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A B S T R A C T

Automatic segmentation of brain tissues and white matter hyperintensities of presumed vascular origin (WMH)
in MRI of older patients is widely described in the literature. Although brain abnormalities and motion artefacts
are common in this age group, most segmentation methods are not evaluated in a setting that includes these
items. In the present study, our tissue segmentation method for brain MRI was extended and evaluated for
additional WMH segmentation. Furthermore, our method was evaluated in two large cohorts with a realistic
variation in brain abnormalities and motion artefacts.

The method uses a multi-scale convolutional neural network with a T1-weighted image, a T2-weighted fluid
attenuated inversion recovery (FLAIR) image and a T1-weighted inversion recovery (IR) image as input. The
method automatically segments white matter (WM), cortical grey matter (cGM), basal ganglia and thalami
(BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal
fluid (pCSF), and WMH.

Our method was evaluated quantitatively with images publicly available from the MRBrainS13 challenge
(n=20), quantitatively and qualitatively in relatively healthy older subjects (n=96), and qualitatively in pa-
tients from a memory clinic (n=110). The method can accurately segment WMH (Overall Dice coefficient in the
MRBrainS13 data of 0.67) without compromising performance for tissue segmentations (Overall Dice coeffi-
cients in the MRBrainS13 data of 0.87 for WM, 0.85 for cGM, 0.82 for BGT, 0.93 for CB, 0.92 for BS, 0.93 for
lvCSF, 0.76 for pCSF). Furthermore, the automatic WMH volumes showed a high correlation with manual WMH
volumes (Spearman's ρ=0.83 for relatively healthy older subjects). In both cohorts, our method produced re-
liable segmentations (as determined by a human observer) in most images (relatively healthy/memory clinic:
tissues 88%/77% reliable, WMH 85%/84% reliable) despite various degrees of brain abnormalities and motion
artefacts.

In conclusion, this study shows that a convolutional neural network-based segmentation method can accu-
rately segment brain tissues and WMH in MR images of older patients with varying degrees of brain abnorm-
alities and motion artefacts.

1. Introduction

Segmentation of brain tissues and white matter hyperintensities of
presumed vascular origin (WMH) is widely being performed in MR
images of older patients and is especially relevant in the context of
neurovascular and neurodegenerative diseases (De Groot et al., 2000;
Ikram et al., 2008; De Bresser et al., 2010a,b, Driscoll et al., 2009;
Giorgio and De Stefano, 2013; Wardlaw et al., 2013).

Numerous automatic brain tissue segmentation methods already
exist, with varying performance (De Boer et al., 2010; De Bresser et al.,
2011; Mendrik et al., 2015). The segmentation performance depends
for example on image acquisition factors, such as MR field strength
(Heinen et al., 2016) and MRI motion artefacts, and patient specific
factors, such as brain abnormalities. Although brain abnormalities (e.g.
WMH) and MRI motion artefacts are common in older patients, brain
segmentation methods are not commonly evaluated in a setting that
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includes these items.
Previous work on automatic WMH segmentation (Caligiuri et al.,

2015) consists of methods that use supervised classification (Anbeek
et al., 2004; Klöppel et al., 2011; Steenwijk et al., 2013; Ghafoorian
et al., 2016) or detection of WMH as outliers of tissue segmentation
(Van Leemput et al., 2001; De Boer et al., 2009; Schmidt et al., 2012;
Sudre et al., 2014; Sudre et al., 2015; Roura et al., 2015; Jain et al.,
2015; Kuijf et al., 2016). Segmentation of WMH often has a lower
performance than segmentation of brain tissues, because of the larger
heterogeneity of WMH. Furthermore, compared with brain tissue seg-
mentations, WMH segmentations are likely more susceptible to the
presence of motion artefacts and other brain abnormalities, such as
brain infarcts.

Convolutional neural networks have gained a lot of attention in the
recent years because of their effectiveness in learning layers of con-
volution kernels directly from training images, instead of relying on
explicitly defined features. In the field of MR brain image segmentation,
convolutional neural networks have been used for brain tissue seg-
mentation (Zhang et al., 2015; Moeskops et al., 2016a,b) and various
brain abnormality segmentation tasks (Pereira et al., 2016; Brosch
et al., 2016; Havaei et al., 2017, 2016; Kamnitsas et al., 2017;
Ghafoorian et al., 2017a,b; Valverde et al., 2017).

We have previously developed a segmentation method that uses a
convolutional neural network for brain tissue segmentation in neonatal
and adult brain MRI (Moeskops et al., 2016a). In the present study, this
brain tissue segmentation method was extended and evaluated in data
from the MRBrainS13 challenge (Mendrik et al., 2015) to additionally
include WMH segmentation. Furthermore, our method was evaluated in
two large cohorts (relatively healthy older subjects and patients from a
memory clinic), with a realistic variation in brain abnormalities and
motion artefacts. The cohorts are therefore representative data sets for
clinical application in a wide range of elderly patients.

