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Phosphate (Pi) is one of the basic necessities required for sustenance of life and its
metabolism largely relies on excretory function of the kidney, a process chiefly under
the endocrine control of bone-derived fibroblast growth factor 23 (FGF23). However,
knowledge gap exists in understanding the regulatory loop responsible for eliciting
phophaturic response to Pi treatment. Here, we reported a novel role of (pro)renin
receptor (PRR) in mediating phosphaturic response to Pi treatment via upregulation of
FGF23 production. Male Sprague-Dawley rats were pretreated for 5 days via osmotic
pump-driven infusion of a PRR antagonist PRO20 or vehicle, and then treated with
high Pi (HP) solution as drinking fluid for the last 24 h. PRO20 reduced HP-induced
Pi excretion by 42%, accompanied by blunted upregulation of circulating FGF23 and
parathyroid hormone (PTH) and downregulation of renal Na/Pi-IIa expression. In cultured
osteoblast cells, exposure to HP induced a 1.56-fold increase in FGF23 expression,
which was blunted by PRO20 or siRNA against PRR. Together, these results suggest
that activation of PRR promotes phosphaturic response through stimulation of FGF23
production and subsequent downregulation of renal Na/Pi-IIa expression.

Keywords: (pro)renin receptor, fibroblast growth factor 23, phosphate homeostasis, Na+-dependent Pi
transporter, parathyroid hormone

INTRODUCTION

Phosphate (Pi) is an essential nutrient and component of the human body. Adequate phosphate
balance is essential for the maintenance of fundamental cellular functions of the mammalian
system, ranging from energy metabolism to mineral ion metabolism (Gaasbeek and Meinders,
2005). The kidney plays a pivotal role in maintenance of Pi homeostasis by adjustment of
reabsorption and excretion (Shimada et al., 2004a; Urakawa et al., 2006). In the kidney, most of
the filtered Pi is reabsorbed across the proximal tubule cells (Katai et al., 1999 Giral et al., 2009).
Evidence from physiological studies suggests that Na+-dependent Pi transporters in the brush-
border membrane (BBM) of proximal tubular cells mediate the rate-limiting step in the overall
Pi-reabsorptive process (Murer et al., 2000, 2003). An alteration of proximal tubular reabsorption
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of Pi in kidney was thought to depend on the abundance of NaPi-
lla (Npt2a) or NaPi-llc (Npt2c) proteins residing in the BBM
(Biber and Murer, 1994; Busch et al., 1994; Shirazi-Beechey et al.,
1996). Na+- Pi cotransporter knock out mouse demonstrated that
NaPi-lla was responsible for approximately 70% of BBM Na/Pi
cotransport activity (Beck et al., 1998; Murer et al., 2004).

Renal handling of Pi is tightly regulated by endocrine
hormones, particularly fibroblast growth factor 23 (FGF23),
vitamin D3, and PTH (Pfister et al., 1998; Shimada et al.,
2004a; Liu et al., 2006; Farrow et al., 2009; Gattineni et al.,
2009; Guo et al., 2013). Among these, FGF23 is a bone-derived
hormone secreted by osteoblasts and osteocytes in response to
increased Pi concentration as well as vitamin D (Saito et al., 2005;
Antoniucci et al., 2006; Perwad et al., 2007). FGF23 acts on the
distal convoluted tubule that may trigger a cascade that reduces
proximal tubular Pi reabsorption (Farrow et al., 2009). Studies in
animal models have shown that increased serum concentrations
of FGF23 lead to renal Pi wasting through downregulation of
Npt2a and Npt2c in the proximal tubule (PT) apical membrane
(Larsson et al., 2004; Shimada et al., 2004b).

