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Abstract: Glaucoma is a group of diseases characterized by progressive degeneration of

retinal ganglion cells, leading to irreversible blindness. Currently, intraocular pressure

reduction is the only established treatment available for glaucoma. With this treatment, the

progression of the disease can only be delayed and there is no recovery. In addition, the

commercially available eye drops have the disadvantage of low compliance and short

therapeutic time, while glaucoma surgery always has the risk of failure due to wound

fibrosis. Nanotechnology can overcome the limitations of the current treatment through the

encapsulation and conjugation of drugs used for lowering intraocular pressure and antifi-

brotic agents using biodegradable or biocompatible nanoparticles for the sustained release of

the drugs to protect the damaged ocular cells. Furthermore, using nanotechnology, treatment

can be administered in various forms, including eye drops, contact lens, and ocular inserts,

according to the convenience of the patients. Despite the promising results of delaying the

progression of glaucoma, the regeneration of damaged ocular cells, including trabecular

meshwork and retinal ganglion cells, is another critical hurdle to overcome. Bone marrow-

derived mesenchymal stem cells and Müller glia cells can secrete neurogenic factors that

trigger the regeneration of associated cells, including trabecular meshwork and retinal gang-

lion cells. In conclusion, this review highlights the potential therapeutic applications of

nanotechnology- and stem cell-based methods that can be employed for the protection and

regeneration of ocular cells.
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Introduction
Glaucoma is the second leading cause of blindness worldwide. According to World

Health Organization, 4.5 million or more than 12% of all cases of blindness

globally were the result of glaucoma.1 Glaucoma is a group of optic neuropathies

characterized by progressive degeneration of retinal ganglion cells (RGCs) in the

inner retina and loss of their axons in the optic nerve.2 The disease progresses

slowly without obvious symptoms until it leads to irreversible visual field loss and

optic nerve damage.

There are several reasons for blindness from glaucoma. First, it is often diag-

nosed late because the patients remain unaware of the gradual contraction of their

visual fields until finally their visual acuity begins to fail. Second, the disease is

improperly controlled by medication and surgery. Currently, intraocular pressure

(IOP) reduction is the only proven treatment for glaucoma.3 The effectiveness of

glaucoma surgery decreases with time because of the fibrosis of the surgical site.4

In addition, insufficient reduction of IOP by medical treatment is a cause for the
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progression of disease. In some patients with glaucoma,

the visual field loss can continue to progress even with

lowered IOP.5 Difficulty in detection of IOP fluctuation

and non-IOP factors such as neurodegeneration may con-

tribute to the progression.6 Another reason is the issue of

compliance with the treatment. Since glaucoma is a life-

long condition, many patients with glaucoma using eye

drops experience difficulties in administration of the drops

and suffer from ocular discomfort. This difficulty in the

use of eye drops can increase the risk of glaucoma pro-

gression because of poor compliance.7,8 Trans-corneal

drug penetration through topical eye drops is currently

the most commonly used route of drug delivery in ophthal-

mic medical fields. However, preservative or active ingre-

dients of topical eye drops can have an adverse effect on

the ocular surface, leading to dry eye symptom.9 Thus, the

current ophthalmic drug delivery system needs to be

improved for better patient compliance and better

efficiency.

Among the various fields in which nanotechnology can

be applied, biology and medicine have gained increasing

attention recently.10 Nanomedicine is a comprehensive field

that combines biology, chemistry, engineering, and medicine

to provide more efficient tools for the prevention and treat-

ment of various diseases. It can provide new strategies to

clinicians for prevention, diagnosis, and treatment of severe

disease such as cancer.11 Additionally, nanotechnology could

be used to introduce remarkable improvements in drug deliv-

ery systems,12 medical imaging and diagnosis platforms,13

implantable materials,14 and tissue regeneration

strategies.15,16 Therefore, the use of nanomedicine could

result in development of better diagnostic and therapeutic

strategies for the prevention of blindness from glaucoma. In

this manuscript, the authors have reviewed and discussed

promising strategies involving use of nanotechnology for

treatment of patients with glaucoma, in an attempt to over-

come the limitations of current treatments for glaucoma.

Glaucoma
Definition and Classification of glaucoma
Clinically, glaucoma is defined as a condition with charac-

teristic appearance of optic disc (optic disc cupping) and

corresponding visual field loss.17 The nerve fibers of RGCs

pass out of the eye at the optic disc. The neuroretinal rim of

the optic disc contains the nerve fibers of RGCs. In glau-

coma, the neuroretinal rim of the optic disc becomes pro-

gressively thinner, thereby resulting in the enlargement of

the optic disc cup (central depression at optic disc).18 This is

called as optic disc cupping.19 The loss of the RGC nerve

fibers leads to a loss of the connection between the retina

and visual pathway of brain, leading to visual field defect.20

Elevated IOP is themain risk factor for glaucoma.21 IOP is

determined by the balance between the inflow and outflow of

aqueous humor.22 Aqueous humor is a clear fluid found in the

anterior and posterior chambers of the eye, which is required

to provide nutrients and remove cellular waste products.23 In

addition, aqueous humor has a role inmaintaining the shape of

the eyeball and related refractive properties of the eye.

Aqueous humor is actively produced by the ciliary body in

the posterior chamber and exits the anterior chamber through

two distinct routes, including the trabecular pathway and the

uveoscleral pathway.24 Under physiological conditions, the

trabecular pathway accounts for about 90%of the total outflow

of aqueous humor. In the trabecular pathway, aqueous humor

drains through the filter-like region of the trabecular mesh-

work (TM) and Schlemm’s canal (SC), and finally enters

systemic circulation through the episcleral veins.23

Glaucoma can be clinically classified by several factors.

First, based on the appearance of the iridocorneal angle, where

TM is located, glaucoma is defined as angle-closure glaucoma

or open-angle glaucoma. Angle-closure glaucoma develops

when the angle between the peripheral iris and the TM closes

due to mechanical contraction, which results in decreased

aqueous humor outflow and increased IOP. Conversely, in

primary open-angle glaucoma, the IOP is elevated due to

increased resistance against the outflow of aqueous humor

despite open angle. In primary open-angle glaucoma, the

major site of resistance to aqueous outflow is believed to be

located in the area between the TM and SC.25 Both open-angle

and angle-closure glaucoma can be primary or secondary, and

can be classified into different developmental categories.

