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The maize (Zea mays L.) ZmCNR13 gene, encoding a protein of fw2.2-like (FWL) family,
has been demonstrated to be involved in cell division, expansion, and differentiation. In the
present study, the genomic sequences of the ZmCNR13 locus were re-sequenced in 224
inbred lines, 56 landraces and 30 teosintes, and the nucleotide polymorphism and
selection signature were estimated. A total of 501 variants, including 415 SNPs and 86
Indels, were detected. Among them, 51 SNPs and 4 Indels were located in the coding
regions. Although neutrality tests revealed that this locus had escaped from artificial
selection during the process of maize domestication, the population of inbred lines
possesses lower nucleotide diversity and decay of linkage disequilibrium. To estimate
the association between sequence variants of ZmCNR13 and maize ear characteristics, a
total of ten ear-related traits were obtained from the selected inbred lines. Four variants
were found to be significantly associated with six ear-related traits. Among them,
SNP2305, a non-synonymous mutation in exon 2, was found to be associated with
ear weight, ear grain weight, ear diameter and ear row number, and explained 4.59, 4.61,
4.31, and 8.42% of the phenotypic variations, respectively. These results revealed that
natural variations of ZmCNR13 might be involved in ear development and can be used in
genetic improvement of maize ear-related traits.
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INTRODUCTION

Maize (Zea mays L.), one of the most important cereal crops, is cultivated worldwide as sources
of food, animal feed, and industrial materials. It was suggested that the total global maize
production was 1,148.4 million tons in 2019, which was far greater than those of rice (Oryza
sativa L.) and wheat (Triticum aestivum L.)1. However, improving kernel yield (KY) is still a
primary mission in maize breeding (Li et al., 2018). KY is a complex quantitative trait affected
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by a variety of genetic and environmental factors and has low
heritability (Beavis et al., 1994; Yan et al., 2006). Compared
with KY, the heritability of yield components is relatively
higher and is less affected by environmental factors (Messmer
et al., 2009; Li et al., 2013; Raihan et al., 2016). Therefore, it is
more effective to select some yield components than to
directly select KY in the breeding process (Sidwell et al.,
1976). Among the yield components, kernel size has a
crucial effect on kernel weight estimated by kernel length
(KL), kernel width (KW), and kernel thickness (KT). In
addition, ear length (EL), ear diameter (ED), ear row
number (ERN), and kernel number per row (KNR) are
essential traits determining the kernel number (Zhang
et al., 2017). All of these ear-related traits are quantitative
traits regulated by multiple genes and environmental factors
(Liu et al., 2012). Many genes regulating maize ear-related
traits have been identified, such as fea2 (Bommert et al., 2013),
fea3 (Je et al., 2016), KNR1 (Wang et al., 2019) and KNR4 (Liu
et al., 2015) for kernel row number, td1 (Bommert et al.,
2005), bif2 (McSteen and Hake 2001) and ba1 (Ritter et al.,
2002) for tassel morphology.

Tomato fruit-weight 2.2 (fw2.2) was detected as an
essential locus in controlling fruit weight and size (Frary
et al., 2000; Nesbitt and Tanksley 2001). In plants, the
homologs of fw2.2-like (FWL) genes, encoding proteins
with a conserved PLAC8 (named after a series of human
placental specific protein with unknown function) domain,
were suggested to play essential roles in cell division and
organ size control (Libault and Stacey 2010). A total of eight
members of FWL gene family in rice were detected. Among
them, OsFWL1 and OsFWL3 genes modulate rice grain length
by regulating cell number, and OsFWL4 gene is a negative
regulator of tiller number and plant yield (Xu et al., 2013; Gao
et al., 2020). In soybean, the silencing of GmFWL1 expression
resulted in a significant decrease in the number of nodules
and changes in the structure of cell chromatin (Libault et al.,
2010). In maize, a total of 13 FWL gene family members were
identified, and named as Cell Number Regulator (CNR) genes
(Guo et al., 2010). The ZmCNR1 gene was illustrated to

possess a plant-specific cell proliferation function affecting
plant and fruit weight. In addition, it was also suggested that
the expression of ZmCNR2 negatively correlate with tissue
growth activity and hybrid seedling vigor (Guo et al., 2010).
These observations revealed that plant FWL/CNR genes play
critical roles in plant development.