(Pro)renin receptor (PRR) is a member of the renin-
angiotensin system (RAS) (Nguyen et al., 2002) and generally
thought to serve as a specific receptor for both prorenin and
renin. PRR is composed of a large N-terminal extracellular
domain, a single transmembrane domain, and a short
cytoplasmic domain (Burckle and Bader, 2006). The full
length PRR (fPRR) is cleaved by site-1 protease (S1P) to generate
N-terminal soluble PRR (sPRR) and the C-terminal membrane-
bound M8-9 fragment (Nakagawa et al., 2017). Increasing
evidence has demonstrated that PRR-mediated activation of
the intrarenal RAS plays an essential role in renal handling of
Na+ and water balance (Gonzalez and Prieto, 2015; Lu et al.,
2016a,b; Quadri and Siragy, 2016; Peng et al., 2017; Prieto et al.,
2017). Activation PRR triggers multiple signaling transduction
pathways such as β-catenin signaling and thus can act in a
RAS-independent manner (Kouchi et al., 2017; Li et al., 2017;
Gao et al., 2020). So far, there is no prior research to address
a potential role of PRR in regulation of Pi homeostasis. The
overall goal of the present study was to test the role of PRR in
phosphaturic response to HP treatment and further to address
the underlying mechanism.

MATERIALS AND METHODS

Animals
Male Sprague-Dawley rats (220–270 g) were purchased from the
Medical Experimental Animal Center at Sun Yat-sen University.
All animal protocols were conformed to the Experimental
Animal Management Regulations of Sun Yat-sen University. Rats
were acclimated in metabolic cages for 3 days prior to the start
of the study. Rats were randomly divided into three experimental
groups (N = 5 per group): (1) control group, (2) HP group, or (3)
HP + PRO20 group. Animals in HP and HP + PRO20 groups
drank high phosphate fluid (5 × phosphate buffered saline, pH
7.4, [Pi] = 50 mM) for 24 h (Ide et al., 2016) and the control
group drank tap water. Five days prior to HP treatment, osmotic

minipump (2001, Alzet, United States) was implanted to deliver
vehicle or PRO20 at 700 µg/kg/d as previously described (Wang
et al., 2016, 2020). Twenty four-hour urine was collected using
metabolic cages.

Plasma and Urine Parameters
Plasma and urine creatinine was determined by the
QuantiChromTM Creatinine Assay Kit (DICT-500, BioAssay
Syatems, United States). Plasma and urine sodium, potassium
and chlorine levels were determined by the Sodium, Potassium
and Chlorine Assay Kit, respectively (Nanjing Jiancheng
Bioengineering Institute, China). Plasma and urine phosphorus
and calcium levels were determined by the Micro Blood
Phosphorus and Calcium Concentration Assay Kit, respectively
(Solarbio life sciences, China). Plasma and urine soluble PRR
(sPRR) levels were determined by the ELISA kit (27782, IBL,
Japan). Plasma FGF23, PTH and 1,25(OH)2D3 concentrations
were assayed using the ELISA kits (Cloud-Clone Corp., China).
All of these ELISA assays were performed according to the
manufacturer’s protocols.

Isolation of Renal Brush-Border
Membranes
Renal BBMs were isolated by double magnesium chloride
(MgCl2) precipitation as previously described (Gattineni et al.,
2009) with minor modifications. After removal of the renal
capsule, the renal cortex was isolated and homogenized in
2 ml of cold 2 × homogenization buffer (12 mM Tris pH 7.4,
300 mM mannitol, 5 mM EGTA). MgCl2 was added to a final
concentration of 12 mM and samples were incubated on ice for
15 min with occasional mixing. Then the aggregated membranes
were removed by 15-min centrifugation at 3,000 g and 4◦C,
and the supernatant was then centrifuged for 30 min at 40,000
g and 4◦C. The pellet was resuspended in 1 ml of 1 × cold
homogenization buffer supplemented with 12 mM MgCl2. After
a second incubation and 15-min centrifugation at 3,000 g and
4◦C and the supernatant was recovered and centrifuged at
40,000 g, 4◦C, for 30 min. The BBM pellets were resuspended
in RIPA buffer. All solutions were supplemented with protease
inhibitors (1 mM PMSF).

