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The HTPmod Shiny application enables modeling
and visualization of large-scale biological data
Dijun Chen 1,2, Liang-Yu Fu1, Dahui Hu3, Christian Klukas2,4, Ming Chen3 & Kerstin Kaufmann1

The wave of high-throughput technologies in genomics and phenomics are enabling data to

be generated on an unprecedented scale and at a reasonable cost. Exploring the large-scale

data sets generated by these technologies to derive biological insights requires efficient

bioinformatic tools. Here we introduce an interactive, open-source web application

(HTPmod) for high-throughput biological data modeling and visualization. HTPmod is

implemented with the Shiny framework by integrating the computational power and pro-

fessional visualization of R and including various machine-learning approaches. We

demonstrate that HTPmod can be used for modeling and visualizing large-scale, high-

dimensional data sets (such as multiple omics data) under a broad context. By reinvestigating

example data sets from recent studies, we find not only that HTPmod can reproduce results

from the original studies in a straightforward fashion and within a reasonable time, but also

that novel insights may be gained from fast reinvestigation of existing data by HTPmod.
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O ver the last decade, technological advances in genomics
(e.g., high-throughput sequencing, HTS) and phenomics
(high-throughput plant phenotyping, HTP) have resul-

ted in a tremendous increase of molecular and phenotypic data
from large number of samples with a high-dimensional list of
measurements. As a result, we can acquire an extensive range of
phenotypes at organism-wide scale1,2, quantify the expression of
tens of thousands of genes3–5, and measure the entire epigen-
ome6,7 or regulatome8–10 simultaneously for hundreds to thou-
sands of samples at a reasonable cost. The immense volume,
variety, velocity, and veracity of high-throughput biological data
generated by these technologies make it a big data problem11–13.
In this regard, data handling and processing remain a major
technical bottleneck when translating big biological data into
knowledge.

Extracting hidden patterns and making accurate predictions
from these massive data sets largely rely on machine-learning
approaches14,15. From a computational point of view, machine
learning methods are attractive in terms of their ability to derive
predictive models without a need for strong assumptions about
underlying mechanisms; hence they are especially useful to deal
with certain biological questions of which our a priori knowledge
is frequently unknown or insufficiently defined14. As a proof of
concept, gene expression levels can be accurately predicted from a
broad set of epigenetic features16–20 or binding profiles of diverse
transcription factors (TFs)21–24 using various machine-learning-
based approaches, although our knowledge about how the
selected features determine the expression output is largely
unknown. Modeling is, therefore, a key ingredient to derive novel
biological insights by integrating large-scale data sets. Generally, a
canonical machine learning workflow consists of the model fitting
and evaluation. Although conceptually simple, applying adequate
machine-learning algorithms to the large corpus of data remains
an important challenge since it requires substantial computa-
tional expertise and effort. To our knowledge, an integrative web-
based application for interactive exploration and interpretation
of large-scale, high-dimensional data sets is not available to
date. Here we present an interactive web application, HTPmod
(http://www.epiplant.hu-berlin.de/shiny/app/HTPmod/), for high-
throughput biological data modeling and visualization. By rein-
vestigating example data sets from recent studies, we demonstrate
that HTPmod can be used for modeling and visualizing multiple
types of omics data (such as phenomics, transcriptomics, metabo-
lomics, and epigenomics data) under a broad context in a
straightforward and an efficient fashion.

Results
Overview of the HTPmod application. By integrating existing
machine-learning approaches applied in high-throughput
experiments1,25,26, HTPmod was implemented with the Shiny
framework (http://shiny.rstudio.com/), which combines the
computational power of R with friendly and interactive web
interfaces. HTPmod provides three function modules for mod-
eling (growMod and predMod) and visualizing (htpdVis) data
especially from high-throughput experiments, such as HTP and
HTS (Fig. 1 and Supplementary Fig. 1). Besides, HTPmod accepts
the simplest table files as the only input (Fig. 1a and Supple-
mentary Fig. 2) and supports the generation of various types of
publication-quality graphics (Fig. 1b–d) and tables with possible
customizations. Whenever possible, HTPmod adopts parallel
computing to speed up analysis.

