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Abstract: Group activity recognition that infers the activity of a group of people is a challenging
task and has received a great deal of interest in recent years. Different from individual action
recognition, group activity recognition needs to model not only the visual cues of individuals but
also the relationships between them. The existing approaches inferred relations based on the holistic
features of the individual. However, parts of the human body, such as the head, hands, legs, and
their relationships, are the critical cues in most group activities. In this paper, we establish the part-
based graphs from different viewpoints. The intra-actor part graph is designed to model the spatial
relations of different parts for an individual, and the inter-actor part graph is proposed to explore
part-level relations among actors, in which visual relation and location relation are both considered.
Furthermore, a two-branch framework is utilized to capture the static spatial and dynamic temporal
representations simultaneously. On the Volleyball Dataset, our approach obtains a classification
accuracy of 94.8%, achieving very competitive performance in comparison with the state of the art.
As for the Collective Activity Dataset, our approach improves the accuracy by 0.3% compared with
the state-of-the-art results.

Keywords: group activity recognition; part-based; graph reasoning; video analysis

1. Introduction

Group activity recognition is one of the most challenging tasks in computer vision
and attracts many researchers. It has a wide range of practical applications in security
surveillance, social role understanding, and sports video analysis. To understand what is
happening in a scene involving a group of people, the model not only needs to recognize the
individual actions of each person but also needs to explore relations among people [1–3].

In the group activity recognition task, it is difficult to model the relationship and
to capture the interaction information between individuals in the scene, as we cannot
access explicit annotations of the relations between individuals. In order to complete the
group activity recognition task and solve the difficulty of modeling interaction information
between individuals in a scene, many methods [4–6] focused on combining hand-crafted
features with graphical models in earlier years. With the development of convolutional
neural networks (CNN), due to the excellent performance achieved in image classification
tasks [7,8], using convolutional neural networks to solve image-/video-related tasks has
become the focus of research in recent years [9–13]. In this situation, many deep learning
methods [14–19] have been proposed and applied to the group activity recognition task:
earlier methods [14,15] utilized convolutional neural networks (CNN) to capture individual
appearance features in the scene and combine recurrent neural networks (RNN) to capture
the temporal relations of individuals. Recently, attention-based methods [16–19] mod-
eling spatial-temporal relations between actors have become famous and demonstrated
promising results.

The aforementioned methods can generally be summarized in three key steps: (1)
extracting the global appearance feature of each individual by a backbone network to
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a feature vector; (2) exploring the interaction information among people to obtain the
relation representation in the context; (3) aggregating individual features as the final group
level feature to infer group activity. However, these methods only constructed interactive
information directly based on individuals in the scene and ignored the influence of different
parts of the body, which may contain more discriminative and robust information for group
activity recognition.

In fact, local information from body parts is important for group activity recognition.
Some observations can be obtained from Figure 1. In Figure 1a, the group activity of
“walking” is significantly related to the legs of most actors, as marked in yellow rectangles.
And the features of leg parts and their interaction can bring about more discriminative
information for activity prediction. In Figure 1b, the players in the same team are holistically
more similar because they wear the same sports suits, and the difference between them is
represented by the shapes of legs or hands, as shown in red rectangles. Additionally, the
players from different teams are holistically different even if they perform the same actions.
The players in the blue rectangle both perform the action of “standing”, but the holistic
similarity between them is smaller than that between them and the player in the same team
but with the different actions. Figure 1c,d are different activities of “queuing” and “talking”.
However, the individual actions in both figures are standing, and they are holistically
similar. The principal difference focuses on the interaction of an individual’s head and
hand, as shown in the orange and green rectangles. Thus, utilizing more fine-grained part
information and modeling its spatial-temporal relations is of great significance for group
activity recognition tasks.