Immunoblotting
Protein samples were fractionated on SDS-PAGE (30 µg/well)
and transferred to a nitrocellulose membrane (Millipore).
Immunoblots were incubated overnight at 4◦C with primary
antibodies including anti-ACE (1:1,000, GTX100923,
GeneTex, United States), anti-AGT (1:1,000, GTX103824,
GeneTex, United States), anti-renin (1:1,000, sc-133145,
Santa, United States), anti-PRR (1:1,000, HPA003156, Sigma,
United States), anti-Npt2a (1:1,000, A6742, Abclonal, China),
anti-Npt2c (1:1,000, ab155986, Abcam, United Kingdom) or
anti-β-actin (1:10,000, A1978, Sigma, United States) antibody in
1.5% (w/v) bovine serum albumin (BSA, Sigma, United States) in
a TBS-T buffer [150 mM NaCl, 10 mM Tris (pH 7.4/HCl), 0.2%
(v/v) Tween-20]. After washing, membranes were incubated
with horseradish peroxidase-conjugated secondary antibodies
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(1:3,000, Thermo Fisher ScientificTM PierceTM). Specific
signal was visualized by ECL kit (Thermo Fisher ScientificTM

PierceTM). The protein bands were detected using Amersham
Imager 600 and quantified by Image Pro Plus version 6.0 software
(Molecular Dynamics).

Quantitative Reverse Transcriptase PCR
Total RNA was extracted using Trizol (TRIzol, Invitrogen)
following manufacturer’s instructions. RNA concentrations
were quantified at 260 nm, and purity and integrity were
determined using NanoDrop 2000. Reverse transcription was
performed using iScriptTM cDNA Synthesis Kit (Bio-Rad,
United States). The mRNA expression was measured by
quantitative RT-PCR using SYBR R© Premix Ex TaqTM II (Tli
RNaseH Plus, TaKaRa, China). The following primers were
used: ACE: 5′-GAGCCATCCTTCCC–TTTTTC-3′ (forward)
and 5′-CCACATGTTCCCTAGCAG-GT-3′ (reverse), AGT: 5′-
AGCATCCTCCTTGAACTCCA-3′ (forward) and 5′-TGATTTT
TGCCCAGGAT- -AGC-3′ (reverse), renin: 5′-GATCACCATG
AAGGGG-GTCTCTGT-3′ (forward) and 5′-GTTCCTGAAG
GGATTCTTTTGCAC-3′ (reverse), PRR: 5′-CTGGTGGCG-
-GGTGCTTTAG-3′ (forward) and 5′-GCTACGTCTGGGAT-TC
GATCT-3′ (reverse), Npt2a: 5′-GCCAGCATGACGTTTG

TTGT-3′ (forward) and 5′-ATCACACCCAGG–CCAATGAG-
3′ (reverse), Npt2c:5′-TGACTGTCCAAGCGT-CTGTC-3′
(forward) and 5′-TTCATCCCGATCCCCTGACT-3′ (reverse).
GAPDH served as an internal control and its primer sequences
were: 5′-GTCTTCACTACCA-TGGAGAAGG-3′ (forward) and
5′-TCATGGATGACCTT-GGCCAG-3′ (reverse).

Immunohistochemistry
Under anesthesia, kidneys were harvested and fixed with
10% paraformaldehyde. Paraffin embedded kidney sections
were processed for IHC as previously described (Wang
et al., 2015). Primary antibody for PRR (1:200, ab40790,
Abcam, United Kingdom) was incubated overnight at
4◦C. Sections were washed three times with 0.01 M PBS
buffer and secondary antibody horseradish peroxidase
(HRP)-conjugated goat anti-rabbit (1:300, Thermo Fisher
Scientific) was incubated at room temperature for an
hour. The staining procedure was performed using
DAB Horseradish Peroxidase Color Development Kit
(P0202, Beyotime Biotechnology, China) according to the
manufacturer’s protocols. Immunohistochemical staining was
detected with an Olympus BX 63 microscope (20 × and 40
× objective).