2. Methods

2.1. Data

The method was evaluated with images from three different data
sets. For all three data sets, MR images were acquired with a Philips
Achieva 3T scanner using the same acquisition protocol: a 3D T1-
weighted image (TR: 7.9 ms, TE: 4.5 ms), a T1-weighted inversion re-
covery (IR) image (TR: 4416 ms, TE: 15 ms, TI: 400 ms), and a T2-
weighted fluid attenuated inversion recovery (FLAIR) image (TR:
11,000 ms, TE: 125 ms, TI: 2800 ms) (Mendrik et al., 2015). The 3D T1-
weighted image and the T1-weighted IR image were registered to the
T2-weighted FLAIR image with elastix (Klein et al., 2010). After regis-
tration, all images had a voxel size of 0.96×0.96×3.0 mm3. The
images were corrected for MR field bias and brain masks were gener-
ated with SPM12 (Ashburner and Friston, 2005).

2.1.1. MRBrainS13
The MRBrainS131 (Mendrik et al., 2015) framework consists of MR

images and manual segmentations from 20 patients (age, mean±
standard deviation: 71± 4 years; 10 male, 10 female). The MR images
were manually segmented in eight classes: white matter (WM), cortical
grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB),
brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), per-
ipheral cerebrospinal fluid (pCSF), and WMH. Note that the
MRBrainS13 challenge only includes evaluation of three combined
tissue classes: white matter (including WMH), grey matter (including
BGT) and CSF (pCSF and lvCSF) instead of all eight classes.

2.1.2. Relatively healthy older subjects
Patients with type 2 diabetes mellitus and healthy controls were

included from the Utrecht Diabetic Encephalopathy Study part 2
(UDES2) (Reijmer et al., 2013). The images used in MRBrainS13 were
selected from the UDES2 cohort. From the UDES2 cohort we analysed
images from 96 additional patients (age, mean± standard deviation:
71± 5 years; 58 male, 38 female; 51 with type 2 diabetes mellitus and
45 healthy controls). Reference segmentations of WMH were performed
by manual outlining on the FLAIR images using relatively strict criteria
(Brundel et al., 2014).

2.1.3. Patients from a memory clinic
Patients with cognitive impairment from a memory clinic were in-

cluded from the Dutch Parelsnoer Study (Aalten et al., 2014). From the
Parelsnoer cohort we analysed 110 patients (age, mean± standard
deviation: 76±8 years; 56 male, 54 female) that were included at the
University Medical Center Utrecht. No manual reference segmentations
were performed for these images.

2.2. Automatic segmentation method

Our previously described automatic segmentation method
(Moeskops et al., 2016a) was extended to include WMH as an additional
segmentation class, resulting in 9 output nodes (WM, cGM, BGT, CB,
BS, lvCSF, pCSF, WMH and background). In contrast to the previously
described approach that used a single input image, the current method
uses three input images: a T1-weighted image, a T2-weighted FLAIR
image and a T1-weighted IR image.

From each of these three images, 2D patches of three different sizes
(25×25, 51×51 and 75×75 voxels) are extracted centred around
each voxel, therefore resulting in 9 inputs. A CNN architecture with 9
branches (one for each of these 9 inputs) is used, corresponding to the
architecture used in the previous work for orthogonal inputs. In total,
this network architecture has 2,267,721 trainable parameters. A sche-
matic of the network is shown in Fig. 1.

Similar to the previously described method, the network is trained
in 10 epochs, where in each epoch 50,000 randomly selected samples
are extracted from every class in each of the training images. If fewer
than 50,000 samples are available for a certain class in a certain image,
all available samples are included in the training set. In our training set,
the number of WMH samples ranged from 0 to 12,880 per patient, re-
sulting in inclusion of all WMH samples. The weights in the network are
optimised with RMSprop (Tieleman and Hinton, 2012) using catego-
rical cross-entropy as loss function. Dropout (Srivastava et al., 2014) is
used on the fully connected layers to decrease overfitting.

2.3. Experiments

The method was trained using images from MRBrainS13 (n=20).
First, it was trained using the 5 images as training data and evaluated
on the 15 test images, corresponding to the training and test sets in the
MRBrainS13 challenge. Second, the method was trained in leave-one-
subject-out over all 20 images to allow comparison with previous work
on WMH segmentation using the same data (Kuijf et al., 2014; Raidou
et al., 2016). Third, the method was trained using all 20 images in
MRBrainS13 and evaluated on a set of relatively healthy older subjects
(n=96) and patients from a memory clinic (n=110), to evaluate the
method in the presence of motion artefacts and brain abnormalities.

2.4. Evaluation of the automatic segmentation method

To evaluate the performance of the method, the brain tissue and
WMH segmentations were quantitatively evaluated with the images
from MRBrainS13 using:

• Dice coefficients computed for each segmentation class in each1 http://mrbrains13.isi.uu.nl
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image and subsequently averaged over all test images, to evaluate
the overlap between the automatic and reference segmentations.
This evaluation allows comparison with the MRBrainS13 challenge
and our previous work on tissue segmentation (Moeskops et al.,
2016a).

• Dice coefficients computed for each segmentation class over all test
images combined. This evaluation allows direct comparison with
previous work on WMH segmentation using the same data (Kuijf
et al., 2014; Raidou et al., 2016).