The maize CNR gene ZmCNR13 was firstly identified
through a narrow odd dwarf (nod) mutant (Rosa et al.,
2017). Further evidence revealed that the ZmCNR13 gene
possessed the function in regulating cell division and
differentiation and then affected both vegetative and
reproductive development of maize (Rosa et al., 2017).
However, the effect of this gene in the regulation of maize
ear-related traits remains largely unknown, and there is no
association analysis between the nucleotide polymorphisms
of the maize ZmCNR13 gene and yield-related traits. In this
study, we investigated the nucleotide polymorphism of the
maize ZmCNR13 locus, and estimated the association
between the sequence polymorphisms of this gene and
some ear-related traits.

MATERIALS AND METHODS

Plant Materials, Experimental Design, and
Analysis of Phenotypic Data
A total of 224 inbred lines (Supplementary Table S1) have been
selected for phenotypic observation in this study. These lines had
been grown in the field in a randomized block design with two
replicates at Sanya (18°23′ N, 109°44′ E) in 2015, 2016 and
Yangzhou (32°39′ N, 119°42′ E) in 2017. Each line was
planted in a sequential row patterns with 15 plants, 3.5 m long
and 0.4 m between adjacent rows. After harvesting and drying,
three well-developed ears have been selected to measure ear traits,
including ear weight (EW), ear grain weight (EGW), EL, ED,
ERN, KNR, hundred kernel weight (HKW), KL, KW, and KT.
ANOVA was performed using “aov” function in R software. The
“lme4” (Bates et al., 2015) package was used to calculated the
broad-sense heritability (h2) for these ear-related traits. The

TABLE 1 | Descriptive statistics and ANOVA results of the maize ear-related traits.

Trait Mean SD Min Max CV F Value (G) F Value (E) F Value (G×E) h2 (%)

EW (g) 77.04 29.10 6.02 214.10 37.77 13.52a 178.37a 4.15a 28.04
EGW (g) 63.09 25.73 3.66 184.00 40.79 13.72a 128.18a 4.27a 28.03
EL (cm) 12.14 2.44 3.77 21.54 20.14 17.30a 545.33a 3.67a 38.08
ED (cm) 3.91 0.50 1.01 8.63 12.75 16.87a 113.09a 2.79a 47.15
ERN 13.58 2.40 6.00 22.00 17.65 21.57a 71.86a 2.24a 52.97
KNR 21.06 5.88 1.00 42.00 27.93 11.65a 128.32a 3.26a 28.56
HKW (g) 25.58 5.95 10.20 44.44 23.25 35.97a 2223.19a 7.92a 58.30
KL (mm) 9.46 1.39 4.93 33.73 14.72 9.78a 101.88a 2.02a 41.50
KW (mm) 8.12 0.98 5.22 25.20 12.11 10.44a 37.11a 1.45a 45.80
KT (mm) 5.08 0.91 2.58 15.23 17.82 8.71a 610.32a 2.91a 22.65

aIndicates statistical significance at p < 0.001 level.
Abbreviationsin the table are as follows: CV, coefficient of variation,; G, genotype; E, environment; G×E, genotype-environment interaction; h2, broad-sense heritability; EW, ear weight;
EGW, ear grain weight; EL ear length; ED, ear diameter; ERN, ear row number; KNR, kernel number per row; HKW, hundred kernel weight; KL, kernel length; KW, kernel width and KT,
kernel thickness.
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observed values of these traits in three environments were used to
calculate the best linear estimated prediction (BLUP) (Piepho
et al., 2008) using the package ‘lme4’. The calculation model of
BLUP is:yij � μ + fj + ei + ϵij, where yij is the observed value of
the phenotype of j line in i environment, μ is the phenotypic mean
of j line in all environments, fj is the genetic effect of j line, ei is the
environment effect of i and εij is the error of the observed value of
the j line in i environment. The descriptive statistics and

correlation coefficients were estimated using the “GGally”
package in R software.