FIGURE 1 | Analysis of the RAS components in rat plasma and urine following HP intake. (A) Plasma angiotensin (AGT) concentration. (B) Urinary AGT excretion.
(C) Plasma renin concentration. (D) Urinary renin excretion. (E) Plasma soluble (pro)renin receptor (sPRR) concentration. (F) Urinary sPRR excretion. CTR, control;
HP, high Pi intake N = 5 per group. Data are Mean ± SEM.
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FIGURE 2 | Analysis of the RAS components in rat kidneys following HP
intake. (A) qRT-PCR detection of renal transcripts of ACE, AGT, renin, and
PRR. GAPDH was used as internal reference. (B) Immunoblotting analysis of
renal expression of ACE, AGT, renin, fPRR and sPRR. The values indicate the
corresponding densitometry analysis. β-actin was used as an internal
reference. (C) Representative images of PRR immunostaining. Arrows indicate
positive staining (200×, 400×). N = 5 per group. Data are Mean ± SEM.
*p < 0.05 vs. CTR.

Cell Culture
The MC3T3-E1 cells were obtained from as a gift from Dr.
Zhi Tan (Sun Yat-sen University). Cells were cultured in MEM-
αalpha (Thermo Fisher Scientific) supplemented with 10% fetal

TABLE 1 | General physiological data in rats.

CTR HP HP + PRO20

Fluid intake (ml/24 h) 25.42 ± 0.63 12.61 ± 0.38** 12.21 ± 0.58**

Urine volumes (ml/24 h) 10.41 ± 1.20 14.21 ± 0.48* 14.01 ± 0.31*

Plasma creatinine (mg/dl) 0.58 ± 0.01 0.58 ± 0.01 0.57 ± 0.02

Plasma-Na+ (mmol/l) 126.5 ± 1.38 126.12 ± 1.73 125.47 ± 2.31

Plasma-K+ (mmol/l) 3.68 ± 0.06 3.65 ± 0.07 3.67 ± 0.14

Plasma-Cl− (mmol/l) 113.74 ± 1.97 115.04 ± 0.84 111.84 ± 1.55

Urinary creatinine (mg/24 h) 7.18 ± 0.43 8.07 ± 0.15 7.80 ± 0.19

Urinary Na+ (mmol/24 h) 1.03 ± 0.03 4.58 ± 0.18** 4.41 ± 0.27**

Urinary K+ (mmol/24 h) 3.43 ± 0.18 3.50 ± 0.09 3.46 ± 0.12

Urinary Cl− (mmol/24 h) 1.72 ± 0.10 3.31 ± 0.05** 3.27 ± 0.08**

Plasma osmolarity
(mosn/kg·H2O)

312 ± 2.06 313 ± 0.94 312 ± 1.27

Urine osmolarity
(mosn/kg·H2O)

1,340.4 ± 34.60 1,407.00 ± 45.52 1,379.50 ± 49.75

Data represent the means ± SEM. *p < 0.05, **p < 0.01 vs. CTR. CTR, control.

bovine serum, and 1% penicillin-streptomycin. Cells were seeded
on 6 well plates. After 24 h, the cells were starved in media
containing 0.5% FBS for 24 h. Then the cells were treated with
10 mM Pi for another 24 h. To evaluate the effects of PRR on the
levels of FGF23, PRO20 was given at 10 nM. To further verify the
involvement of PRR, PRR was silenced by transfecting the cells
with siRNA against PRR. Scrambled siRNA served as a control.
SiRNA for mouse PRR and control siRNA were purchased from
Ruibo Biotech (Guangzhou, China). After the treatment, the
medium was collected and assayed for sPRR or FGF23 assays
(EK5626, SAB, United States).

Statistical Analysis
Data is expressed as mean ± standard error (SEM). All data
points were included for analyses. Samples sizes were determined
based on similar previous studies. Statistical analysis for animal
and cell cultures experiments was performed by means of
one-way analysis of variance (ANOVA) for multiple-group
comparison or Student’s t-test for two-group comparison. A p-
value below 0.05 was considered statistically significant.