The growMod module for plant growth modeling. The first
module in HTPmod, growMod, was developed for plant growth
modeling based on time-series data, e.g., from plant HTP

experiments1,27. HTP is an ideal tool to study plant growth in a
noninvasive way. We previously showed that the growth of barley
(Hordeum vulgare) plants under normal and drought stress
growth conditions follows a logistic curve and a bell-shaped curve,
respectively1. In this study, we provided a graphical user interface
(GUI) to perform growth modeling in an easy and efficient way
(Fig. 1b). Generally, input data for growMod can be extracted from
images by existing HTP image analysis software, such as IAP28

or PlantCV27,29. Image-derived features, such as plant height,
project area and digital volume are some examples of traits that
can be used to model plant growth. The growMod tool supports
growth modeling for normal and stressed plants, which can be
done either at single plant level or at group level (i.e., replicates
in a group or a genotype). Moreover, we included several
mechanistic growth models (including linear, bell-shaped,
quadratic, exponential, monomolecular, logistic, Weibull and
Gompertz curves; Supplementary Table 1) so that the perfor-
mance of each model can be compared and evaluated (see
Methods). Users can choose proper growth models to predict
plant growth in their studies. Finally, biologically interpretable
parameters can be derived from these models and can be fur-
ther used for association mapping in a large population,
allowing a deeper understanding of the performance and
genetic basis of plant growth1.

The predMod module for prediction. The second module pre-
dMod was implemented with several supervised machine-learning
models to relate input features (e.g., image data from HTP, and TF
binding and histone modification data from HTS) to output
quantities of interest (e.g., plant biomass, yield, stress status, or gene
expression levels). The predMod tool is typically useful in situations
where large amounts of data are available, with the aim to under-
stand how a combination of factors (inputs) influence the output
trait. In particular, the prediction models can be used for either
regression (where output consists of numeric values) or classifica-
tion (where output is a categorical class label). For instance, such
prediction models have been widely used to predict the contribution
of chromatin features to the change of gene expression18,21,30, to
predict plant biomass from image-derived features25,27,31, to classify
plants in different stress status1 or disease status32 based on image
data, or to discriminate organ-specific target genes based on
SELEX-seq data26. We integrated more than 30 widely used
machine-learning approaches (Supplementary Table 2) into the
predMod module, for regression or classification analyses (Fig. 1c).
The prediction performance can be evaluated when multiple pre-
diction models are selected18,25,30 (see Methods). Furthermore,
feature importance and their prediction power can be extracted
from the models18,21,25,30, which may aid for feature selection (e.g.,
to find potentially interesting features).

The htpdVis module for visualization. However, when there is
no prior knowledge of the data investigated, unsupervised
machine-learning approaches can be used to discover patterns
from large data sets. To this end, we developed a third module,
htpdVis, to explore and visualize large-scale, high-dimensional
data using various unsupervised machine-learning approaches,
such as principal component analysis (PCA), t-distributed sto-
chastic neighbor embedding (t-SNE)33, self-organizing map,
multidimensional scaling, K-means clustering or hierarchical
cluster analysis with heatmaps (Fig. 1d). This module is particu-
larly useful for exploration of hidden patterns and exploratory
data mining from omics data sets such as phenome1, tran-
scriptome34–36, or epigenome data37. For example, in PCA, the
results of top principal components (PCs) are usually shown in a
scatterplot where both the component scores (the transformed
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variable values of data points) and the factor loadings (the cor-
relation coefficients between the observations [rows] and factors
or features [columns]) are plotted in the same graphs (Fig. 1d). In
addition, we also implemented the PCA with self-organizing map
clustering approach, which is a useful way to visualize and explore
multidimensional data sets, such as gene expression data across
tissues in multiple species38–40. Notably, in the htpdVis module,

different parameter settings can be used to generate diverse types
of graphs with color and shape schema highlighting important
data features (Fig. 1d).

Applications of HTPmod. To demonstrate the universal appli-
cations of HTPmod in data exploration and visualization, we
provided various example data sets from recent studies
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(Supplementary Table 3) spanning phenomics1,25,27, metabo-
lomics41, epigenomics37, regulatomics21,26 and transcriptomics42.
We explored these data using the various functionalities imple-
mented in our HTPmod system (see also online application for
demonstrations). We showed that not only can HTPmod repro-
duce the corresponding findings of the original studies but also
can gain novel insights from existing published data in a
straightforward fashion and within a reasonable time (Supple-
mentary Figs. 3-13).

Here, we briefly described two case studies to show the power
of HTPmod in data modeling and visualization. The first case
study is to predict gene expression patterns using TF binding data
in Arabidopsis thaliana, as shown in a recent study21. Briefly, we
collected gene expression data from the supplemental data of
ref. 21. and TF binding profiles from the Gene Expression
Omnibus (GEO) database with an accession number GSE80568.
The input data (consisting a matrix of TF binding score and
expression changes for the differentially expressed genes) for
HTPmod were prepared in a similar way as Song et al.21. We ran
the predMod module with 16 regression models to relate TF

binding strength to gene expression changes (log-transformed
fold change [FC]) under ABA (phytohormone abscisic acid)
treatment compared to mock. Strikingly, all the tested models
show relatively comparable performance (Fig. 2 and Supplemen-
tary Fig. 7), implying that these models capture the intrinsic
determinant of TF binding to the gene expression outcome. In
addition, the relative feature importance determined by a glmnet
regression model (Fig. 3) is consistent to the results presented in
the original study21.