Primary open-angle glaucoma can occur with or without

IOP; the latter is called normal-tension glaucoma. Secondary

glaucoma can develop due to trauma, corticosteroids, inflam-

mation, tumor, and conditions such as pigment dispersion or

pseudoexfoliation.17 In secondary glaucoma, the alteration in

outflow resistance in the TM and SC is responsible for IOP

elevation. Thus, the TM and SC are important therapeutic

target tissues for IOP reduction for the treatment of

glaucoma.26

Pathogenesis of Glaucoma
There are many clinical types of glaucoma; however, optic

nerve damage is common to all. The optic nerve is damaged

through a mechanism called apoptosis of the RGC.27 This
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apoptosis is mediated by two main mechanisms. Mechanical

injury, resulting from increased IOP, causes damage to

RGCs. Elevated IOP causes stasis of RGC axonal flow at

the lamina cribrosa in the optic disc, leading to blockage of

neurotrophic proteins (NFPs), which finally results in apop-

tosis of RGCs.28 The other mechanism is local vascular

insufficiency at the optic nerve head. This ischemic damage

can lead to decrease in the levels of neurotrophic factors

(NFs) in the optic nerve head, which results in RGC death

(Table 1 and Figure 1A and B).29,30 Besides, mitochondrial

dysfunction, low cerebrospinal fluid pressure-mediated

translaminar cribrosa pressure gradient, excitotoxicity, and

oxidative stress are also proposed to be involved in glauco-

matous optic nerve damage.31,32

Despite multiple factors other than IOP being related to the

pathogenesis of glaucoma, current treatments are mainly con-

centrated on decreasing the IOP. Effective reduction of IOP

significantly prevents glaucoma progression inmost patients in

clinical trials, including patients with normal tension

glaucoma.33 There are several methods available for reducing

the IOP in patients with glaucoma. The first and most com-

monly used method for IOP reduction is medical therapy.34

Topical eye drops lower IOP via two mechanisms. Topical

beta-blockers, alpha-agonists, and carbonic anhydrase inhibi-

tors reduce the production of aqueous humor in the ciliary

body.35 Conversely, topical cholinergic drugs, such as pilocar-

pine, enhance the outflow of aqueous humor through the TM-

SC pathway.28 Prostaglandins can also decrease IOP by

increasing the outflow of aqueous humor through the

Table 1 Limitations of Current Glaucoma Medical Treatments

Mechanism of

glaucomatous optic

nerve damage

Increased IOP Stasis of RGC axonal flow

→Block NF→apoptotic

RGC death

Local vascular

insufficiency

Ischemic damage

→Decrease in NFs →RGC

death

HIGH 
PRESSURE

1) Stasis of retinal ganglion cell 
axonal  flow

Local vascular 
insufficiency

1)

2) Decrease 
in NF

HIGH 
PRESSURE

2) Inhibition of 
neurotrophic factors

3) Retinal ganglion cell 
death

3) Retinal ganglion cell 
death

photoreceptor

A

B

Figure 1 Two main mechanisms of glaucomatous optic nerve damage. (A) The elevation of IOP and (B) deficiency of vascular result in the blockage of neurotropic factors

and proteins to induce the death of RGCs.
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uveoscleral pathway.36,37 When antiglaucoma medication is

not enough, the aqueous humor can be drained through an

extraocular site via trabeculectomy or drainage devices.38

Limitations of Current Glaucoma
Treatment
Despite their effectiveness, there are several disadvantages of

using topical eye drops. First, most topical eye drops that are

currently used should be administered 1–3 times per day.

Ocular discomfort when dropping the eye drops and frequent

administration cycles results in poor patient compliance. Low

compliance is an especially important issue in the elderly

population, as it renders the medical treatment ineffective

with the patients having to undergo surgery (Table 2).39

Second, the bioavailability of topical eye drops inside the eye

is very low.40 The volume of commercial drop dispensers

(25–50 μL) generally exceeds the capacity of the conjunctival
sac (10 μL), so that themajor portion of the liquid drains out of

the eye and onto the eyelids and cheeks, where further absorp-

tion may occur. The capacity of the conjunctival sac depends

on several factors, such as blink rate, position (applying when

standing or lying down), and the means of application.

Therefore, bioavailability has to be classified as extremely

low and is reported in the literature to be in the order of

5–10%.41,42 The small volume of eye drops that remains in

the conjunctival sac is absorbed via two routes. Small lipophi-

lic drugs are absorbed via the transcorneal route.43 Conversely,

large hydrophilic drugs are absorbed via the transconjunctival

and transscleral routes.43 Prostaglandins have been reported to

enter the eyeball through the sclera rather than cornea.44 In the

transcorneal route, the drugs first meet the precorneal tear film

constituted of a deep mucous layer and superficial aqueous

layer.

The ocular system is protected by effective clearing

mechanisms, including lacrimal secretion in the precorneal

tear film for removal of irritants and blinking reflex. As

a result, the half-life of a topical drop in the precorneal tear

film is about 1 min, which is the only time available to the

drug for penetrating the cornea and accessing the aqueous

humor.45 The next barrier, corneal epithelium, which con-

tains multiple desmosomes and tight junctions, prevents

molecules larger than 500 Da to penetrate the cornea.46 As

a result, 80% of the delivered drug cannot penetrate cornea,

and may be absorbed into the blood vessels of the

conjunctiva.47 Only less than 10% of the drug is absorbed

into the eye and approximately 1% of that reaches the

aqueous humor.48 Moreover, in transconjunctival and trans-

scleral routes, over half dosage of the drugs is absorbed into

systemic circulation through the vessels of conjunctiva and

sclera.49 A few drug molecules that can penetrate cornea are

quickly filtered through the TM, where their half-life is less

than 2 hours. This makes it difficult for the drug molecules

to reach their target tissue.50 Low compliance, maintaining

sustained drug levels, and effects at their targets are impor-

tant problems to be solved in glaucoma medical treatment.

Surgical drainage devices are used in glaucomawhen IOP-

lowering medications fail.51 These devices provide a new

route to the aqueous humor from the anterior chamber of the

eye to the collection plate beneath the conjunctiva. Currently,

the major commonly used surgical drainage devices are

Ahmed, Molteno, Krupin, and Baerveldt.52 After implantation

of these devices, the major cause of surgical failure is fibrosis

around these devices. It decreases the overall surgical success

rate to about 40–50%. Intraoperative or postoperative antime-

tabolite injections like mitomycin C (MMC) or 5-fluorouracil

(5-FU) can prevent fibrosis around these devices.53 However,

these antimetabolite injections can increase the risk of infec-

tion around the bleb. However, if the drainage device is coated

with nanomaterial, it may lead to a more successful surgical

outcome without side effects.54

Another fundamental limitation is that visual loss from

glaucoma has not been shown to be reversible with any

current treatment. Furthermore, RGC loss may continue to

progress in spite of IOP reduction in some patients with

glaucoma.55 In this regard, neuroprotective strategy has

been proposed.56 This review is focused on the application

of nanotechnology-based strategies to overcome these cur-

rent limitations in glaucoma treatment.

Nanotechnology Approach in
Medicine
Nanomedicine
Nanotechnology, as defined by the National Nanotechnology

Initiative, is the “science, engineering, and technology

Table 2 Limitations of Current Glaucoma Treatment

Low compliance of medical

treatment

● Ocular discomfort

● Frequent administration cycles

Low bioavailability of

medicine

● Only less than 10%of drug absorbed into the eye

● Only 1% of drug reaches the aqueous humor

Surgical treatment ● Failure due to fibrosis of surgical site

Irreversibility of glaucoma-

induced vision loss

● The retinal ganglion cell death is not rever-

sible under current treatment
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conducted at the nanoscale, which is about 1–100 nm”.57 In

1959, Richard Feynman, known as the father of nanotech-

nology, proposed the use of nanoscale machines in molecular

and atomic modifications.57 Scientists first visualized the

nanoscale using a scanning tunneling microscope in 1981.58

Thereafter, our understanding and ability to manipulate mat-

ter at molecular and atomic scales became tremendously

enhanced. There are two definitions of nanomedicine. The

first is the technology providing molecular aid for treatment

and diagnostics using already existing knowledge on the

human body, further described as using nanostructures with

therapeutic effects.59 The second is "the comprehensive

monitoring, control, construction, repair, defense, and

improvement of human biological systems at the molecular

level, using engineered nanodevices and nanostructures that

operate massively in parallel at the single-cell level, ulti-

mately to achieve medical benefit".60

The size of nanoparticles is the essential feature of

nanotechnology.61 While matter interactions at macro-

scopic scales can be predicted in classic physics, nanoscale

interactions can be predicted through quantum mechanics

in nanotechnology.62 Thus, nanomaterials have unique

chemical and physical characteristics that differ from

materials at the macroscopic scale. As the size of particles

becomes smaller, surface-to-volume proportion of the par-

ticles becomes larger. A nano-scale material will offer

a larger number of locales for synthetic responses than

a macro-scale material at per-unit size of a given

material.62 Because of these characteristics of nanomater-

ial, medical network has great interest in nanotechnology.