RESULTS

Activation of (Pro)renin Receptor and
Other Renin-Angiotensin System
Components by High Pi Intake
To test whether HP activated the RAS, we determined the levels
of RAS components in urine and plasma from rats on normal
Pi (NP) or HP intake using ELISA. The results showed that the
levels angiotensinogen (AGT), renin, sPRR in urine and plasma
from the HP group were significantly increased as compared
with NP controls (Figure 1). By qRT-PCR, renal cortical mRNA
expression of angiotensin-converting enzyme (ACE), AGT, renin,
PRR were all increased in the HP group as compared with
NP controls (Figure 2A). These results have been validated
by Western blotting analysis. Of note, this analysis detected
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FIGURE 3 | Serum and urine biochemical parameters in NP, HP and HP + PRO20 rats. (A) Plasma Pi concentration; (B) 24-h urinary Pi excretion; (C) plasma Ca2+

concentration; (D) 24-h urinary Ca2+ excretion. N = 5 per group. Data are Mean ± SEM.

increases in the protein abundances of both PRR and sPRR in
the kidney of HP rats (Figure 2B). By immunohistochemistry,
PRR protein expression was elevated in the collecting duct by HP
treatment (Figure 2C), a pattern consistent with intercalated cell
labeling as reported previously (Wang et al., 2016).

Effect of PRO20 on Phosphaturic
Response to High Pi Intake
SD rats drank tap water, HP fluid alone or in combination with
PRO20 treatment. Basic physiological data is shown in Table 1.
Fluid intake was less but urine output was higher in HP rats as
compared with vehicle control. This was paralleled with increased
24-h urinary excretion of Na+, K+, and Cl− induced by HP
treatment. However, plasma creatinine and osmolality remained
unchanged. None of these parameters were affected by PRO20.

To address the functional role of PRR in Pi homeostasis, we
examined the effect of PRO20 on phosphaturic response to HP
intake. HP intake induced a significant increase in urinary Pi
excretion within 24 h and this increase was blunted by PRO20
treatment (Figure 3B). In parallel, HP intake elevated circulating
FGF23 and PTH, both of which were nearly normalized by
PRO20 treatment (Figures 4A,B). Despite reduced urinary Pi
excretion, PRO20 treatment in HP rats did not affect plasma

Pi concentration (Figure 3A). In a sharp contrast, plasma Ca2+

concentration (Figure 3C), urinary Ca2+ excretion (Figure 3D),
or plasma 1,25(OH)2D3 (Figure 4C) were unaffected by HP
intake or PRO20 treatment.

In a separate experiment, we examined the effect of PRO20
on several key parameters of Pi homeostasis in 7-wk-old male
SD rats under basal condition (n = 5 per group). The data
showed that PRO20 had no effect on urinary Pi excretion (PRO20
429.2 ± 16.8 vs. CTR 432.4 ± 17.8 µmol/24 h, p > 0.05), plasma
Pi concentration (PRO20 2.89 ± 0.06 vs. CTR 2.90 ± 0.08,
mmol/L, p > 0.05), plasma FGF-23 (PRO20 374.3 ± 15.4 vs.
CTR 381.3 ± 10.2 pg/ml, p > 0.05), or urine volume (PRO20
9.75± 0.42 vs. CTR, 10.45± 0.85 ml, p > 0.05).

Downregulation of renal expression of sodium-phosphate
cotransporters is a key determinant of phosphaturic response
during HP intake (Murer et al., 1999; Hernando et al., 2001;
Giral et al., 2009; Bourgeois et al., 2013; Forster et al., 2013;
Zhuo et al., 2020). Therefore, we determined renal expression
of Npt2a and Npt2c by both qRT-PCR and Western blotting
analysis. In response to HP intake, renal cortical mRNA
expression of Npt2a was significantly decreased, which was
blunted by PRO20 treatment (Figure 5A). In contrast, the mRNA
expression of Npt2c showed no significant changes in the three
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FIGURE 4 | Levels of plasma FGF23 (A), plasma PTH (B), and plasma 1,25(OH)2D3 (C) were measured in CTR, HP, and HP + PRO20 rats. FGF23, fibroblast
growth factor 23; PTH, parathyroid hormone; N = 5 per group. Data are Mean ± SEM.