• Mean surface distances (MSD) computed for each segmentation class
in each image and subsequently averaged over all test images, to
evaluate the surface distance between the automatic and reference
segmentations.

Because not all three input images may be acquired in every study,
we also evaluate the performance using less than these three input
images. To this end, we evaluate the method using only the T1-weighted
and T2-weighted FLAIR images as input (i.e. leaving out the T1-
weighted IR images) and using only the T2-weighted FLAIR images as
input (i.e. leaving out both the T1-weighted and the T1-weighted IR
images). In these cases, the images are, respectively, input for a network
with six branches (three patch sizes from two images) and three bran-
ches (three patch sizes from one image) instead of nine branches.
Furthermore, to assess if the method is not overfitting as a result of the
large number of parameters in the network with nine branches, we also
evaluate the method when the three images were used as three-channel
input for three branches instead of nine separate branches.

2.5. Evaluation of the segmentation method in the presence of brain
abnormalities and motion artefacts

To evaluate the performance of the method in the presence of mo-
tion artefacts and brain abnormalities, quantitative and qualitative
evaluation of the MR images from the two large patient cohorts was
performed.

2.5.1. Quantitative evaluation of WMH segmentation in relatively healthy
older subjects

Quantitatively, the WMH segmentations in the MR images from
relatively healthy older subjects (n=96) were evaluated with:

• Correlation analysis between the automatic and manual reference
WMH volumes, to evaluate the level of correspondence between the
automatic and reference volumes. Spearman's rank correlation was
used instead of Pearson's correlation because the WMH volumes are
not normally distributed. Instead, the WMH volumes follow a dis-
tribution skewed to the large volumes, i.e. most patients have a
small lesion volume and only a few patients have a large lesion
volume.

• Sensitivity on the level of WMH lesion detection, i.e. quantifying the
number of lesions that were detected, not taking into account if the
volume or shape matched the reference segmentation. Therefore, a
detected lesion (i.e. a 3D connected component) was considered a
true positive when it (partially) overlapped with the manual re-
ference segmentation.

• Free-response receiver operating characteristic (FROC) curves on
the level of WMH lesions, showing sensitivity versus number of false
positive WMH detections per patient. Because of the class im-
balance, which results in a high specificity, an FROC curve on the
level of lesion detection provides a more insightful evaluation me-
tric than a standard, voxel-based, ROC curve. Because of this lesion-
based analysis, small false positive detections could have a large
influence on the performance. To assess this influence, the FROC
curves were computed with and without a greyscale opening op-
eration on the probabilistic output. Greyscale opening was per-
formed using a spherical structuring element with a radius of 1 mm.
In the evaluated images, this resulted in only in-plane horizontal
and vertical neighbours, i.e. 4-connectivity.

• Overall detection error rate (DER) and overall outline error rate
(OER) (Wack et al., 2012; Steenwijk et al., 2013), to evaluate the
error caused by missed lesions (DER) or different outlining of lesions
(OER), where = − +Dice DER OER1 ( )1

2 .

To allow comparison with other WMH segmentation methods, two
publicly available methods were evaluated. First, we have evaluated the
lesion prediction algorithm (LPA) as implemented in the LST toolbox
version 2.0.15 for SPM (Schmidt et al., 2012). Second, we have eval-
uated the cascaded CNN as proposed by Valverde et al. (2017). We have
trained this cascaded CNN using the same training set as we have used
for our method, i.e. all 20 patients in MRBrainS13. Because the method
balances positive and negative samples per image, no samples were

Fig. 1. Overview of the network with nine branches, using three different input patch sizes from three different images. Details can be found in the paper by Moeskops et al. (2016a).
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selected from the image that did not have WMH, resulting in training
samples from 19 patients.

2.5.2. Qualitative evaluation in relatively healthy older subjects and
patients from a memory clinic

Qualitatively, the MR images from the relatively healthy older
subjects (n=96) and the MR images from the patients from a memory
clinic (n=110) were visually scored by an observer with 10 years of
experience in neuroimaging and brain segmentation (JdB) using:

• Conventional visual scoring methods, including the Fazekas scale for
deep WMH (Fazekas et al., 1987) and the global cortical atrophy
(GCA) scale (Pasquier et al., 1996). For both measures, scoring is
performed in four classes (0–3).

• A custom visual scoring method for motion artefacts, where all three
images per patient were separately scored in four classes: no motion
(0), low motion (1), medium motion (2), high motion (3) (see
Fig. 2).

• Visual scoring of the segmentation quality for tissue segmentation
and WMH segmentation, as being reliable (1) or not reliable (0).
Segmentation errors were considered relative to the volume of the
affected brain tissue. Relatively small segmentation errors were
considered reliable segmentations. Relatively medium to large seg-
mentation errors were considered not reliable segmentations.

For each of the qualitative scores, the intra-rater variability is as-
sessed by performing the score twice for 20 randomly selected patients
(10 relatively healthy older subjects and 10 patients from a memory
clinic). The agreement is computed with Cohen's linearly weighted κ
coefficients.