Many nanomaterials provide interesting features, including

electrical conductivity, biocompatibility, magnetic proper-

ties, and biodegradability.59

Nanomedicine as Novel Drug Delivery System

Glaucoma is a type of ocular disease characterized by

gradual degeneration and functional exacerbation of optic

nerve, which progressively decreases visual sensitivity,

and may lead to blindness. In open-angle glaucoma, the

outflow of aqueous humor is blocked internally, resulting

in the gradual elevation of intraocular pressure, whereas in

closed-angle glaucoma, trabecular meshwork outflow

pathway is blocked by iris which leads to rapid elevation

of intraocular pressure.2 Unlike open- or closed-angle

glaucoma, the eye pressure of normal-tension glaucoma

does not exceed the normal range of intraocular pressure.

Both secondary open- and closed-angle glaucoma refer to

any form of glaucoma with identifiable cause of elevated

intraocular pressure. Uveitic glaucoma is associated with

uveitis, and childhood glaucoma is early-onset glaucoma

which could be attributed heredity.17

The primary treatment for glaucoma is topical medi-

cation or eye drops. Several therapeutic classes, including

prostaglandin analogs, β-blockers, carbonic anhydrase

inhibitors, α-2 agonists, and cholinergic agents, were

developed in the form of eye drops to relieve the IOP.

Proper administration of eye drops can prevent glaucoma

progression through reduction of IOP; however, it

requires manual dexterity, which is found to be challen-

ging in the elderly population. Furthermore, poor adher-

ence and short residence time requiring high frequency of

dosing can lead to missing of proper dosing time. A new

drug delivery system that allows gradual release of the

drug for a few months with a single administration needs

to be developed.

Numerous methods are available for developing hol-

low, solid, or porous nanoparticles with various shapes and

sizes.57 Molecules like drug compounds, DNA, RNA, or

antibodies can be included as components or encapsulated

within nanoparticles. Widely used nanodelivery systems

are nanoparticles, nanosuspension, nanodiamonds (NDs),

nanocrystals, liposomes, niosomes, dendrimers, cyclodex-

trins, and other devices (Figure 2).63 The advantages and

disadvantages of nanomaterials are summarized in Table 3.

These nanomaterials can incorporate the drugs in two

ways: through encapsulation inside the nanomaterials or

conjugation on the surface of nanomaterials. The encapsu-

lated drug is released as the nanomaterial disassembles at

the target site, while the nanomaterial-conjugated drug is

released after the bond between the nanomaterial and drug

is cleaved at the target site.64 These drug delivery strate-

gies of nanomaterials can further enhance and compensate

the limitations of conventional treatment for glaucoma. In

addition, inorganic nanoparticles can be incorporated into

a hydrogel to mimic the mechanical property of contact

lens for sustained release.65

The selection of an appropriate system depends on the

drug type (hydrophobicity, size, stability), target tissue,

and route of administration. Nanodelivery systems can

provide more targeted delivery, sustained release, bioavail-

ability, dose accuracy, minimal tissue irritation, longer

shelf life, and better solubility.66,67

Most treatments for glaucoma are designed to lower IOP,

and the most common route of administration is topical

administration. However, low bioavailability and poor cor-

neal permeability of the administered drug remain as

Dovepress Kwon et al

International Journal of Nanomedicine 2020:15 submit your manuscript | www.dovepress.com

DovePress
5749

http://www.dovepress.com
http://www.dovepress.com


challenges for the improved therapeutic treatment.

Nanotechnology-based drug delivery system can provide

sustained release and better bioavailability without

irritation.68 Furthermore, the surface of nanoparticles can

be coated to specifically target the desired site for drug

delivery. Nanotechnology-based drug delivery is very similar

to that of conventional treatment, but with improved efficacy

at the same dosage through appropriate nanotechnology.

Desired drugs are administered through four routes,

including topical, subconjunctival, systemic, and intracam-

eral, to reach the anterior segment.69 Administered drugs

need to overcome specific barriers depending on the admin-

istration route. In general, the drug-loaded nanoparticles are

formulated in the form of eye drops for topical administra-

tion, so the limitation of topically administered drug will

briefly be discussed.70,71 For better efficacy of topically

administered drugs, two factors need to be considered:

tear film and cornea.69 Drugs are quickly cleared due to

blinking reflex and lacrimal secretion in the tear film and the

cornea provides a physical barrier to the penetration of drug.

Nanoparticles need to circumvent the existing barriers

by increasing their precorneal retention time through sur-

face functionalization.72 Then, most nanoparticles can enter

cells through endocytic pathway. Although the uptake path-

way of each nanoparticle is unique, the factors affecting the

corneal penetration of nanoparticles remain the same and

mainly include size, shape, and charge.73 For instance,

35–200 nm sized indomethacin nanoparticles can penetrate

corneal epithelium through energy-dependent endocytosis

pathway including clathrin- and caveolae-endocytosis, and

micropinocytosis.74

Toxicity of nanomaterials also needs to be considered.

Many studies have extensively evaluated the toxicity of

nanoparticles on main organs, whereas only a few studies

have examined the potential toxicity of nanomedicine

regarding their exposure time or size on the eye.75

Liposome

Niosome

Cyclodextrin

Nanoparticle

Nanodiamond

Nanocrystal

Dendrimer

Nanosuspension

Figure 2 Delivery route of nanomedicine. Topical administration of various types of nanomaterials to reduce IOP.
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Furthermore, each nanoparticle has unique physiochemical

properties including chemical composition, surface area,

and charge that can affect its toxicity on the eye.75,76

Various biological models have been utilized for deter-

mining potential toxicity of nanoparticles in the eyes. Most

biological models (including in vitro and in vivo models)

when treated with inorganic nanoparticles exhibited oxi-

dative stress and damaged ocular system.75,77 The toxicity

of nanoparticles needs to be considered before using them

for safe and effective glaucoma treatment.

Liposomes

Liposomes are artificial lipid bilayers of phospholipids that

are biocompatible with the human body.78 Liposomes pro-

vide a potential delivery system that can carry both

hydrophilic and hydrophobic drugs. They can encapsulate

and protect solutes while delivering drug molecules until

they reach the target structures.79 Liposomes can be

designed to have more bioavailability, bioefficacy, and sus-

tained release of drug molecules.80 Another interesting

characteristic of liposomes is their responsiveness to mod-

ifiable triggers such as thermosensitivity, electromagnetic

waves, and pH environment. Thus, release of the entrapped

molecules can be strictly controlled.81 Besides of the above

characteristics, liposomes can reduce the elimination of the

drug substance from the body and increase drug dosage at

the targeted site. This factor may increase patient compli-

ance by decreasing the dosing frequency.82 In an in vitro

drug release study, timolol-loaded liposome formulations

showed a 1.93-fold increase in permeability coefficients.