DNA Extraction and ZmCNR13
Re-Sequencing
A total of 224 inbred lines, 56 landraces and 30 teosintes
(Supplementary Table S1) were collected for target capture

FIGURE 1 | Phenotypic distribution and Pearson correlation coefficients for ten ear-related traits (***, p < 0.001; **, p < 0.01; *, p < 0.05).

TABLE 2 | Summary of parameters for the analysis of nucleotide polymorphisms.

Parameters Upstream 59UTR Exons Introns 39UTR Downstream Full-length

Total length of amplicons (bp) 582 371 1,287 3,080 360 517 6,197
Number of all of the sequence variants 30 17 55 336 26 50 501
Frequency of all of the sequence variants 0.0515 0.0458 0.0427 0.1091 0.0722 0.0967 0.0808
Number of polymorphic sites 21 13 51 273 21 37 415
Frequency of polymorphic sites per bp 0.0361 0.0350 0.0396 0.0886 0.0583 0.0716 0.0670
Number of indels sites 31 11 60 120 37 48 306
Number of indels events 9 4 4 53 5 13 86
Average Indel length 3.4444 2.75 15 2.2642 7.4 3.6923 3.5581
Frequency of indels per bp 0.0155 0.0108 0.0031 0.0172 0.0139 0.0251 0.0139
π 0.00902 0.01093 0.00971 0.02090 0.02254 0.02391 0.01719
θ 0.00816 0.00613 0.00765 0.01702 0.01132 0.01544 0.01312
Tajima’s D 0.2807 1.9086 0.7962 0.7203 2.6444a 1.5757 0.9854
Fu and Li’s D −1.2487 1.4749 1.0715 1.2195 1.2724 0.4676 1.1647
Fu and Li’s F −0.7670 1.9666a 1.1408 1.1546 2.1924b 1.1370 1.2750

aIndicates a statistical significance at p < 0.05 level.
bIndicates a statistical significance at p < 0.01 level. “UTR” indicates untranslated region.
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sequencing. Fresh and young leaves were collected from each line
at the seeding stage, and a modified cetyl trimethyl ammonium
bromide (CTAB) method was used to extract genomic DNA
(Allen et al., 2006). DNA sequences of the ZmCNR13 locus in the
selected lines were resequenced using the target sequence capture
sequencing technology on the NimbleGen platform (Choi et al.,
2009) by BGI (Beijing Genomics Institute) Life Tech Co. The
genomic sequences and positions of the ZmCNR13
(GRMZM2G027821) locus in the inbred line B73 (AGPv3.21)
were used as the references for target capture sequencing.

Analysis of Genotypic Data
The software Clustal X (Larkin et al., 2007) was used for multiple
sequence alignment of the ZmCNR13. The nucleotide
polymorphisms and allelic diversities of all tested lines were
analyzed by DNASP5.0 software (Librado and Rozas 2009).
Nucleotide diversity (π) in the ZmCNR13 gene, which is
defined as the mean number of nucleotide differences per site
between any two DNA sequences, was estimated using R package
“PopGenome” (Pfeifer et al., 2014). Linkage disequilibrium (LD)
decay was measured by the squares of correlation coefficients (R2)
for all pairs of SNPs using the program PopLDdecay v3.41
(Zhang et al., 2019) with default parameters.

Marker-Trait Association Analysis in Inbred
Lines
The method of genotyping-by-sequencing (GBS) was used to
identify the genotypes of the selected lines (Li et al., 2019a). A
total of 361,675 SNPs, which were distributed across the entire
maize genome, were used to calculate the population structure
and kinship. The population structure was estimated through the
method of principal components (PCs). In this analysis, the top
five PCs, which can explain 23.56% genetic variation, were used
for association mapping. In addition, pair-wise coefficients of
relatedness (kinship matrix) was calculated by TASSEL5.0
(Bradbury et al., 2007). In order to increase the accuracy of
association analysis, two models were used for marker-trait
association analysis. The general linear model (GLM)
(Pritchard et al., 2000; Zhao et al., 2007) controlling for
population structure (PCs), and mixed linear model (MLM)
(Yu et al., 2006) controlling for both population structure
(PCs) and kinship, were calculated by TASSEL5.0. A total of
398 markers in ZmCNR13 with minor allele frequency (MAF)
higher than 0.05 were used for association analysis. The p-value
thresholds were empirically set to 1/398 and 0.05/398 for MLM
and GLM, respectively, using the Bonferroni correction method
(Bland and Altman 1995).