The second case study is to visualize floral organ-specific gene
expression patterns42 by the htpdVis module. Domain-specific
translatome data were obtained from the supplemental file of
ref. 42. Based on analysis of variance (ANOVA), we identified
6072 genes that show significant spatiotemporal domain effects
(p-value <0.05 based on ANOVA) with at least two-fold change
(FC > 2) between different domains. We then filtered 678
domain-specific genes (see online document for more details)
that were highly expressed in AP1-specific (specifying the sepal
organ), AG-specific (carpel), AP1/AP3-common (petal), or AP3/
AG-common (stamen) domains. We projected the data onto
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three dimensions via t-SNE plots based on htpdVis (Fig. 4a, b),
which confirms that these organ-specific genes show well defined,
distinct expression pattern. When adding more genes with
unknown organ signature into visualization, we observed
spatiotemporal gene expression trajectories during floral organ
development (Fig. 4c). These observations provide an important
starting point to investigate the mechanisms regulating organ
differentiation in plants. In summary, the above results strongly
support that HTPmod can make fast reproducible analysis
without any programming demand.

Discussion
In this work, we developed and characterized a web application
for modeling and visualizing large-scale biological data sets. As
implemented with the Shiny framework, the HTPmod applica-
tion inherits the computational power as well as professional
visualization of R. To avoid excessively long run-times, HTPmod
also allows parallel computing to speed-up analysis whenever
possible, facilitated by the BiocParallel package (http://
bioconductor.org/packages/release/bioc/html/BiocParallel.html).
The BiocParallel allows parallelization either on local web machine
or on a cluster of computers using specific job schedulers. In short,
HPTmod offers three modules (growMod, predMod, and htpdVis)
for exploratory or interactive data mining with various omics data
sets. An obviously distinctive feature of HTPmod is that it integrates
widely used mathematical models (Supplementary Table 1) and
machine-learning approaches (Supplementary Table 2) and runs
them in a uniform way on a single data set, therefore allowing direct
comparison and evaluation of the performance of different meth-
ods. However, different models may show distinct performance for
a specific data set. In this respect, we may choose a model of interest
or a model with the best performance in the analysis. Furthermore,
model-derived knowledge, such as parameters to describe plant
growth and performance1, and feature importance scores18,20,25,
may allow important biological interpretation and be promising for
providing novel insights.

In order to demonstrate that HTPmod is powerful for mod-
eling and visualization of large-scale biological data in different
contexts, we provided several case studies ranging from genomics
to phenomics1,21,25–27,37,41,42 (Supplementary Table 3) and have

shown that HTPmod is an easy-to-use tool that generates
reproducible results in a very efficient way. Compared to existing
analysis protocols38,43,44, HTPmod offers several advantages.
First of all, HTPmod provides user friendly web interfaces to run
a diverse set of models for data modeling and visualization based
on a single input file, thus without the need of programming
experience. Second, HTPmod can generate a variety of plots for
publication purposes based on a single data set. Finally, HTPmod
is open source and highly extendable. New prediction models can
be easily integrated into HTPmod (see the online document). We
will continue to integrate more prediction models or visualiza-
tion/analysis components in the future. For example, deep
learning is an emerging approach in the field of machine learning
that can be used for image-based analytical tasks in plant phe-
notyping45–47. We believe that the data organization and visua-
lization features offered by HTPmod are valuable for data
scientists trying to apply deep learning to their HTP images.

As more and more big genomic and phenomic data sets are
being or are going to be generated by large-scale, high-throughput
experiments, the methodological framework for data modeling
and visualization proposed in this work will have broadly
potential applications. We anticipate that the plentiful output
generated by HTPmod on a single data set will be useful to
advance our views of a specific biological question under inves-
tigation. In summary, HTPmod is an open-source, interactive,
and powerful web platform for large-scale biological data mod-
eling and visualization.

Methods
Growth modeling (growMod). With HTP data, image-derived features like plant
height, projected area27 and digital volume1 can be considered as growth-related
traits for growth modeling. In the growMod module, plant growth in control
conditions can be modeled with six different mechanistic models: linear, expo-
nential, monomolecular, logistic, Gompertz, and Weibull models (Supplementary
Table 1). In order to fit these models using the linear regression function “lm” in R,
the non-linear relationship of the models were first transformed into linearized
forms (Supplementary Table 1). The growth traits are then fitted with the linear-
ized models. Finally, the performance of models is assessed and compared based on
their R2 and p-values. Some useful parameters can be derived from these models.
For example, for the logistic model, the following three parameters are important
to describe plant growth performance:1 (1) the intrinsic growth rate (R) that
measures the speed of growth; (2) the inflection point (IP) that represents the time
point when plant reaches the maximal speed of growth; and (3) the maximum final
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vegetative biomass (Kmax), which was estimated for each plant on the basis that the
model could fit the data with the largest R2.