Table 3 Advantages and Disadvantages of Nanomaterials

Advantages Disadvantages

Liposome ● Low toxicity

● Prolonged half-life of drug

● Biodegradable

● Limited storage condition

● Blurring after intravitreal injection

Niosomes ● Non-ionic surfactants

● Low toxicity

● Non-immunogenic

● Can encapsulate hydrophilic, lipophilic, and amphiphilic

drugs

● Inefficient drug loading

● Aggregation

● Physical instability

Inorganic nanoparticles ● Low cost

● Stability

● Biocompatibility

● Ease in surface modification

● Uniform in size

● Possible toxicity

● Low clearance

Dendrimer ● Tunable size

● Tunable physical property

● Inefficient drug loading

● Possible toxicity

Nanosuspension ● Rapid dissolution through IV administration

● Less irritation

● Higher bioavailability

● Physical instability

Cyclodextrin

complexes

● Chemical stability

● High aqueous solubility

● May cause irritation

● Safety concern

Nanocrystals ● Tunable particle size

● Sustained release of drug

● Improved dose proportionality

● Applicability to all administration routes

● Physiochemical instability

● Uniform dosage cannot be achieved

Nanodiamonds ● Chemical stability

● Small size

● Large surface area

● High absorption capacity

● Stable drug complex

● Potential toxicity (difficult to remove all organic

solvent)

● No sustained release of drug
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They also reduced IOP from 30 to 300 min after instillation

(minimum IOP = 11.96 ± 0.74 mmHg at 1 hour), and

decreased IOP from 30 to 180 min (minimum IOP =

13.61 ± 0.95 mmHg at 2 hours) when used in the form of

eye drops in albino rabbit eyes.83

Surface charge of liposomes is an important factor of

drug contact time at corneal epithelial surface. The corneal

epithelium has negatively charged mucinous membrane,

which provides a good binding surface to positively charged

liposomes. Because of prolonged contact time at corneal

surface, positively charged liposomes demonstrate better

corneal permeation than neutral or negatively charged

liposomes.46,84 In addition, positively charged liposomes

demonstrated higher encapsulation efficiency than neutral

and negatively charged liposomes in an in vitro study.46

The entrapment efficiency would increase because of elec-

trostatic attraction between anionic drug and positively

charged liposomes. Charge repulsion between drug anion

and negatively charged liposomes may induce low entrap-

ment efficiency and may suppress drug-loading efficiency.84

Meanwhile, electrostatic repulsion may occur between drug

anion and negatively charged liposomes, resulting in a higher

percentage of drug release. After drug release from the lipo-

somal vesicles, drug molecules only rely on passive diffusion

to cross the corneal barrier for intraocular absorption. Thus,

the longer the contact time at the corneal surface in the

encapsulated state, the higher the bioavailability of the

drug.85 Positively charged liposomes produce high binding

affinity between the negatively charged mucin of corneal

epithelium and liposomal vesicles, enhancing the contact

time of positively charged liposomes.86

Positively charged acetazolamide (ACZ)-sterylamine

liposomes demonstrated more IOP reduction than neutral

and negative-charged liposomes in rabbit eyes (−7.80
±1.04 vs −5.50 ± 1.65 vs −3.70 ±2.18 3 hours after topical

administration). The effect of IOP reduction persists for

longer period in positively charged ACZ-sterylamine lipo-

somes than neutral and negatively charged liposomes in

rabbit eyes (8 hours vs 6 hours vs 3 hours). Moreover, it

showed higher encapsulation efficiency compared with

neutral and negative liposomes (48.27 ± 1.01 vs 39.73 ±

0.44 vs 25.55 ± 1.50) in an in vitro study.85

Neutrally charged vesicles of L-a-dipalmitoyl phospha-

tidylcholine (DPPC):pilocarpine hydrochloride showed

a prolonged drug release up to 600 minutes in rabbit

eyes, which is greater than that of negatively charged

liposomes or free-drug eye drops.80 These prolonged

release profiles and high bioavailability of surface charged

liposomes indicate the possibility for better patient com-

pliance through reduction of dosing frequency.

The conventional liposomes have some limitations in

terms of clinical uses. They tend to aggregateand may

cause leakage of entrapped drug, and are susceptible to

phagocytosis. The modification of surface characteristics

of liposomes has helped to overcome these drawbacks of

conventional liposomes. Bioadhesive polymers are used to

coat liposomes. Coating with bioadhesive polymers inhi-

bits the aggregation of liposomes and increases their visc-

osity and hence their corneal residence time.87 Poly

L-lysine-modified liposomes can not only enhance the

efficacy of eye drop formulations, but also deliver drugs

at the retinal site where RGC death occurs.88 Chitosan

(mucoadhesive polysaccharide)-modified liposomes

increase the residual time of the drug formulation in ocular

tissue by enhancing the viscosity of the solution.89 Timolol

maleate chitosan-coated liposomes (TMCHL) produced

a 3.18-fold increase in the corneal permeability coefficient

in an in vitro drug release study. In a study on transcorneal

permeation of New Zealand rabbits, TMCHL was found to

be more effective in lowering IOP than timolol eye drops

(final IOP = 19.67 ± 1.14 mmHg vs 23.80 ± 1.49 mmHg,

respectively).90 Latanoprost-loaded Egg-phosphatidylcho-

line (EggPC) liposomes developed using a thin film hydra-

tion technique enhance the stability of phospholipids in

liposomes, effectively lowering the IOP in rabbit eyes for

at least 90 days; this effect was significantly greater than

that of once-daily topical latanoprost controls.91

Microbubbles are contrast agents used for medical

ultrasound imaging. They improve the transfection effi-

ciency after ultrasound-induced cavitation.92,93 However,

microbubbles are unstable and are too large in size (1–6

μm) to be used in intravascular clinical application.94 The

size of liposomes can be controlled easily and they can be

used as drug, antigen, and gene carriers, and can be trans-

ferred to targeted organ.95 Thus, bubble liposomes are

a new and promising strategy for the delivery of genes

through ultrasonication, which intensifies the penetration

of genes.96

Recently, some clinical studies have explored the effect

and safety of drug-loaded nanoliposomes in glaucoma

treatment. Dorzolamide (DRZ)-loaded nanoliposome

demonstrated better IOP reduction than commercially

available DRZ formulation in rabbit.97 IOP lowering

observed at 2 weeks was 23.26 ± 9.24%, 9.25 ± 5.76%,

32.60 ± 7.90%, and 17.48 ± 7.62% for the DRZ-loaded

nanoliposome group and the commercially available DRZ
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formulation group.98 Latanoprost/thymoquinone-loaded