FIGURE 2 | Nucleotide diversity (π and θ) estimated along the sequences of maize ZmCNR13. π and θ were calculated using the method of sliding windows of
200 bp with a step of 50 bp.

TABLE 3 | Summary of nucleotide polymorphisms and neutrality test of ZmCNR13.

Populations C π ×
1,000

θ ×
1,000

Tajima’s D Fu and Li’s
D

Fu and Li’s
F

teosintes 0.813 31.94 42.25 −0.9542 −1.3684 −1.4553
landraces 0.903 17.02 19.01 −0.3774 −0.5176 −0.5548
inbreds 0.914 17.19 13.12 0.9854 1.1647 1.2750
all 0.777 18.61 31.00 −1.2499 −4.5758b −3.2829b

aIndicates a statistical significance at p < 0.05 level.
bIndicates a statistical significance at p < 0.01 level.
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RESULTS

The Phenotypic Variations Among Maize
Inbred Lines
In this study, a total of ten ear-related traits, including EW, EGW,
EL, ED, ERN, KNR, HKW, KL, KW, and KT, were obtained in a
population of 224 maize inbred lines (Table 1). Coefficients of
variation of these traits ranged from 12.11 to 40.79%, suggesting
abundant phenotypic diversity among the tested inbred lines.
ANOVA analyses also revealed that all these ear-related traits
showed significant difference among inbred lines, suggesting that
this population hold genetic characteristics for association
analysis. In addition, we also noticed that both the
environments and genotype-environment interaction had a
significant impact on all these traits. The values of broad-sense
heritability were further estimated. The results revealed that most
of these traits possessed high heritability. The estimated
heritability for ED, ERN, HKW, KL, and KW is higher than
40%. To evaluate the correlation relationship among these ten
ear-related traits, paired correlation analysis was carried out, and
the estimations of correlation coefficient (r) between any two
traits were obtained (Figure 1). Significant correlations were
observed between most parameters. Among them, EW/EGW
had the highest correlation with r � 0.975. Meanwhile, the 12

of 45 pairwise correlations for ear-related traits, including ED/EL,
ERN/EL, KNR/ED, KNR/ERN, KW/EW, KW/EGW, KW/EL,
KW/ED, KW/KL, KT/EL, KT/ED and KT/KL didn’t reach the
significant level. These results indicate that different genetic
mechanisms might affect the ear traits of maize.

Sequence Polymorphisms of the Maize
ZmCNR13 Gene
To evaluate the sequence polymorphisms of the ZmCNR13 gene, the
full-length sequences of this locus were re-sequenced in 224 inbred
lines. After multiple sequence alignment, a full-length 6,197 bp
sequence was obtained, including 582 bp upstream region,
5,098 bp coding region containing seven exons and seven
introns, and 517 bp downstream region. A total of 501 variants
were identified in the genomic sequence, including 415 SNPs and 86
indels covering 306 sites. On average, SNPs and Indels occurred per
12.37 bp and 72.06 bp, respectively. The highest frequency of
variation sites was detected in the intron region (11.28 bp for
SNP and 58.11 bp for InDels). The frequency of variation sites in
the exon region was the lowest (23.23 bp for SNP and 321.75 bp for
InDels). For all the tested lines, the overall nucleotide diversity (π) of
the ZmCNR13 locus was 0.01719, where the estimated π values of
intron regions were relatively higher than exon regions. The nucleic

FIGURE 3 | Linkage disequilibrium (LD) analysis of ZmCNR13 gene in three populations. (A) LD model of ZmCNR13 gene in three populations. (B) LD decay for
three populations measured by R2.
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acid polymorphisms of exon regions were low (θ � 0.00765), while
that of other regions were relatively higher (θ � 0.01702 for intron
regions and 0.01544 for downstream) (Table 2). In addition, π and θ
were calculated using the sliding window of 200 bpwith a step length
of 50 bp. Two peaks in the intron3 and intron7 revealed that these
regions were more diverse than others (Figure 2).