We also implemented several models to predict plant growth in in drought
stress conditions1 (Supplementary Table 1). The modeling steps are divided into

two parts: (1) growth before and during the stress phase and (2) re-growth during
recovery phase. In the first phase, three different bell-shaped curves and a quadratic
curve are fitted to the data, while in the recovery phase a simple linear model is
used to characterize re-growth with the speed of re-growth (Rrec).
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Prediction models (predMod) for regression or classification analysis. We
included 32 widely used machine-learning approaches (Supplementary Table 2)
into the predMod module, for regression or classification analysis purposes. Based
on the powerful functionality of the caret R package and the uniform criteria for
model performance evaluation (see below), predMod enables to run these models in
a similar manner with comparable output.

Model performance. To evaluate the performance of the predictive models, we
adopted a k-fold cross-validation strategy to check the prediction power of each
model. Specifically, each data set will be randomly divided into a training set
((k− 1)/k of individuals) and a testing set (1/k of individuals). A specific model is
first trained on the training data and then applied to make prediction for the testing
data. The final performance of models is evaluated and compared based on the
average prediction accuracies obtained from N resampling of the data set (N-times
randomization), where both k and N are defined by users.

For regression models, their predictive performance can be measured by the
Pearson correlation coefficient (PCC; r) between the predicted values and the
observed values; and the coefficient of determination (R2) which equals to the
fraction of variance explained by the model, defined as

R2 ¼ 1� SSres
SStot

¼ 1�
Pn

i¼1 yi � ŷið Þ2
Pn

i¼1 yi � �yð Þ2

where SSres and SStot are the sum of squares for residuals and the total sum of
squares, respectively, ŷi the predicted and yi the observed value of the ith plant, �y is
the mean value of the observed values; and the root mean squared relative error of
cross-validation, defined as

RMSRE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ps

i¼1
yi�ŷi
yi

� �2

s

v
u
u
t

where s denotes the sample size of the testing data set.
We repeated the cross-validation procedure ten times. The mean and standard

deviation of the resulting R2 and RMSRE values were calculated across runs.
The predictive bias μ between the predicted and observed values, defined as

μ ¼ 1
n
�
Xn

i¼1

ŷi � yi
yi

where n denotes the sample size of the data set. This bias indicates overestimation
(μ > 0) or underestimation (μ > 0) of the target feature.

For classification models, their predictive performance can be measured by:
(1) a confusion matrix, which is the contingency table of actual versus predicted
class labels for each class, and is particularly helpful in the case of multiclass
classification; (2) scalar characteristics as the accuracy, and average area under the
ROC curve (see below); (3) a receiver operating characteristic (ROC) curve by
plotting the true positive rate (TPR) against the false-positive rate (FPR) at various
threshold settings, which is particularly helpful in two class problems; (4) a
precision-recall curve (PRC)48 showing the tradeoff between precision and recall at
different thresholds, which is particularly useful when the classes are very
imbalanced.

Influence of features on prediction performance. We also developed several
criteria to evaluate the relative importance of features for the prediction. For the
models (including random forest, stochastic gradient boosting, classification and
regression trees and multivariate adaptive regression spline) with built-in strategies
to estimate the contribution of each variable to the prediction, the estimated
measures of relative importance are scaled to the range between 0 (least important)
and 100 (most important). Otherwise, the importance of each predictor is calcu-
lated individually using a filter approach as implemented in the caret R package.

Furthermore, the following criteria are also used to evaluate the importance of
individual features and their redundancy in prediction. For regression, the ability of
individual features to predict the response variable is calculated as the correlation
coefficients (R2) between the predicted values and the actual values, which is
termed as predictive power of the corresponding features. For classification
problems, a greedy feature selection algorithm49 is conducted. Specifically, starting
with the original set of n features, each feature is independently removed to
produce n subsets of data with n− 1 features. Then the classification performance
is computed with k-fold cross-validation and N-times randomizations, in the same
way as described above, for each of these n subsets. The feature with least decreased
the classification accuracy will be removed at this step. The above process is iterated
until no feature can be removed. The classification performance driven by a specific
combination of features can be visualized in a boxplot, with x-axis as the number of
features and y-axis as cross-validation of classification accuracy.

Code availability. The HTPmod web-based application is freely available at http://
www.epiplant.hu-berlin.de/shiny/app/HTPmod/. Users are encouraged deploy the
HTPmod application at their own web server. The corresponding source code is

available at https://github.com/htpmod/HTPmod-shinyApp and online document
is available at https://github.com/htpmod/HTPmod-shinyApp/wiki.

Data availability. The processed example data sets used for demonstration pur-
poses are provided alongside the HTPmod source code (https://github.com/
htpmod/HTPmod-shinyApp).
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