liposomes and latanoprost-loaded liposomes were able to

significantly reduce the IOP in glaucomatous white albino

rabbits, which lasted for 8 hours. Conversely, the effect of

the free latanoprost did not persist for more than 24

hours.99

For evaluating the safety and efficacy of nanolipo-

somes in human eye, liposomal latanoprost was injected

in subconjunctival space once in six subjects who were

diagnosed with either ocular hypertension (OHT) or pri-

mary open-angle glaucoma (POAG). Subconjunctival

injection of liposomal latanoprost was well tolerated by

all the six subjects. From a baseline IOP of 27.55±3.25

mmHg, the mean IOP decreased within 1 h to 14.52±3.31

mmHg (range 10–18 mmHg). This represented a mean

decrease of 13.03± 2.88 mmHg (range 9–17 mmHg), or

47.43±10.05% (range 37–63%). A clinically and statisti-

cally significant IOP reduction (≥20% IOP reduction,

P=0.001 to 0.049) was observed for 3 months after

injection.100

Niosomes

Niosomes are spherical, closed bilayer structures of non-

ionic amphiphiles. Niosomes provide a potential delivery

system that can carry both hydrophilic and hydrophobic

drugs simultaneously, which has possible usage in com-

bined drug therapies.101 Niosomes can provide longer time

period to enhance bioavailability, and have positive ther-

apeutic responses at low cost. However, the major advan-

tage of niosomes is the non-toxic nature of non-ionic

surfactants.102 Timolol maleate-loaded niosomes using

chitosan have shown a prolonged effect in reducing IOP

by releasing the timolol for longer time intervals.103 In

glaucoma rabbits, timolol maleate niosomes coated with

chitosan were effective for over 8 hours, and IOP reduc-

tion was longer than the conventional dosage form, which

lasts up to 2 hours.104 Niosomes of ACZ show better and

prolonged drug release in the ocular tissue, which can

eliminate the need for oral medication.105 Some types of

niosomes, such as multilamellar niosomes, can entrap

a higher dose of drug and can release it for more longer

period.106

Polymeric Nanoparticles

Polymeric nanoparticles have spherical shapes with sizes

in the nanometer range. Because of their nanometer size,

nanoparticles easily pass through biological membrane

barrier systems, and can easily carry drugs to the target

organ.107 The smaller the size of nanoparticles, the larger

the surface area, and higher the drug-loading capacity.108

There are three types of nanoparticles. First-generation

nanoparticles are simple polymer matrix–type particles.

Second-generation nanoparticles are simple nanoparticles

with polymer coating. This polymer coating can enhance

adhesion of nanoparticles to target site. Third-generation

nanoparticles are antibody-attached nanoparticles, which

can bind with specific group of cells and release the drug

at the particular target site. Nanoparticles of propoxylated

glyceryl triacylate (PGT) with timolol in 1:1 ratio can

release the timolol for longer duration.109 Additionally,

Poly(butyl)-cyano acrylate nanoparticles of pilocarpine

can significantly decrease IOP without any side effects.110

ACZ-loaded Eudragit nanoparticles displayed better

permeability and flow across corneal tissue than

a conventional drug suspension in an in vitro transcorneal

permeability study. ACZ loaded Eudragit nanoparticles

and ocular insert demonstrated substantial reduction in

IOP and improved ocular tolerability when compared to

ACZ suspension in an in vivo study.111

Ex vivo transcorneal permeation study displayed

higher ACZ permeation at 8 hours with nanoparticle-in

situ gel (74.50 ± 2.20 mg/cm2) than with ACZ eye drops

(20.08 ± 3.12 mg/cm2) and ACZ suspension (16.03 ±

2.14 mg/cm2). In addition, nanoparticle-in situ gel did

not display harmful effects on any corneal layer.

Moreover, 1% of PLGA nanoparticle-in situ gel exhibited

greater IOP-lowering effect 1 hour after administration,

which was sustained for up to 8 hours, while 1% ACZ

eye drops sustained their action for approximately 2 hours

in normotensive rabbit eyes.112

Dendrimers

Dendrimers are polymeric materials with excessive flexible

branching, resulting in a large surface area. Dendrimers can

provide enough space for drugs inside the excessively flexible

branching.113 Evidently, dendrimers also have also biocompa-

tible and nonimmunogenic characteristics similar to other

nanomaterials. Dendrimers with quaternary ammonium

group can also diminish the need for benzalkonium chloride

(BAK) as a preservative.114 Polyamidoamine (PAMAM) den-

drimers showed longer residual time of pilocarpine, for up to 5

hours. In addition, PAMAM dendrimers significantly lower

ocular irritation and have greater bioavailability than commer-

cially available Carbopol eye drop formulations.115 In a study,

dendrimers of carteolol showed longer residual duration,

which can decrease daily eye drop frequency, in glaucoma
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rabbit eyes.114 Topically administered hybrid dendrimer

hydrogel/poly(lactic-co-glycolic acid) nanoparticle showed

greater concentration of brimonidine and timolol than saline

control in aqueous humor for 7 days.116

In vitro investigation of cytotoxicity and cell viability of

ACZ-loaded water-soluble mucoadhesive carbosilane den-

drimers revealed that generations 1 and 2 of cationic dendri-

mers and all 3 generations of anionic dendrimers are well

tolerated at 10 μM, with higher than 80% cell survival for all

of them, except for G3-C (from the 3rd generation of carbo-

silane cationic dendrimers). G3 cationic carbosilane dendri-

mers (5 μM) demonstrated rapid (1 hour post-instillation)

and sustained (up to 7 hour) hypotensive effect, reaching

a peak 22.6% IOP reduction in normotensive rabbit eyes.117

Nanosuspension

Using high-pressure homogenization or different milling

methods, dispersed solid particles in the liquid phase can

be incorporated into a colloidal drug delivery system (nano-

suspension). This system can be easily integrated with other

delivery systems, such as hydrogels, because of non-water

soluble characteristics. Nanosuspensions are especially

effective in delivery of lipophilic drugs, and can enhance

their bioavailability.63 In situ gel-forming nanosuspension

of forskolin (coleonol) lowered IOP by 31%, and the drug

efficacy lasted for 12 hours, which is significantly longer

than that achieved with other conventional delivery

systems.118 A pilocarpine-loaded chitosan-poly(acrylic

acid) nanosuspension showed zero-order release kinetics

of pilocarpine.108

When molecules of drug are transported in the body,

they encounter several ions. There can be several electro-

static interactions between drug molecules and ionic med-

ium. This can reduce the stability of drug molecules. Ion

Exchange Resins (IERs) are polymers containing appro-

priately substituted acidic groups, such as carboxylic and

sulfonic groups for cation exchangers, or basic groups,

such as quaternary ammonium group for anion exchan-

gers. IER protects ionic drugs through shielding and com-

petitive binding effect. It can be synthesized or purchased

depending on its application.

Betaxolol-loaded nanoparticles using Ion Exchange

Resin (IER) complex suspension have been approved and

are commercially available in the US market as Betoptic

S for use as ophthalmic drug delivery system. The cationic

exchange resin containing 0.25% betaxolol provides

microscopic beads of 5 μm diameter and its residence

time in the cul-de-sac is increased with the addition of

polyacrylic polymer.119 In a multicenter, double-masked

parallel study of 352 patients with primary open-angle

glaucoma or ocular hypertension, no significant difference

was found between 0.5% betaxolol solution and Betoptic

S in terms of IOP reduction, whereas prevalence of ocular

discomfort after instillation was significantly lower for the

Betoptic S.120 As such, nanosuspension will be an attrac-

tive drug delivery system for lipophilic antiglaucoma

drugs, such as carbonic anhydrase inhibitors, in the future.