3. Results

3.1. Evaluation of the automatic segmentation method

Quantitative evaluation was performed using the MR images from
MRBrainS13 (n=20) with segmentations of eight classes (WM, cGM,
BGT, CB, BS, lvCSF, pCSF and WMH). An example segmentation result
is shown in Fig. 3. The results when trained with 5 images and eval-
uated with 15 test images are shown in Table 1, top left, the results
when trained in leave-one-subject-out cross-validation are shown in
Table 2.

The results using only the T1-weighted and T2-weighted FLAIR
images as input, i.e. leaving out the T1-weighted IR images, are listed in
Table 1, top right. The performance was similar to the results with all
three images, in some cases even slightly better. However, the average
Dice coefficient for pCSF decreased from 0.74±0.03 to 0.71±0.03.
This could be explained by the outer border of pCSF that has a large
intensity differene with the bone on the T1-weighted IR images. The
results using only the T2-weighted FLAIR image as input are listed in
Table 1, bottom left. The performance was, however, poorer than when
three or two input images were used.

The results of the experiment where the three images were used as
input for three branches with a three-channel input instead of nine
separate branches are shown in Table 1, bottom right. The performance
was similar for most segmentation classes, with WMH as a clear ex-
ception. The average Dice coefficient for WMH decreased from
0.54±0.13 to 0.43± 0.14. When using a 3-channel input instead of
separate branches, the information of all three images is combined in a
single set of features after the first convolution layer, instead of al-
lowing each of the branches to focus on extracting the relevant in-
formation from each of the images.

0 (no motion) 1 (low motion) 2 (medium motion) 3 (high motion)

Fig. 2. Different classes of motion artefacts in T1-weighted (top
row), T1-weighted IR (middle row) and T2-weighted FLAIR
images (bottom row).
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Compared with our previous work on brain tissue segmentation
(Moeskops et al., 2016a) using the same data and evaluation
(MRBrainS13 with 5 training images and 15 test images), the extension
of the method for additional segmentation of WMH resulted in a similar
performance for the brain tissue segmentations (Average Dice coeffi-
cients of (with WMH vs. without WMH) 0.87 vs. 0.88 for WM, 0.84 vs.
0.84 for cGM, 0.80 vs. 0.81 for BGT, 0.91 vs. 0.90 for CB, 0.89 vs. 0.90
for BS, 0.91 vs. 0.92 for lvCSF, and 0.74 vs. 0.76 for pCSF).

Compared with previous work on WMH segmentation (Kuijf
et al., 2014; Raidou et al., 2016) using the same data and evaluation
(MRBrainS13 with leave-one-subject-out cross-validation over 20
images), the overall Dice coefficients for WMH achieved by our
method were substantially higher (0.67 vs. 0.57 (Kuijf et al., 2014)
and 0.58 (Raidou et al., 2016)), even though the previous work also
included additional features based on diffusion-weighted MR
images.

The MRBrainS13 challenge provides a framework to evaluate three
combined segmentation classes (WM, GM and CSF) instead of the eight
segmentation classes that were evaluated in our work. When we com-
bined the eight segmentation classes of our method to WM, GM and
CSF, the Dice coefficients in the MRBrainS13 framework were 0.88 for

Fig. 3. Example segmentation for one of the test images from the MRBrainS13 challenge, trained using the 5 training images available within MRBrainS13. From left to right: T1-weighted
image, T2-weighted FLAIR image, T1-weighted IR image, reference segmentation and automatic segmentation.

Table 1
Evaluation of the MRBrainS13 images in terms of Dice coefficients (mean± standard deviation), overall Dice coefficient and MSD [mm] (mean± standard deviation). Four different
experiments are shown, each using 5 training subjects and 15 test subjects. Top left: the network using all 3 input images in 9 network branches. Top right: the network using 2 input
images (leaving out the T1-weighted IR image) in 6 network branches. Bottom left: the network using 1 input image (only the T2-weighted FLAIR image) in 3 network branches. Bottom
right: the network using all 3 input images in 3 network branches with 3-channel input. For each experiment, from top to bottom: white matter (WM), cortical grey matter (cGM), basal
ganglia and thalami (BGT), cerebellum (CB), brain stem (BS), lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF) and white matter hyperintensities
(WMH). *Because no WMH were found in 1 of the 20 subjects, the average Dice and average MSD for WMH were computed over 14 of the 15 test subjects. The overall Dice for WMH was
computed over all test subjects.

3 inputs, 9 branches 2 inputs, 6 branches (no IR)

Dice Overall Dice MSD [mm] Dice Overall Dice MSD [mm]
WM 0.87± 0.02 0.87 0.31± 0.05 0.88± 0.02 0.88 0.27±0.03
cGM 0.84± 0.01 0.84 0.24± 0.04 0.85± 0.01 0.85 0.21±0.02
BGT 0.80± 0.03 0.79 0.64± 0.13 0.82± 0.02 0.82 0.63±0.11
CB 0.91± 0.02 0.91 0.66± 0.27 0.91± 0.02 0.91 0.97±0.66
BS 0.89± 0.02 0.89 0.67± 0.23 0.90± 0.02 0.90 0.62±0.21
lvCSF 0.91± 0.03 0.90 0.30± 0.19 0.92± 0.03 0.93 0.30±0.09
pCSF 0.74± 0.03 0.74 0.53± 0.10 0.71± 0.03 0.72 0.57±0.11
WMH 0.54± 0.13* 0.63 3.15± 1.82* 0.53± 0.14* 0.64 2.04±1.13*