Nucleotide Diversity and Selection of
ZmCNR13 in Inbred Lines, Landraces and
Teosintes
To further estimate the genetic diversity of the ZmCNR13
locus, the sequence variation parameters of this gene in three
different populations were analyzed and compared. The
sequence conservation (C) of the ZmCNR13 gene was
similar in landraces (C � 0.903) and inbred lines (C �
0.914), and the lowest value of 0.813 in teosintes.
Correspondingly, compared with teosintes, landraces and
inbred lines showed lower nucleotide sequence
polymorphisms (θ � 42.25 for teosintes, 19.01 for
landraces and 13.12 for inbred lines). The neutrality of

ZmCNR13 gene was tested by Tajima’s D, Fu and Li’s D*,
and Fu and Li’s F*. The Tajima’s D values of the three
populations didn’t achieve a significant level. Furthermore,
the Tajima’s D was positive in the inbred line population,
indicating that the gene was lack of rare alleles in this
population (Table 3 and Supplementary Figure S1). There
is no prominent LD block of the ZmCNR13 gene in teosintes,
and the degree of LD between mutation sites is relatively low.
Compared with teosintes, the LD degree of landraces is
enhanced to a certain extent, and smaller blocks begin to
appear. In inbred lines, further the degree of LD is enhanced
and larger blocks appear (Figure 3A). We also estimated the
attenuation of LD with physical distance in three populations.
The result revealed that the LD attenuation rate of inbred
lines was slower than that of landraces and teosintes, and R2

decreased to less than 0.2 after 200 bp, while those of
landraces and teosintes decreased to less than 0.2 when it
was less than 100 bp (Figure 3B). Taken together, although
the gene didn’t escape from neutral evolution, bottleneck
effect of population has led to the lower nucleotide
polymorphisms and LD decay in inbred lines.

FIGURE 4 |Candidate-gene based association of ZmCNR13 gene in inbred lines. (A,B)Manhattan plot using theMLM andGLMmodel. The p-value threshold was
set at 1/398 (MLM) and 0.05/398 (GLM). Triangles and dots represent InDels and SNPs, respectively. (C) Schematic of the ZmCNR13 gene structure and allelic variation.
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Association Analysis of Ear-Related Traits
With ZmCNR13
To identify significant variants associated with ear-related
traits, a total of 398 markers in ZmCNR13 with minor allele
frequency (MAF) higher than 0.05 were used for association
analysis. Both methods of GLM and MLM were used for
marker-trait association analysis. Four polymorphic sites
(InDel413, SNP2286, SNP2305 and SNP2337) were
captured jointly by two models, which were found to be
significantly associated with six ear traits (EW, EGW, EL,
ED, ERN, and KNR). Among them, two sites (SNP2305 and
SNP2337) located in exon 2 jointly controlled four ear traits
(EW, EGW ED and ERN). Furthermore, we noticed that
SNP2305 belongs to non-synonymous mutation, where the
transition of T to A will lead to the changes of amino acid
serine to threonine. In addition, SNP2305 were found to be
associated with EW, EGW, ED and ERN, and could explain
4.31–8.42% and 7.06–10.41% phenotypic variations under

MLM and GLM, respectively (Figure 4 and
Supplementary Table S2).

LD analysis showed that SNP2286, SNP2305 and SNP2337 had
relatively high linkage across inbred lines. Interestingly, SNP2305 and
SNP2337 had complete linkage (R2 � 1) (Figure 5A). We further
classified haplotypes based on the variation of SNP2305, and divided
the inbred lines into twomajor groups.T-test revealed that EW,EGW,
ED and ERN showed significant difference between two groups. The
allele A group possessed significantly higher values of EW, EGW, ED
and ERN than the allele T (Figures 5B–E). On this basis, combined
with correlation analysis, we noticed that the changes among the four
traitswere synergistic. Therefore, we can infer that alleleAof SNP2305
has positive regulatory effects on EW, EGW, ED and ERN.