Cyclodextrin Complexes

Cyclodextrins are cyclic oligosaccharides in which sugar

molecules are arranged in a ring-like pattern. Based on the

sugar molecules in the ring structure, cyclodextrins are cate-

gorized in three main classes: α–cyclodextrins, β–cyclodex-
trins, and γ–cyclodextrins containing 6-, 7-, and 8-membered

sugar rings in the cyclic structure.121 The drug molecules are

enclosed within cage-like ring structure. Primary advantage of

these structures is delivery of the drug compounds without

changing their molecular structure. Because of hydrophilic

surface characteristics of cyclodextrins, lipophilic drug

enclosed in cyclodextrins can easily pass through the hydro-

philic barrier of the external eye and can safely reach the

lipophilic corneal surface. Finally, drug compounds can be

released in the aqueous humor.122 The sulfobutyl ether of beta-

cyclodextrin (SBE7-beta-CD) complex of pilocarpine prodrug

showed effective protective effect on pilocarpine before reach-

ing the target area, and decreased the strong irritation caused

by pilocarpine by preventing its rapid absorption.123 The mul-

ticomponent complex of hydroxypropyl β–cyclodextrin and

triethanaminewithACZ can releaseACZ for up to 4 hours and

yields a reduction in IOP by approximately 30% without any

irritation.124 Dorzolamide with γ cyclodextrin showed pro-

longed residual time in the aqueous humor, and can be

a great potential system for a once-daily formulation.125

BZL-hydropropyl-ß-cyclodextrin (HP-ß-CD) inclusion

complex (HP-ß-CD/BZL) into nanoliposomes (“HP-ß-CD

/BZL-loaded nanoliposomes”, BCL) demonstrated a 9.36-

fold increase in the permeability coefficient compared with

commercially available BZL. BCL formulation reduced IOP

in less than 1 hour, reached peak efficacy (32.3%) at 2 hours,

and showed a sustained release effect for 12 hours. From 2 to

12 hours after instillation, BCL resulted in significantly lower

IOP when compared with BZL suspension.126

In vitro analyses of stability and phase solubility of

Latanoprost-propylamino-ß cyclodextrin (CD) demonstrated

a significant improvement in its solubility and stability. In vivo

evaluation of ocular tolerability revealed that ocular irritation

Kwon et al Dovepress

submit your manuscript | www.dovepress.com

DovePress
International Journal of Nanomedicine 2020:155754

http://www.dovepress.com
http://www.dovepress.com


was 15.5% with the commercially marketed formulation of

latanoprost and 9.5% with the latanoprost-propylamino-ß-CD

formulation. Microscopic evaluation of ocular tissues showed

that commercially marketed formulation of latanoprost

induced higher inflammatory mixed cell infiltrates than lata-

noprost-propylamino-ß-CD formulation.127

Nanocrystals

Nanocrystals may be defined as pure solid particles with

a mean diameter of less than 1 μm and a crystalline

structure. Nanocrystals are composed entirely of drug

itself with crystalline coating.128 Nanocrystals can provide

a large effective surface volume area and have a good

bioavailability without need for carriers, such as other

nanosubstances. Nanocrystals have fast initial dissolution

within 1 hour, indicating better bioavailability.129

Nanocrystals of brinzolamide (BZL) showed higher

IOP-lowering efficacy than the commercially available

market product (75% vs 49%).130 Pilocarpine hydrochlor-

ide loaded nanocomposite formulations (cellulose nano-

crystals and triblockpoloxamer copolymer) showed

higher sustained drug release and less toxicity than topical

formulation of in vitro gel.131 Trimethyl lock BZL prodrug

nanoparticles showed similar efficacy as commercial BZL

at 1/5th the molar concentration without toxic effects on

the cornea in normotensive rats.132

Nanodiamonds

Nanodiamonds are 2–10 nm large carbon nanoparticles

with a truncated octahedral structure.133 Nanodiamonds

have tailorable surface structure. Many functional groups

are covalently or non-covalently conjugated on the surface

of nanodiamonds. The surface of nanodiamonds coated

with polyethyleneimine (PEI) can be conjugated with

enzyme-cleavable N-acetylated chitosan along with timo-

lol maleate to prepare a nanogel in the form of contact

lens. Therefore, the sustained release of timolol maleate

can be achieved in the presence of lysozyme as the chit-

osan dissociates. Nanodiamonds also provide the mechan-

ical support of contact lens.

Ophthalmic Devices Using

Nanotechnology
Contact Lenses

The use of nanoparticles as drug carriers can pave the way

for the sustained release of a drug. Nanotechnology can be

applied to contact lenses for slow and controlled release of

drugs for a long duration (Figure 3A).134 Using solvent

impregnation method, both hydrophilic and hydrophobic

drugs can be easily incorporated in the lenses without the

issue of solubility, which is a major drawback of many

currently used drug delivery systems.135 The drug

embedded in contact lenses through nanotechnology can

result in high drug-loading capacity and controlled release

of the drug over a long time, which would result in better

patient compliance.136 Various studies have explored the

efficacy of nanoparticles embedded in contact lens for

potential glaucoma therapy. Silicone contact lenses,

ACUVUE® TruEyeTM containing timolol significantly

reduced IOP.137 With contact lenses, only 20% of the dose

is required to produce a similar therapeutic effect compared

with the full dose needed in currently used eye drops.137

Contact lenses with timolol containing PGT nanoparticles

released timolol for 1 month in Beagle dogs. In these type of

lenses, the ratio of timolol to PGT can be modified.109

Timolol, when loaded onto ethylene glycol dimethacrylate

and PGT-based nanoparticles, not only exhibits prolonged

drug release time of up to 4 weeks but also remains well

encapsulated under refrigerated conditions for up to

5 months.138 Another study has found that hyaluronic acid

and chitosan-based polymeric nanoparticles loaded with

timolol showed a significant reduction in IOP compared to

conventional timolol solution.139 Many promising results

from studies have gained interest, which has lead to the

development of various nanoparticle-drug formulations for

glaucoma treatment. However, most developed drugs are

currently in the preclinical stage.140

The traditional IOPmeasurement can only be performed

at the hospitals, and, thus, patients cannot check their IOP

on a daily basis.141 Because the fluctuation of IOP may be

a risk factor for glaucoma progression, daily monitoring of

IOP could be clinically useful for some patients in whom

glaucoma progress despite stable IOPs in the clinic.

Nanotechnology has been used to develop contact lens for

continuous monitoring of IOP.142 These contact lenses are

composed of a platinum-titanium gauge sensor, which is

170 nm thick and is embedded in two layers, a gold antenna,

microprocessor, and an integrated circuit for turning on IOP

monitor. If the stress in the gauge is increased, other

mechanical forces are compressed, which alters the electri-

cal forces present in the gauge. These contact lenses showed

reproducible intraocular pressure in the range 15–30 mm

Hg in enucleated pig eyes.143

Based on the development of nano or microelectrome-

chanical system, silicone-based Triggerfish® was developed

with reliable IOP measurements and was approved by
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FDA.144 In addition, a permanent implant Eyemate® for

continuous IOP monitoring is under human clinical trials

for commercial use.145 As of today, iCare® home tonometer

is commercially available as self IOP measurement device

but it cannot provide data continuously for 24 hours.146 In

this aspect, nanotechnology supported the development of

various fields including IOP monitoring, surgical devices,

drug delivery systems for glaucoma treatment.