1 input, 3 branches (only FLAIR) 3 inputs, 3 branches with 3 channels

Dice Overall Dice MSD [mm] Dice Overall Dice MSD [mm]
WM 0.80± 0.03 0.81 0.57± 0.09 0.88± 0.02 0.88 0.28±0.04
cGM 0.76± 0.01 0.76 0.39± 0.04 0.84± 0.01 0.84 0.22±0.02
BGT 0.77± 0.02 0.77 0.87± 0.13 0.81± 0.02 0.81 0.70±0.12
CB 0.88± 0.03 0.88 1.64± 1.07 0.90± 0.03 0.90 1.64±0.96
BS 0.85± 0.03 0.85 0.92± 0.28 0.90± 0.02 0.90 0.68±0.51
lvCSF 0.87± 0.05 0.89 0.65± 0.37 0.91± 0.04 0.92 0.29±0.09
pCSF 0.67± 0.04 0.68 0.71± 0.11 0.73± 0.04 0.73 0.54±0.12
WMH 0.51± 0.14* 0.62 2.11± 1.01* 0.43± 0.14* 0.54 3.15±1.64*

Table 2
Evaluation of the MRBrainS13 images in terms of Dice coefficients (mean± standard
deviation), overall Dice coefficient and MSD [mm] (mean± standard deviation). Leave-
one-subject-out (LOSO) cross-validation over all 20 subjects for the network using all 3
input images in 9 network branches. From top to bottom: white matter (WM), cortical
grey matter (cGM), basal ganglia and thalami (BGT), cerebellum (CB), brain stem (BS),
lateral ventricular cerebrospinal fluid (lvCSF), peripheral cerebrospinal fluid (pCSF) and
white matter hyperintensities (WMH). *Because no WMH were found in 1 of the 20
subjects, the average Dice and average MSD for WMH were computed over 19 of the 20
test subjects. The overall Dice for WMH was computed over all test subjects.

3 inputs, 9 branches (LOSO)

Dice Overall Dice MSD [mm]
WM 0.87±0.02 0.87 0.27±0.04
cGM 0.85±0.02 0.85 0.20±0.02
BGT 0.82±0.03 0.82 0.63±0.17
CB 0.93±0.02 0.93 0.65±0.22
BS 0.92±0.03 0.92 0.45±0.22
lvCSF 0.93±0.03 0.93 0.22±0.07
pCSF 0.76±0.04 0.76 0.46±0.12
WMH 0.59±0.19* 0.67 4.14±12.07*
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WM, 0.84 for GM and 0.77 for CSF. The most recent submissions to
MRBrainS13 are reported on the website2.

3.2. Evaluation of the segmentation method in the presence of brain
abnormalities and motion artefacts

Data from two large cohort studies is evaluated: relatively healthy
older subjects and patients from a memory clinic.

3.2.1. Quantitative evaluation of WMH segmentation in relatively healthy
older subjects

An example of the automatic segmentation compared with the re-
ference WMH segmentation for one of the relatively older subjects with
motion artefacts in the MR images is shown in Fig. 4. Despite these
motion artefacts, the segmentation is visually of good quality. Fur-
thermore, from this example it can be observed that the automatic
segmentation generally produces somewhat larger segmentations of
WMH than the reference segmentation. This originates from the
MRBrainS13 data, which was used to train the method and where a
larger definition of WMH for the manual segmentations is used. The
same effect can be seen in Fig. 5, where the automatic and reference
volumes are compared. Although a consistently larger WMH segmen-
tation volume was produced by the automatic method, a high corre-
lation (ρ=0.83) was obtained (Fig. 5).

FROC analysis for lesion detection (i.e. if a lesion is detected or not)
is shown in Fig. 6, showing that a high sensitivity is achieved at the cost
of a number of false positive detections by the automatic method, and
that a simple greyscale opening operation on the probabilistic output
can decrease the number of small clusters of false positive voxels.

The sensitivity in WMH lesion detection is shown as a histogram in
Fig. 7. The results in this figure were obtained by assigning each voxel
to the class with the highest probability, without post-processing. A
median sensitivity of 0.82 was obtained for WMH lesion detection. This
demonstrates that even though the automatically estimated volume
might be different than the manually determined volume, most of the
lesions in the reference segmentations were detected by the automatic
method. Fig. 7 further separately shows the 25% of patients with the
lowest reference WMH volume. This results in 24 patients with a re-
ference WMH volume <2.3 cm3. This subgroup of patients shows a
similar sensitivity distribution as the whole cohort, which indicates a
similar performance for patients with a low WMH volume. Fig. 8 shows
the standard voxel-based ROC curve.

The same effects can be seen from the overall detection error rate
(DER = 0.16) and the overall outline error rate (OER = 0.83) (Wack
et al., 2012; Steenwijk et al., 2013). DER quantifies the number of false
positive and false negative voxels because of lesions that were missed
completely. OER quantifies the number of false positive and false ne-
gative voxels because of lesions that were detected but outlined

Fig. 4. Example segmentation for one of the relatively healthy older subjects with motion artefacts in the MR images, trained using all 20 patients of MRBrainS13. From left to right: T1-
weighted image, T2-weighted FLAIR image, T1-weighted IR image, reference segmentation and automatic segmentation.

