the hatch
rate and survivorship of the larvae to adulthood. Exact numbers per trial are provided in
supplemental data. Seventy-two hours post-eclosion, the sucrose solution was removed
from the cages, and the adult mosquitoes were starved for twenty-four hours. Following
the starvation period, a solution of 5% sucrose plus 5%, 7.5%, or 10% propylene glycol (w/v;
Fisher Scientific, CAS # 57-55-6) was colored blue with one milligram of powdered dye
(Acid Blue 9, TCI America, CAS # 3844-45-9). Separate studies were conducted to verify the
innocuous nature of the dye (data not shown). Cages were visually inspected every 24 h for
7 days. Mortality was determined by observing mosquitoes lying on the bottom of the cage,
unmoving, with legs pointing upward and by the lack of response upon prodding. Expired
mosquitoes were removed from the cage, sorted by sex, checked for evidence of feeding
(presence of blue dye in the abdomen), and counted. At the end of the 7-day trial period,
the remaining mosquitoes were sorted by sex and counted. Trials were carried out in three
biological replicates. Control cages were provided with a 5% sucrose solution, dyed blue,
and prepared in the same fashion described above.

24-Hour Trials: Trials were initiated as described above. Mortality was assessed after
24 h, and the toxin was removed and replaced with a 5% sucrose solution, colored blue.
Mortality was assessed every 24 h for a total of 7 days. At the end of the 7-day trial period,
the remaining mosquitoes were sorted by sex and counted. Trials were carried out in three
biological replicates.

Statistical Analysis: GraphPad Prism 9 was used for analysis. Kaplan–Meier curves
were plotted to assess population survivorship, and significance was determined using a
log-rank (Mantel–Cox) test with a post hoc analysis and a Bonferroni correction [50].

3. Results
3.1. Propylene Glycol Reduces Survivorship of Ae. aegypti Mosquitoes

Our study indicates that propylene glycol reduces the daily survivorship of Ae. aegypti
adult mosquitoes. All the populations that fed on propylene glycol +5% sucrose at any
concentration ad libitum had significantly reduced survivorship when compared to the
control groups that fed on 5% sucrose only (Mantel–Cox post hoc Bonferroni correction
p < 0.0001). The mosquitoes that fed ad libitum on 7.5% propylene glycol + sucrose or 10%
propylene glycol + sucrose had a lower daily survivorship than the mosquitoes that fed
on 5% propylene glycol + sucrose (p < 0.0001), though there was no significant difference
between the groups at the two higher concentrations (Figure 1).

Additionally, there was a reduced daily survivorship between the groups that fed on
any concentration of propylene glycol + sucrose for 24 h followed by 6 days of sucrose only,
and those that fed on sucrose only for 7 days (p < 0.0001), and the survivorship differed
between the three concentrations (Figure 1). The mosquitoes that fed on 7.5% PG + sucrose
for 24 h had a lower survivorship than the 24 h 5% propylene glycol + sucrose group
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(p < 0.0001), but there was no statistical distinction between the groups that fed for 24 h on
5% propylene glycol + sucrose and 10% propylene glycol + sucrose, or between the two
higher concentrations. Lastly, regardless of concentration, the daily survivorship of the
adults that fed ad libitum was lower than that of those that only fed for 24 h (p < 0.0001).
We found that the sex-specific effects were the same across concentrations (Figure S1).
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Figure 1. Propylene glycol reduces the daily survivorship of Ae. aegypti mosquitoes. Day 0 indicates
the day propylene glycol solutions were added. A Kaplan–Meier curve demonstrates the decline in
mosquito survivorship over the course of 7 days. Populations fed on sucrose, sucrose + 5% propylene
glycol, sucrose + 7.5% propylene glycol, or sucrose + 10% propylene glycol ad libitum or for a 24 h
period, at which point the propylene glycol solutions were replaced with 5% sucrose. Percentage of
the population surviving at day 7 is provided when applicable. Error bars indicate SE of the mean.