DISCUSSION

In the present study, association analyses were employed to
illustrate the relationship between the maize ZmCNR13 and

FIGURE 5 |Natural variations in ZmCNR13were significantly associated with four ear-related traits. (A) LD heatmap for four significant variants associated with ear
traits. (B–E) Comparison of EW, EGW, ED and ERN between different alleles of SNP2305. p value for t test comparing two groups carrying different alleles were indexed
on the top (**, p < 0.01; *, p < 0.05).
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ear-related traits. Association analysis, also known as linkage
disequilibrium mapping or association mapping, is a method
based on linkage disequilibrium to identify the association
between genetic polymorphisms and phenotypic variations
(Mackay and Powell 2007). Compared with linkage analysis
based on parental population, association analysis has higher
resolution, and it can be directly used to analyze more than two
alleles in natural populations (Salvi and Tuberosa 2005; Mackay
and Powell 2007). As an extension of genome-wide association
mapping, candidate gene association analysis is mainly used to
identify genetic variations and excellent haplotypes significantly
associated with target traits (Yan et al., 2011). Maize is a typical
cross-pollinated plant with a high recombination rate, rich
genetic diversity and LD decay distance of about 1Kb, so it is
an ideal material for association analysis (Tenaillon et al., 2001;
Whitt et al., 2002). Many loci affecting maize traits have been
identified by this method, such as Zmisa2 (Yang et al., 2014) and
ZmBT1 (Xu et al., 2014) for starch properties, ZmYS1 (Yang et al.,
2015) for kernel mineral concentrations, ZmCKX5 (Wang et al.,
2021) and ZmMADS60 (Li et al., 2020) for root morphology,
ZmHKT1 (Li et al., 2019a) and ZmPGP1 (Li et al., 2019b) for plant
architecture.

Abundant genetic diversity is the basis for crop
improvement (Yan et al., 2011). In this study, nucleotide
polymorphisms of the ZmCNR13 gene were analyzed in
inbred lines through re-sequencing. A total of 501
variations including 415 SNPs and 86 InDels were
detected, and most of them concentrated in the intron
regions. The exon region had one SNP per 25.71 bp, while
the intron region reached one SNP per 11.28 bp. The decrease
of nucleotide polymorphism in exon region suggested that
these regions might be influenced by greater selection
pressure. Moreover, it is worth noted that the LD decays
faster in landraces and teosintes than inbred lines, suggesting
that there were genetic bottleneck effects (Wang et al., 1998)
in the population of inbred lines, although no obvious
selection signature was detected through neutral test.

Ear-related traits are the most important components of
kernel yield of maize. Illustrating the genetic background of
the genes related to ear traits and digging their elite variations
will be of great importance in high-yield breeding maize (Zhu
et al., 2018). In the present study, we revealed that a non-
synonymous mutation in exon 2 (SNP2305) of the ZmCNR13
gene was found to be significantly associated with four ear-
related traits, including EW, EGW, ED and ERN. In addition,
we further noticed that the inbred lines carrying SNP2305A
possess higher EW, EGW, ED and ERN than those carrying
SNP2305T. The validity of candidate gene association
analysis has been repeatedly confirmed (Yan et al., 2011).
For instance, the association between polymorphisms of
dwarf8 and flowering time was detected by some
independent works (Thornsberry et al., 2001; Andersen

et al., 2005; Camus-Kulandaivelu et al., 2006). To confirm
the results of association analysis, we compared the
phenotypes between the inbred lines carrying SNP2305A
and SNP2305T in three environments. The results revealed
that there are statistical differences between them for all these
traits in different environments (Supplementary Figure S2),
suggestive the genetical credibility of the association results.
These observations revealed that the superior allelic
variations of ZmCNR13 possess potential application
values in maize genetic improvement.

In conclusion, the maize ZmCNR13 gene was re-sequenced in
224 inbred lines, 56 landraces and 30 teosintes. Although this
gene was escaped from artificial selection during maize genetic
improvement, a non-synonymous mutation in exon2 was found
to be associated with ear-related traits, including EW, EGW, ED
and ERN. The superior allelic variations of ZmCNR13 has
potential application values in maize genetic improvement.
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