Fig. 5. Correlation between automatic and manual WMH volumes for the relatively
healthy older subjects (n=96) in terms of Spearman's ρ. The method was trained using all
20 patients of MRBrainS13. The method is compared with the lesion prediction algorithm
of LST (Schmidt et al., 2012) and a cascaded CNN (Valverde et al., 2017).

Fig. 6. Free-response ROC curve for detection of individual WMH lesions for the rela-
tively healthy older subjects (n=96), showing sensitivity versus false positive detections.
The method was trained using all 20 patients of MRBrainS13. The results are shown with
(green) and without (blue) a greyscale opening operation that uses 4-connectity in the
imaging plane as structuring element. The results are further compared with the lesion
prediction algorithm of LST (Schmidt et al., 2012) (red) and a cascaded CNN (Valverde
et al., 2017) (yellow). For LST, the number of false positives decreases again at about 60
false positives per image, because lesions start merging, which decreases the number of
false positive detections but increases the sensitivity.

2 http://mrbrains13.isi.uu.nl/results.php
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differently. The DER is small while the OER is larger, indicating that
most lesions were detected and that the error mostly originates from
different outlining of the lesions.

The results for LST (Schmidt et al., 2012) and the cascaded CNN
(Valverde et al., 2017) are shown in terms of volume correlations
(Fig. 5) and FROC curves (Fig. 6). Our method performs better in terms
of Spearman's rank correlation: 0.83 for our method, 0.80 for the cas-
caded CNN and 0.79 for LST. Moreover, the FROC curve is higher than
the FROC curves of the two evaluated methods. At the point of about 50
false positives per image, the performance of the cascaded CNN is si-
milar to our method without post-processing. In line with the ob-
servation that the automatic volumes are consistently higher than the
manual reference volumes (Fig. 5), the voxel-based Dice coefficients
averaged over patients are relatively low for these data: proposed
method without post-processing: 0.43±0.15, proposed method with
post-processing: 0.47±0.15, LST: 0.51± 0.16, cascaded CNN:
0.52±0.16.

3.2.2. Qualitative evaluation in relatively healthy older subjects and
patients from a memory clinic

To assess the intra-rater agreement of the visual scoring used for the
qualitative evaluation, 20 subjects were rated twice (by the same rater,
in a different session) for each of the scores, including: segmentation
reliability (Table 3), brain abnormalities (WMH load (Fazekas scale)
and brain atrophy severity (GCA scale), Table 4) and motion artefacts
(Table 5). In most of the cases, the exact same classification was given
in the second rating and it never differed more than one class from the

first rating. The Cohen's linearly weighted κ coefficients, showing the
agreement between the two ratings, were 0.57 for WMH segmentation
reliability, 0.73 for brain tissue segmentation reliability, 0.86 for Fa-
zekas, 0.58 for GCA, 0.78 for motion in the T1-weighted images, 0.58
for motion in the T1-weighted IR images and 0.86 for motion in the T2-
weighted FLAIR images.

As expected, the patients from a memory clinic overall have a larger
WMH volume relative to the intracranial volume (median: 1.58%,
range: 0.37–7.43%) than the relatively healthy older subjects (median:
0.83%, range: 0.34–5.20%). The same can be seen from the Fazekas
scales, where more patients are in the highest scales for the cohort of
patients from a memory clinic (Fazekas 0: 0%, 1: 48%, 2: 35%, 3: 17%)
than for the cohort of relatively healthy older subjects (Fazekas 0: 0%,
1: 78%, 2: 20%, 3: 2%). In both cohorts, an association between the
automatically obtained WMH volumes and the Fazekas scoring can be
observed (Fig. 9, left).

Furthermore, the patients from a memory clinic overall have a
smaller brain volume relative to the intracranial volume (mean±
standard deviation: 70.7± 3.9%) than the relatively healthy older
subjects (mean± standard deviation: 74.0± 4.0%), indicating more
brain atrophy. The same can be seen from the GCA scales, where more
patients are in the highest scales for the cohort of patients from a
memory clinic (GCA 0: 4%, 1: 50%, 2: 45%, 3: 1%) than for the cohort
of relatively healthy older subjects (GCA 0: 2%, 1: 77%, 2: 21%, 3: 0%).
In both cohorts, an association between the automatically obtained
brain volumes and the visual atrophy scoring can be observed (Fig. 9,
right).

Reliable segmentations, as determined by a human observer, for the
relatively healthy older subjects were obtained in 84/96 patients (88%)
for brain tissues and in 82/96 patients (85%) for WMH. For the patients
from a memory clinic, reliable segmentations were obtained in 85/110
patients (77%) for brain tissues and in 92/110 patients (84%) for WMH.

Fig. 7. Histogram of the sensitivity for detection of individual WMH lesions for the re-
latively healthy older subjects (n = 96). This figure shows the number of patients where
the automatic detection obtained a particular sensitivity level. The results are shown for
all patients (blue) as well as for the 25% with the lowest reference WMH volume (purple).
The method was trained using all 20 patients of MRBrainS13.