groups (Figure 5A). Meanwhile, we examined the abundance of
sodium-phosphate cotransporters in the kidney BBM by Western
blotting analysis. The protein abundance of Npt2a in BBM was
downregulated by HP intake as compared with the NP control
and this downregulation was prevented by PRO20 (Figure 5B). In
contrast, no change was observed in protein abundance of Npt2c
in BBM (Figure 5B).

Effect of (Pro)renin Receptor on FGF23
Production in Cultured MC3T3-E1 Cells
The observation of suppressed circulating FGF23 concentration
by PRO20 treatment during HP intake prompted us to speculate
that the bone might be a potential site of PRR regulation of
FGF23 release. To address this possibility, we conducted in vitro
experiments using MC3T3-E1 cells, a mouse osteoblast cell line.
The cells were exposed to normal or high Pi (10 mM Pi)
for 24 h followed by examination of expression of FGF23 as
well as PRR. qRT-PCR results showed that the expression of
PRR and FGF23 mRNA was both significantly increased by

HP treatment (Figure 6A). Consistent with this result, Western
blotting analysis demonstrated significant elevations of protein
abundance of full-length PRR (fPRR) and sPRR (Figure 6B).
ELISA results showed that the concentrations of sPRR and FGF23
in the medium were significantly increased by HP treatment
(Figures 6C,D).

Next, we examined the functional role of PRR in regulation of
the production of FGF23 in the MC3T3-E1 cells by using PRO20.
The cells were pretreated for 1 h with 10 µM PRO20 and then
treated with 10 mM Pi for 24 h. By qRT-PCR, HP treatment
increased the expression of FGF23 mRNA, and this increase was
blunted by PRO20 (Figure 7A). This result was subsequently
validated at protein level by ELISA (Figure 7B).

To further verify the above-mentioned results obtained
with the pharmacological approach, we conducted independent
experiments using siRNA approach to knockdown PRR. The
efficacy of the gene knockdown was confirmed by qRT-PCR
and Western blotting analysis (Figures 8A,B). PRR knockdown
significantly blocked HP-induced FGF23 expression as assessed
by qRT-PCR (Figure 8C) and ELISA (Figure 8D).
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FIGURE 5 | Analysis of renal expression of Pi transporters in NP, HP and HP + PRO20 rats. (A) qRT-PCR analysis of renal mRNA expression of Npt2a and Npt2c.
GAPDH was used as internal reference. (B) Immunoblotting analysis of Npt2a, and Npt2c protein expression. Brush border membrane was isolated from the kidney
of all groups. The values indicate the corresponding densitometry analysis. β-actin was used as an internal reference. N = 5 per group. Data are Mean ± SEM.
**p < 0.01 vs. CTR, #p < 0.05 vs. HP.

DISCUSSION

PPR is a multi-functional protein critically involved in renal
handling of Na+, K+ and water through RAS-dependent or -
independent mechanisms (Lu et al., 2016a,b; Quadri and Siragy,
2016; Peng et al., 2017; Prieto et al., 2017; Xu et al., 2017;
Ramkumar et al., 2018; Fu et al., 2019). The present study
explored phosphaturic role of PRR during 24-h Pi loading.
Following HP intake, the levels of circulating sPRR along with
renal expression of PRR and other components of the RAS were
all elevated in parallel with increased plasma FGF23 and PTH.
PRR antagonism with PRO20 effectively suppressed HP-induced
FGF23 and PTH levels and urinary Pi excretion albeit with
unchanged plasma Pi concentration. Cell culture experiments
offered a cellular mechanism of PRR regulation of FGF23
expression in an osteoblast cell line.