Hydrogel

Hydrogels are three-dimensional networks of hydrophilic

polymers, either synthetic or natural, and can be applied to

various fields including drug delivery system, regenerative

medicine, and cell encapsulation. Hydrogels can be used

for treatment of ocular diseases including glaucoma, cor-

neal abrasion, and cataracts.147 Hydrogel is mainly used as

a sealant after incision. The mechanical property of hydro-

gel can be manipulated to meet the requirements of

a sealant, and PEG-based hydrogel, known as ReSure®

has been approved by the FDA.148 Today, hydrogel is

widely used as a sealant in ocular incision due to better

leakage prevention than the conventional suture.149

Therefore, many studies have extensively explored the

application of PEG-based hydrogel in corneal attachment

and retinal attachment.150

Nanoparticles can be incorporated into a type of hydro-

gel, known as a nanogel, for drug delivery system. In

glaucoma treatment, conventional medication including

timolol maleate, pilocarpine, and xalatan shows low bioa-

vailability and short retention time; hence incorporating

these drugs into hydrogel can increase their retention time

through improved bioavailability.109 For instance, corneal

penetration of timolol maleate loaded chitosan-alginate

nanoparticle was twice than that of conventional timolol

maleate, indicating the extended retention time. The use of

hydrogel or nanogel as a sealant and drug carrier can

Contact lens

Ocular Insert

Functional 
Drainage Device

A

B

C

Figure 3 The application of nanotechnology to ophthalmic devices. The sustained release of drug through (A) contact lens and (B) ocular insert. (C) The coating of

functional drainage device.
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accelerate the healing process and limit bacterial infections

after incision by incorporating growth factors or antibiotics.

Ocular Inserts

Ocular inserts are thin drug-impregnated devices of solid

or semisolid consistency. Using ocular inserts, a drug can

be released for a long period and in a controlled manner

(Figure 3B). Ocular inserts are usually placed in the con-

junctival cul-de-sac.48 Ocular inserts provide the most

accurate dosing at a constant rate for a long time, thus

they can increase the bioavailability of drugs with better

pharmacotherapeutic effect. In addition, through mucoad-

hesive polymers, ocular inserts can slowly release the drug

in the ocular compartment and can reduce systemic drug

absorption, thus prevent systemic side effects.122 Ocular

inserts of levobunolol HCl were showed to release levo-

bunolol hydrochloride for longer time in a controlled man-

ner, thus providing more effective glaucoma treatment.151

The OTX-TP (Ocular Therapeutix) consisting of PEG-

based hydrogel with embedded travoprost-loaded PLA

microspheres delivers travoprost to the ocular surface via

an intracanalicular punctal plug for up to 3 months, as well

as resorbs and drains through the nasolacrimal system.

These microspheres slowly degrade and show a sustained

drug release over a period of 30 days. Ten days after

implantation, IOP was reduced by 5.4–7.5 mmHg with

100% retention rate. It also demonstrated enhanced ther-

apeutic benefit for 90 days with a consistent 90% retention

rate.152 The Phase II trial did not find any serious adverse

effects and showed only a slightly less hypotensive effect

as compared with timolol.

Latanoprost Punctal Plug Delivery System (L-PPDS) is

another punctal plug drug delivery system. In a study on

L-PPDS in patients with open-angle glaucoma, IOP was

reduced by 5.7 mmHg. After implantation of L-PPDS,

60% of subjects in the study showed IOP reduction by at

least 5 mmHg or more and 47% of the subjects showed

IOP reduction of at least 6 mmHg. A statistically signifi-

cant mean change in IOP (22.3%) was recorded in the

subjects treated with L-PPDS when compared with

controls.153

Surgical Nanodevices

Studies have been reported on the improvement of glau-

coma drainage devices using nanotechnology. A two-layer

film of polylactic-co-glycolic acid (PLGA) loaded with

5-FU and MMC showed continuous drug release at

a constant rate in vitro. This film showed continuous release

of 5-FU until day 28, with a delay in the first 3 to 5 days.54

Currently, commonly used surgical devices have other post-

operative complications. The devices are implanted in the

post equator area of the eye and occupy large spaces. This

can effect the function of levator muscle of the eyelid, and

may result in ptosis.154 Implantable nanodevices may solve

these issues. Nanodrainage implant known as ANDI, com-

posed of a polymeric shaft and a nanoporous membrane, has

been invented. Microelectromechanical systems and nano-

fabrication technologies were used for developing ANDI.

Major problem of ANDI was over-efficient drainage, which

can lead to hypotony (Figure 3C).155

In addition, glaucoma devices with ferrofluid nanoparticles

were invented. Because of its supramagnetic characteristics,

ferrofluid plays a role like that of a valve. Valves are opened

only when liquid flow pressure is more than the magnetic

pressure of ferrofluid. After implantation of these ferrofluid

drainage device in rabbit eyes, IOP was more reduced in the

valves compared with contralateral control eye.156

A biodegradable plug filter, with polylactic acid (PLA) or

PLGA, was invented to prevent postoperative hypotony.

Plugs are approximately 500 μm long and a hole with diameter

of 44 μm is laser-drilled in the center of the plug. These plugs

could prevent abrupt IOP reduction and stabilize gradual IOP

reduction. However, this plug is only effective for about 15

days because of its biodegradable characteristics. It showed

effective IOP reduction for 15 days in rabbit eyes.157 Using

microelectromechanical systems, an antifouling glaucoma

drainage device was invented. This device was designed as

an array of parallel microchannels composed of PEG-214 and

PEG-4000. This polymer provides stability against swelling

and therefore provides resistance to channel clogging due to

biofouling. In addition, in vitro studies indicated that the

polymer has lower nonspecific protein adsorption than glass,

polypropylene, polydimethylsiloxane, and polymethyl-

methacrylate. Finally, the design was proven to be resistant

to intrusion by Escherichia coli in a week-long experiment.

However, additional studies with most common microbes and

in vivo animal studies are yet to be completed to validate the

efficiency of the device.158

Trabecular Meshwork Regeneration
and Neuroprotection Using
Mesenchymal Stem Cells
Although reduction of IOP can delay disease progression,

the completely damaged optic nerve system cannot be

recovered. Therefore, a new neuroprotective agent is
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required to improve the patients’ quality of life. Due to their

potential to differentiate into multiple lineages and secre-

tion of paracrine factors, mesenchymal stem cells can be

a breakthrough in the regeneration of TM and damaged

RGCs. TM is located near the cornea and is associated

with IOP.159 Increased outflow resistance of aqueous

humor at TM gradually increases IOP,160 and therefore

treatment of the TM can temporarily relieve IOP. The

regeneration of TM can, therefore, reduce IOP.161 Bone

marrow-derived mesenchymal stem cells (BMMSCs) and

paracrine factors secreted by BMMSCs after they are

released in the TM through laser therapy can regenerate

ocular tissue. In addition to ocular regeneration, although

MSCs cannot differentiate into RGCs, they can secrete

factors that can help the dysfunctional RGCs to survive.162

Research on treatment of corneal wound healing and

regeneration using stem cells is underway.163 This cell-

based approach is being tried as another potential therapeutic

strategy for glaucoma treatment because decreased cellular-

ity in the TM increases the outflow resistance.164,165

If successful, it could be a new method of increasing

the physiological aqueous outflow by targeting the TM.