3.2. PG Has Sex-Specific Effects on Ae. aegypti Mosquitoes

The groups of the tested mosquitoes were then divided and assessed by sex across
the three concentrations tested. At 5% propylene glycol, there was a significant difference
between the females that fed ad libitum and those that fed for 24 h (p < 0.0001), but not
between the two groups of males (p = 0.348) (Figure 2a). The females that fed ad libi-
tum had a higher daily survivorship at day 7 than the males within the same test group
(p < 0.0001), and the same was true for the females and males that fed on propylene glycol
for 24 h (p < 0.0001). Interestingly, we found no difference in the daily survivorship of the
females that fed ad libitum and the males that fed for 24 h, but the inverse was significantly
different (p < 0.0001). Many of these features were also valid at higher propylene glycol
concentrations. At both 7.5% propylene glycol and 10% propylene glycol, females had a sig-
nificantly higher survivorship than males in both the ad libitum and 24 h trials (p < 0.0001;
Figure 2b,c). Th females that fed ad libitum had a significantly lower survivorship than
those that fed for 24 h (p < 0.0001), as did the males at 10% propylene glycol (p = 0.007;
Figure 2c). Surprisingly, at 7.5% propylene glycol, even the females that fed ad libitum had a
higher survivorship than the males that fed for 24 h (p < 0.0001). While the females that fed
for 24 h also had a higher survivorship than the males that fed ad libitum (p < 0.0001), this
was less unexpected and also true at 10% propylene glycol (p < 0.0001). As is demonstrated
in Figure 1, all the mosquitoes that fed on propylene glycol had a significantly lower daily
survivorship than the control groups, which fed on 5% sucrose alone.

3.3. Propylene Glycol Decreases the Survivorship of Ae. albopictus and Cx. pipiens

The effects of propylene glycol on laboratory populations of Ae. albopictus and Cx.
pipiens were also studied and compared to the effects on Ae. aegypti. There was no difference
in the daily survivorship of the groups of each species for sucrose-only controls (Figure 3).
However, in each of the species, the groups that fed ad libitum had a decreased survivorship
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compared with the controls (p < 0.0001). Interestingly, there was a difference in the daily
survivorship between the species that fed on 5% propylene glycol ad libitum (Figure 3a).
Ae. aegypti had a higher survivorship than both Ae. albopictus and Cx. Pipiens (p < 0.0001),
and Ae. albopictus had a higher survivorship than Cx. pipiens (p = 0.0016).
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Figure 3. Propylene glycol reduces the daily survivorship of Ae. aegypti, Ae. albopictus, and Cx. pipiens
mosquitoes. (a) A Kaplan–Meier curve demonstrates the decline in mosquito survivorship over the
course of 7 days. Populations fed on 5% sucrose or 5% sucrose + 5% propylene glycol ad libitum.
Percentage of the population surviving on day 7 is provided when applicable. Error bars indicate SE
of the mean. (b) Populations fed on 5% sucrose ad libitum or 5% sucrose + 5% propylene glycol for
24 h, at which point it was replaced with 5% sucrose. Percentage of the population surviving at day 7
is provided when applicable. Error bars indicate SE of the mean.

Similar patterns emerged when comparing the groups that fed on 5% propylene glycol
for 24 h (Figure 3b). In each species, the adults that had access to propylene glycol displayed
a decreased daily survivorship compared to those that fed on sucrose only (p < 0.0001).
Additionally, the differences between species observed for ad libitum trials remained.
Of the groups that fed on propylene glycol for 24 h, Ae. aegypti again had the highest
survivorship (p < 0.0001), and Ae. albopictus had a higher proportion surviving than Cx.
pipiens (p = 0.0007).

4. Discussion

Our results indicate that propylene glycol, a GRAS compound found in numerous
commercial products, reduces the daily survivorship of three predominant vector mosquito
species, namely, Ae. aegypti, Ae. albopictus, and Cx. pipiens, which were selected due to
their continuing impacts on public health [1,5]. Reducing the daily survivorship of adult
mosquitoes can reduce the average population life expectancy, thereby decreasing vector
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capacity and disease transmissibility [51]. Importantly, this effect could be realized even
at sub-lethal concentrations of propylene glycol. Decreasing the average life expectancy
of female mosquitoes, even slightly, could lead to a significant reduction in the number of
females that survive long enough to become infected and complete the extrinsic incubation
period for viruses, which is typically on the order of 7–14 days [51–53]. This may have the
further benefit of decreasing the probability of a species developing resistance mechanisms
to propylene glycol, as adults will likely have already mated and reproduced before the
compound affects survivorship.