In response to HP intake, the levels of PRR/sPRR were elevated
as evidenced by increased circulating sPRR, the cleavage product
of PRR, and renal expression of PRR. The source of sPRR
under HP intake remains obscure. Immunostaining mapped
HP-induced PRR expression in the collecting duct (CD) with
a pattern of labeling in intercalated cells (ICs) as previously
reported (Wang et al., 2016). It is intriguing that the CD may

serve as a potential site for the generation of sPRR during HP
intake although other organs such as bone or parathyroid gland
may also be involved. ICs were initially thought to primarily
regulate acid-base metabolism. However, emerging evidence
suggests novel sensing function of ICs during urinary tract
infection and acute kidney injury (Miao and Abraham, 2014;
Azroyan et al., 2015; Battistone et al., 2020). More recent evidence
suggests a paracrine mechanism whereby mediators such as sPRR
or prostaglandins are produced by ICs and act in the neighboring
principal cells of the CD to regulate Na+ and water reabsorption
in the distal nephron (Lu et al., 2016a,b; Xu et al., 2020). Our
results indicate a possibility that IC PRR may be involved in
regulation of Pi homeostasis by releasing sPRR that may target
other organs to control production of phosphaturic hormones
such as FGF23. The involvement of IC-derived sPRR in renal
handling of Pi should be tested by future investigation.

Although PRR was initially identified as a specific receptor for
prorenin and renin, its relationship with RAS has been debated
(Binger and Muller, 2013). Recently, abundant evidence from
our group strongly supports PRR as an important regulator
of intrarenal RAS during water deprivation (Wang et al.,
2016), angiotensin II-induced hypertension (Wang et al., 2014,
2017) and chronic kidney injury (Fang et al., 2018), favoring
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FIGURE 6 | PRR mediation of FGF23 production in cultured osteoblast cells in response to Pi treatment. MC3T3-E1 cells were exposed to vehicle or 10 mM Pi for
24 h, followed by analysis of the levels of FGF23 and PRR/sPRR. (A) qRT-PCR analysis of mRNA expression of PRR and FGF23. GAPDH was used as internal
reference. (B) Immunoblotting analysis of protein abundances of fPRR and sPRR. The values indicate the corresponding densitometry analysis. β-actin was used as
an internal reference. (C) ELISA detection of medium sPRR. (D) ELISA detection of medium FGF23. N = 4, Data are Mean ± SEM. **p < 0.01 vs. CTR.

FIGURE 7 | Effects of PRO20 on the expression of FGF23 in MC3T3-E1 cells. The MC3T3-E1 cells were pretreated with PRO20 (10 µM) for 1 h, then treated with Pi
(10 mM) for 24 h. (A) qRT-PCR analysis of mRNA expression of FGF23. GAPDH was used as internal reference. (B) ELISA detection of medium FGF23. N = 4, Data
are Mean ± SEM.
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FIGURE 8 | Effects PRR siRNA on HP induced FGF23 levels in MC3T3-E1 cells. The cells were transfected with scrambled or siRNA against PRR, and then treated
with vehicle or 10 mM Pi for 24 h. (A) qRT-PCR detection of PRR mRNA expression normalized by GAPDH. (B) Immunoblotting analysis of protein abundances of
fPRR and sPRR were detected by Western blotting. The values indicate the corresponding densitometry analysis. β-actin was used as an internal reference.
(C) qRT-PCR analysis of mRNA expression of FGF23 normalized by GAPDH. (D) ELISA analysis of medium FGF23. N = 4, Data are Mean ± SEM, **p < 0.01 vs.
CTR.

PRR as integrative member of the RAS. Along this line,
the present study offered new evidence of activation of the
RAS during HP intake. In this regard, HP treatment induced
plasma and urinary excretion and renal expression of AGT
and renin in parallel with elevated levels of PRR/sPRR. Future
studies are needed to determine dependence of the canonical
RAS components on PRR and its functional contribution
to Pi homeostasis.