Fig. 8. Voxel-based ROC curve, showing the sensitivity and specificity for detection of
WMH voxels instead of WMH lesions. Note that the range of the x-axis is from 0 to 0.2 to
better visualise the relevant part of the curve.

Table 3
Intra-rater confusion tables for the WMH and brain
tissue segmentation quality scoring in 20 subjects. The
exact same classification was given in 17 of 20 patients
for the WMH segmentation scoring (κ=0.57) and in 18
of 20 patients for the tissue segmentation scoring
(κ=0.73).

WMH Tissues

Rating 2 Rating 2

0 1 0 1

0 3 1 0 4 1

1 2 14 1 1 14

R
at

in
g 

1

R
at

in
g 

1

Table 4
Intra-rater confusion tables for the Fazekas and GCA scales in 20 subjects. The
exact same classification was given in 18 of 20 patients for the Fazekas scale
(linearly weighted κ=0.86) and in 15 of 20 patients for the GCA scale (linearly
weighted κ=0.58). In the other cases, the classifications differed by only one
class.

GCAFazekas

Rating 2 Rating 2

0 1 2 3 0 1 2 3

0 0 0 0 0 0 1 1 0 0

1 1 13 1 0 1 1 10 0 0

2 0 0 2 0 2 0 3 4 0

3 0 0 0 3 3 0 0 0 0

R
at

in
g 

1

R
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g 

1
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An example segmentation result for a patient from a memory clinic with
motion artefacts in the MR images is shown in Fig. 10.

Figs. 11 and 12 show the number of reliable brain tissue (left panels)
and WMH (right panels) segmentations for different degrees of motion
artefacts and brain abnormalities, respectively. The patients from both
cohorts were combined (n=206) in these figures. It can be observed
that the reliability generally decreased with an increasing severity of
motion artefacts or brain abnormalities. Other reasons for unreliable
segmentations included (lacunar) infarctions (n=14, 6.8%) and ara-
chnoid cysts (n=1, 0.5%).

4. Discussion

This paper has presented the evaluation of an automatic segmen-
tation method for brain tissues and WMH in MRI using a convolutional
neural network. We have shown that our brain tissue segmentation

approach can be extended to include WMH as an additional segmen-
tation class, therefore performing segmentation of brain tissues and
WMH at the same time. The evaluation performed on MR images from
relatively healthy older subjects (n=96) and MR images from patients
from a memory clinic (n=110) showed that the method can perform
accurate segmentation of brain tissues and WMH in MR images with
varying degrees of brain abnormalities and motion artefacts.

4.1. Evaluation of the segmentation method

Unlike other methods that perform WMH segmentation, our method
performs WMH segmentation as well as tissue segmentation. The in-
clusion of WMH as an additional segmentation class did not result in a
decreased performance for tissue segmentation. We further show that
the method is not limited to three input images (T1-weighted, T2-
weighted FLAIR and T1 IR), but achieved similar performance when

Table 5
Intra-rater confusion tables for the rating of motion in 20 subjects. The exact same classification was given in 17 of 20 T1-
weighted images (linearly weighted κ=0.78), 11 of 20 T1-weighted IR images (linearly weighted κ=0.48) and 18 of 20
T2-weighted FLAIR images (linearly weighted κ=0.86). In the other cases, the classifications differed by only one class.

Motion T1 Motion FLAIRMotion IR

Rating 2 Rating 2 Rating 2

0 1 2 3 0 1 2 3 0 1 2 3

0 3 1 0 0 0 2 3 0 0 0 0 0 0 0

1 1 11 1 0 1 0 7 5 0 1 0 11 2 0

2 0 0 2 0 2 0 0 1 1 2 0 0 4 0

3 0 0 0 1 3 0 0 0 1 3 0 0 0 3

R
at

in
g 

1

R
at

in
g 

1

R
at
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g 

1

Fig. 9. WMH volume relative to the intracranial volume for the different Fazekas scales (left column) and total brain volume relative to the intracranial volume for the different GCA
scales (right column) for relatively healthy older subjects (top row) and the patients from a memory clinic (bottom row).
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Fig. 10. Example segmentation for one of the patients from the memory clinic with motion artefacts in the MR images. The method was trained using all 20 patients of MRBrainS13. From
left to right: T1-weighted image, T2-weighted FLAIR image, T1-weighted IR image and automatic segmentation.

Fig. 11. Brain tissue (left column) and WMH (right column) segmentation reliability for different severities of motion artefacts: no motion (0), low motion (1), medium motion (2) and
high motion (3) for the relatively healthy older subjects and the patients from a memory clinic combined (n=206). From top to bottom: motion in the T1-weighted image, motion in the
T1-weighted IR image and motion in the T2-weighted FLAIR image. Green indicates the percentage of reliable segmentations and red indicates the percentage of unreliable segmentations.
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two input images were used (T1-weighted and T2-weighted FLAIR). The
method could therefore also be applied in studies where no T1-weighted
IR images are acquired. Furthermore, reasonable results were even
obtained when the network was trained using only the T2-weighted
FLAIR images as input.