We initially observed that populations of Ae. aegypti feeding on the compound in
combination with sucrose ad libitum had a diminished survivorship at 7 days compared
to groups feeding on sucrose only. As the compound was in a solution with sucrose, the
mortality of the mosquitoes can be attributed to the presence of the compound and not
from a lack of nutritive content. This assumption was confirmed by visually inspecting
the feeding status of trial groups. Although not specifically quantified, we examined the
abdomens of deceased mosquitoes and found, without exception, the presence of the blue
dye, indicating that adult mosquitoes were imbibing the test solutions. Another result
that supports this conclusion is that propylene glycol affected daily survivorship in a
dose-dependent manner, something that would not be expected if adults were simply
not feeding.

To better model a natural setting in which mosquito populations may feed from
multiple sources, we then conducted feeding trials in which the propylene glycol + sucrose
solution was present in the mosquito cage for 24 h, at which point it was replaced by sucrose
only [54]. Again, we observed a reduced daily survivorship in test cages compared to those
that were never exposed to propylene glycol, though to a lesser extent than those feeding ad
libitum. These results demonstrate that laboratory populations of Ae. aegypti that feed on
propylene glycol have a reduced survivorship compared to those that do not. When feeding
on propylene glycol ad libitum, the populations were completely eliminated at the 7.5%
and 10% concentrations, and an average of only 2.24% of the population remained on the
seventh day at the 5% concentration. Even when we presented the compound to the groups
for 24 h, daily survivorship was reduced to below 50% at all concentrations (Figures 1–3).
This demonstrates a potent effect of propylene glycol on Ae. Aegypti adults. Interestingly,
when the effect of propylene glycol on Ae. aegypti was assessed according to sex, we found
that males had a significantly lower daily survivorship than females under both feeding
paradigms (Figure 2). We propose that this effect is due to behavioral differences in males
and females [55,56]. While female mosquitoes tended to rest on the surfaces of the cages,
males flew continuously within the enclosure, thus increasing the frequency of sugar meal
consumption and, therefore, the amount of propylene glycol ingested. Another factor could
be adult size. Although not quantified in our study, adult males tended to be smaller than
females. Thus, the effective dose of propylene glycol per milligram of body weight may
have been higher in males.

We continued this study by testing the effects of propylene glycol on laboratory
populations of Ae. albopictus and Cx. pipiens. The consumption of propylene glycol imposed
a much greater survivorship-reducing effect on both species when compared to Ae. aegypti
under both feeding paradigms. Interestingly, this effect was most pronounced in Cx. pipiens,
although the underlying reason for this difference is unknown. It would be interesting to
examine the fate of propylene glycol in the digestive tract and hemolymph of these species
to assess potential differences in enzymatic digestion or biochemical transformation, which
produces variability in outcomes.

Another important factor that remains to be investigated is the potential off-target
effects of propylene glycol. This study was limited to the effects of propylene glycol on
daily survivorship in adult mosquitoes, but it will be necessary to consider the broader
impacts on other arthropods, and perhaps vertebrate species [57,58]. However, utilizing this
compound in an ATSB system in conjunction with a specific attractant and physical barriers
could alleviate this issue [59]. Further research should also be conducted to determine the
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relevance of this substance in an ATSB context to human health. Lastly, there are many
more GRAS compounds that remain to be tested for toxicity to mosquitoes, one or more of
which may prove to be even more safe and effective [60].

From our results, we conclude that propylene glycol reduces the daily survivorship
of adult vector mosquitoes. By extension, we propose that propylene glycol would affect
the average life expectancy of vector populations in the context of ATSBs. As the observed
increase in insecticide resistance in mosquitoes is an issue of global concern, the need for
new and innovative management strategies is clear. Our study demonstrates that propylene
glycol may represent one new compound that can be utilized for localized population
reduction and the interruption of disease transmission cycles.

Future experiments will include adding a mosquito attractant to the solution and
performing field studies to determine how well propylene glycol works as an ATSB compo-
nent. As our initial study demonstrates that propylene glycol leads to significant decreases
in survivorship in three mosquito species in a lab setting, we conclude that propylene
glycol may decrease the average life expectancy in natural populations. As such, our study
provides a foundation for future ATSB design and field-based population dynamics studies,
where incorporating an effective substance could reduce vector mosquito population while
also ameliorating the effects on non-target populations.
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