We employed a pharmacological approach to provide
functional evidence for a novel role of PRR in mediating
phosphaturic response to HP intake in rats. PRO20 has
been extensively characterized as a highly specific and
effective inhibitor of PRR owing to its peptide decoy activity
(Danser, 2015; Li et al., 2015). Administration of PRO20
was highly effective in attenuating HP-induced urinary
Pi excretion and phosphaturic hormones such as FGF23

and PTH. These hormones primarily target the kidney to
downregulate abundance of Npt2a in the brush border of
proximal tubules. Indeed, HP-induced downregulation of
Npt2a was prevented by PRO20 treatment. The result support
phosphaturic role of PRR during Pi treatment. Of note,
despite impaired phosphaturic response, PRO20 didn’t elevate
plasma Pi concentration during HP treatment. This might be
due to the relatively short duration of HP treatment. Under
this condition, effective compensatory mechanism might
be activated and able to maintain normal level of plasma
Pi concentration.

Osteoblast cells are a known source of FGF23 production
during HP intake (Liu et al., 2003; Ferrari et al., 2005;
Perwad et al., 2005; Lindberg et al., 2015; Goltzman et al., 2018).
Considering the observation that PRO20 effectively suppressed
HP-induced circulating level of FGF23, we hypothesized that
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FIGURE 9 | Schematic illustration of the PRR-mediated phosphaturic
response. In response to high Pi, PRR expression is elevated in the bone,
leading to elevation of FGF23 production. Then FGF23 is released to the
circulation and acts in the kidney to suppress NaPi IIa expression, resulting in
increased Pi excretion.

FGF23 production might be under the direct control of PRR in
cultured osteoblast cells. Using a cell culture model of osteoblast
cells, we obtained compelling evidence that HP-induced FGF23
mRNA expression and release were blunted by PRO20 and siRNA
against PRR. We provided further evidence that PRR expression
was stimulated by HP treatment. An issue may arise that the
relative importance of PRR in osteoblast cells vs. the kidney for
the control of FGF23 production remains unclear and should
warrant future investigation.

Besides FGF23, PTH is another important regulator of Pi
metabolism (Graciolli et al., 2009; Lombardi et al., 2020). In the
present study, we were able to show an inhibitory effect of PRO20
on HP-induced plasma PTH level, indicating a potential role
of PRR in regulation of the release of PTH, presumably from
parathyroid gland. There is no information about expression
and function of PRR in this organ in the context of PTH
regulation. We would like to acknowledge this major limitation
of the present study.

We would also like to acknowledge the limitation of the
HP protocol used in the present study although this protocol
has been validated by a previous study (Ide et al., 2016).
The HP fluid contains high NaCl which may confoundingly

influence Pi transport in the kidney through modulation of
status of NaPi transporter. This possibility is suggested by
the previous observation that subcellular distribution of NaPi-
2 was altered following high salt diet (Yang et al., 2008),
but with unchanged total abundance of this transporter. In
contrast, as shown by the present study, the total abundance
of NaPi-2 was downregulated by 24-h HP intake. This result
seems to support a primary role of NaPi-2 in regulating
homeostasis of Pi, probably not Na+. Indeed, besides NaPi-
2, Na+ transport occurs via numerous other Na+ transporters
and channels in various nephron segments. Additionally, it
seems hard to explain why HP intake reduced fluid intake
that was contradictorily associated with increased urine output
and urinary Na+ excretion. Fortunately, we found no sign
of severe dehydration as evidenced by unchanged plasma
osmolality. This might be due to the short duration of the
experiment and fluid balance can be maintained by activation of
compensatory mechanisms.

In conclusion, we for the first time identified PRR as
a novel mediator of phosphaturic response to HP intake.
The phosphaturic action of PRR seemed to be mediated by
stimulation of production of FGF23 as well as PTH (Figure 9).
In vitro evidence from cultured osteoblast cells demonstrated
that PRR directly mediated HP-induced FGF23 release. Overall,
the present study has uncovered a previously undescribed
PRR/FGF23 axis in regulation of Pi homeostasis.
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