Du et al demonstrated that after injection of human TM

stem cells into mouse anterior chamber, they homed to the

TM and differentiated into functional TM cells.166 In the

first week, they expressed TM marker protein CHI3L1 and

maintained the TM for 4 months. Snider et al reported

improved stem cell delivery to the TM using magnetic

nanoparticles.167 MSCs were labeled using magnetic nano-

particles. The prussian blue nanocubes labeled MSCs

could be delivered to the entire circumference of the TM,

which was not achieved without magnetic steering.

Dillinger et al reported hyaluronan coated nanoparti-

cles could deliver small interfering RNA against connec-

tive tissue growth factor (CTGF), which is a mediator of

pathologic effects in TM and SC, by binding to those cells

via CD44. Gene silencing in human TM cells lead to

a significant reduction of CTGF expression. Thus, HA-

coated nanoparticles combined with RNA interference

may be a novel, causative therapeutic modality for

glaucoma.168 Studies on nanotechnology and tissue engi-

neering have been conducted to provide in vitro disease

model for glaucoma. The biomimetic SC inner wall has

been reported to be engineered with microfabrication

technique.169,170 More recently, bioengineered glaucoma-

tous 3D human TM has also been developed as an in vitro

disease model.171,172 Thus, the models will offer a new

platform for studying aqueous outflow physiology and

drug screening.

Since the deprivation of NFs is a critical mechanism in

pathophysiology of glaucoma, the induction of various NFs

has been investigated as a modality for the protection of

optic nerve damage in glaucoma. Previous studies have

showed that injection of microsphere containing glial cell-

derived neurotrophic factor (GDNF) into vitreous increased

RGC survival in vitro and in vivo.173–176 Ciliary neuro-

trophic factor (CNTF) also has been shown to have neuro-

protective effect on central nervous system. For sustained

delivery of CNTF, encapsulated CNTF nanospheres pro-

vided neural stem cell differentiation without loss of

potency compared to the unencapsulated growth factor.177

Additionally, damaged RGCs are not capable of self-

repairing, but specific cell types, including Müller glia

cells, could constitute neurogenic progenitors under patho-

logical conditions. Müller glia cells are found in the retina of

all species, and are characterized as retina-derived stem cells

in cold-blood vertebrates.178 In mammals, Müller glia cells

can undergo reactive gliosis through morphological changes,

dedifferentiation, and upregulation of markers. However,

these cells can re-enter the cell cycle to regenerate rod

photoreceptors.179 Furthermore, these cells can express

mature retinal neuronal markers under specific culture con-

ditions (Figure 4).180 Thus, manipulation of Müller glia cells

could lead to the development of a new regenerative treat-

ment for ocular tissues damaged by glaucoma.

Discussion and Perspectives
Despite being the second leading cause of blindness, glau-

coma remains an incurable disease with effective thera-

peutic treatment. The current treatment of glaucoma is

mainly focused on delaying the disease progression.

Furthermore, regardless of the technological success in

the medicinal field, low compliance and short therapeutic

time remain as challenges for pharmacologic treatment of

glaucoma. Patients need to be dexterous with both hands

and be aware of dosing times for the proper and effective

administration of the drug, which is challenging in the

elderly population. Thus, the development of a new plat-

form with improved therapeutic time is required.

The advances in nanotechnology can overcome the limita-

tions of current glaucoma treatments. Efficacies of topically

administered drug for glaucoma treatment are limited since

only a small proportion of administered drug can reach the

target sites, whereas most of the drug is washed away.

Nanotechnology can be utilized to enable the sustained release
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of the conventional drug by increasing its bioavailability.

Various nanoparticles including liposomes, polymers, and

nanocrystals are currently under clinical trials for their effica-

cies. Effective glaucoma treatment can be achieved through

the encapsulation or conjugation of desired drugs to appro-

priate nanoparticles tomaximize the possibility of reaching the

desired sites and to prolong the residual time. The surface of

nanoparticles can be coated such that the particles can endure

the physiological conditions of precorneal tear film. Therefore,

nanoparticles, regardless of type, shape, or size, allow the

sustained release of drugs unlike free drugs, resulting in the

reduction of IOP. These results can be translated into

decreased drug administration frequency and, thus improved

compliance.

Nanoparticles can also be applied in the form of ophthal-

mic devices to treat glaucoma. Nanoparticles can be easily

embedded in the polymer of contact lenses or ocular inserts

for sustained release without major drawbacks, and the

encapsulated drug in the contact lenses can remain stable

under refrigerated conditions, similar to topical

administration of nanoparticles. Furthermore, the mechanical

property of contact lens can be manipulated with nanoparti-

cles to prevent potential damage after insertion in the eye. In

addition, the encapsulated drug in the contact lens can be

released under physiological cues, such as lysozyme, for

controlled release. Controlled release of drug can reduce

the dosing frequency. Furthermore, nanotechnology applica-

tions are varied, including the coating of a surgical device

and IOP diagnosis. Recently, an IOP monitoring device has

been developed in the form of contact lens to measure IOP of

patients for 24 hours. Despite thesemerits, nanoparticles may

induce toxicity upon administration; hence, appropriate

dosage needs to be cautiously determined before the initia-

tion of treatment to minimize the side effects. While the use

of nanoparticles has improved the glaucoma treatment when

compared to the traditional treatment method, stem cells can

be used to protect and possibly regenerate the TM and

damaged RGCs.

Stem cells are widely known for their multi-lineage

differentiation and secretion of NFs. These cells can
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Figure 4 Stem cell use for ocular protection and regeneration. Neurotropic factors released by bone marrow-derived mesenchymal stem cells and Müller cells induce the

regeneration of the trabecular meshwork and retinal ganglion cells.
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differentiate into TM to relieve IOP and secrete NPFs to

protect damaged ocular tissues from apoptosis. For ocular

regeneration, based on the replacement of damaged RGCs,

Müller cells could be used because they can express

mature retinal markers under certain conditions.

Co-treatment with appropriate stem cells and nanopar-

ticles can synergistically help to protect and regenerate the

damaged RGCs. In addition, the targeting ability of stem

cells can be enhanced through the usage of nanoparticles,

which not only provide a prolonged retention time in

physiological conditions, but also reduce the side effects.

Despite these beneficial effects of co-treatment, caution is

required when using nanoparticles since each type of

nanoparticle possesses unique mechanical and physio-

chemical properties. This review highlighted the usage of

drug-loaded nanoparticles and stem cells to effectively halt

the disease progression and possibly regenerate the

damaged tissue.

Conclusion
In recent years, conventional glaucoma treatment has been

equipped with stem cells and nanoparticles due to the

advances in nanotechnology and understanding of stem

cells. Nanoparticles can help in reaching the desired target

sites and provide sustained release to delay the progression

of glaucoma. Then, stem cells can assist in glaucoma treat-

ment by regenerating trabecular meshwork for lowering IOP

and potentially regenerate damaged retinal ganglion cells.

However, the potential adverse effects of nanomedicine need

to be determined before using them in the treatment.
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