Recently, several CNN-based methods for WMH segmentation were
proposed in the literature. Most of the papers were evaluated in images
of patients with multiple sclerosis. Brosch et al. (2016) presented a
method using a convolutional and a deconvolutional pathway with
skip-connections to allow multi-scale feature integration. Havaei et al.
(2016) presented a method that allows an arbitrary number of input
images by computing the mean and variance over the feature maps of
the available images. Valverde et al. (2017) presented a method that
uses a sequence of two CNNs where the first network is used for an
initial segmentation and the second network is used to finetune the
segmentations. Ghafoorian et al. (2017b) presented a multi-scale net-
work similar to our network and evaluate different methods of fusing
the branches with different inputs. All papers report accurate results.
An advantage of our method over these papers is that we show that the
same method can be used to perform tissue segmentation as well as
WMH segmentation at the same time. If there is only an interest in
WMH segmentation for a new study, our method could also be trained
to only perform WMH segmentation.

4.2. Evaluation of the segmentation method in the presence of brain
abnormalities and motion artefacts

In contrast to most previous studies (see e.g. the review by Caligiuri
et al. (2015)), we have evaluated the performance of our method in MR
images from two large cohorts with a realistic varying degree of brain
abnormalities and motion artefacts. Brain abnormalities were assessed
with conventional visual scoring methods (Fazekas and GCA) and mo-
tion artefacts were assessed with a custom visual scoring method that

was validated for intra-observer variability.
The automatically obtained WMH volumes for the relatively healthy

older subjects showed a high correlation with the manually obtained
volumes (Fig. 5). However, because of the more strict definition of
WMH in the MR images of relatively healthy older subjects compared
with the MRBrainS13 training data that was used, the automatically
obtained WMH volumes were consistently overestimated compared
with the reference volumes. The definition of the lesion boundaries, and
therefore the WMH volume, is highly influenced by inter-observer
variability. However, a high rank correlation (Spearman's ρ=0.83)
between the manual and automatic volumes shows that the patients can
be accurately ranked amongst each other and could in this way for
example be classified in risk categories.

Furthermore, in terms of lesion detection it can be seen that, even
though the volume might be different, most of the lesions were detected
by the automatic method. This sensitivity for lesion detection did
however result in a number of false positive detections. In some cases,
this also included false positive detections in the automatic segmenta-
tion, which were in fact small lesions that were below the strict defi-
nition of WMH that was used by the observers. In clinical research, an
interactive system where the user quickly goes through all possible
WMH lesions identified by the automatic method and labels them as
being correct or not could be beneficial to increase both sensitivity and
specificity of WMH lesion detection (Wolterink et al., 2015). In addi-
tion, the data generated by such an approach could be used as addi-
tional training data to improve the automatic method. A simple grey-
scale opening operation reduced a number of very small false positive
detections. With this approach, small isolated detections were sup-
pressed and such voxels could be relabelled to the class with the new
highest probability.

We have compared the method to two publicly available methods,
LST (Schmidt et al., 2012) and a cascaded CNN (Valverde et al., 2017).
Our method outperformed both methods on our data set, in terms of

Fig. 12. Brain tissue (left column) and WMH (right column) segmentation reliability for different classes of the Fazekas scales (top) and GCA scales (bottom) for the relatively healthy
older subjects and the patients from a memory clinic combined (n=206). Green indicates the percentage of reliable segmentations and red indicates the percentage of unreliable
segmentations.
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volume correlation (Fig. 5) and FROC analysis (Fig. 6). Similar to our
method, the cascaded CNN overestimates the lesion volume compared
with the reference volumes. LST provides volumes that are more similar
to the reference volumes, but achieves a lower volume correlation than
both CNN-based methods. We have only performed the quantitative
evaluation for the other methods and not the qualitative evaluation.
Qualitatively comparing different methods could however be an inter-
esting future study.

The cascaded CNN uses 3D convolutions, which could be advanta-
geous, especially for the isotropic images that were used in their study.
The images in our paper are however anisotropic (0.96 mm in-plane
voxel size vs. 3.0 mm slice thickness), which could explain the lower
performance on our data set. An advantage of LST over our method and
the cascaded CNN is that it is unsupervised. Applying supervised
methods to a new data set might, depending on the difference between
the training set and the new data, require retraining on representative
data or the use of a transfer learning approach.

Qualitative evaluation showed that the reliability of the automatic
segmentations decreased with an increasing degree of motion artefacts
and with an increasing degree of brain abnormalities, but that in most
cases the method obtained accurate segmentations despite the artefacts
or abnormalities being visible in the images. Motion artefacts are
common in most patient cohorts and it is therefore advantageous when
the influence on the segmentation performance is limited. Moreover,
the ability to perform accurate segmentations in patients with brain
abnormalities is especially important in an ageing population as this
facilitates the use of brain tissue and WMH volumes as markers for
treatment effect and disease progression in future studies.

5. Conclusion

This paper showed that a convolutional neural network-based seg-
mentation method can accurately segment brain tissues and WMH in
MR images of older patients with varying degrees of brain abnormal-
ities and motion artefacts.
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