(a) (b)

(c) (d)

Figure 1. Illustration of the importance of the local parts. (a) “walking” is significantly related to the
legs. (b) The players in the same team have the similar holistic appearance although they perform
different actions, while thoses in the different teams have the holistically different but locally similar
appearance when they perform the similar actions. The group activities in (c,d) are queuing and
talking, respectively. The persons in the two pictures look similar in terms of most body parts. The
interactions of their heads and hands are critical cues.

Motivated by the above observation, we propose a novel scheme to represent a part-
based graph from multiple viewpoints for group activity recognition. As shown in Figure 2,
both the static and dynamic representations are utilized. The former is obtained from
a single image using a 2D CNN, and the latter is from multi-frame images and optical
flow fields using a 3D CNN, respectively. For each representation, the same part-based
graph representation network is designed, whose objective is to model the fine-grained
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relationships based on parts and pass messages between different parts of an individual
and the same parts of different persons. They are represented as an intra-actor graph
and inter-actor graph, respectively. In order to explore the interaction among different
parts of an individual, we propose an intra-actor part graph module, which takes the part
features as the node and automatically learns the weight of the edges. Additionally, the part
features are refined by a graph convolution operation. To explore the interaction among
the same parts of different individuals, we propose an inter-actor part graph module to
capture part-level interactions for group activity. It is able to explore a more fine-grained
relationship representation. The node in the inter-actor part graph is not a feature vector
but a feature map which preserves the spatial pattern appearance of the individuals. Then,
we use a visual mutual attention mechanism to construct the visual relation graph based
on the appearance similarity and the location relation graph based on the relative distance
between individuals, respectively. Finally, the information is passed between the part
regions of different individuals by graph convolution.

The contributions of this paper are as follows:

• We propose the part-level relation modeling method to explore the fine-grained inter-
active representations for intra-actor and inter-actor parts.

• An intra-actor part graph module is designed to explore structural information of
individuals for discriminative individual representations based on the interaction
between different parts of a single individual, and an inter-actor part graph module is
designed to explore the latent part-level context information by capturing the visual
and location relation between the same part features of different actors.

• The experimental results on two publicly available datasets, the Volleyball and Collec-
tive Activity datasets, demonstrate that the proposed method achieves state-of-the-
art performance.

Figure 2. An overview of the proposed framework for group activity recognition. It consists of
two branches for modeling the static and dynamic representations. For the two branches, we apply
RoIAlign to extract feature maps of actors, and we decompose them as a set of parts. Both branches
incorporate an intra-actor part graph module and inter-actor part graph module to explore intra-actor
and inter-actor interactions in the part-level features. Finally, we embed the part features into feature
vectors and feed them into classifiers for individual action and group activity recognition. The
prediction scores of different branches are late fused to obtain the final results.

In the following sections, we first introduce related works on group activity recognition
and action recognition in Section 2 and then focus on the algorithm implementation and
operation process of our work in Section 3. Next, in Section 4, we introduce the ablation
study results, comparative experimental results, and visualization results in detail. In
Section 5, we summarize the conclusions and future research.

2. Related Work
2.1. Group Activity Recognition

Group activity recognition is one of the most significant tasks in the field of the
computer vision and multimedia community. Initially, earlier approaches tackled this
task mostly based on hand-crafted features, which are then processed by probability
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graphical models to capture interaction relationships [4–6,20,21]. As deep learning ap-
proaches have become increasingly popular in recent years, group activity recognition
has rapidly developed. Some proposed methods used spatial-temporal information to
model the individual’s interactions and capture the temporal dependencies by RNN or
LSTMs [14,15,22–25]. Ibrahim et al. [14] proposed a two-stage hierarchical deep model to
model the temporal dynamics of individual actions and aggregate the individual-level
information into a group-level feature. Yan et al. [15] used Bi-LSTM and Aggregation LSTM
to model the long motions and flash motions of actors. Deng et al. [22] integrated a graph-
ical model and deep neural network into a joint framework and used an RNN network
to infer temporal information. Bagautdinov et al. [26] presented a unified framework for
multi-people detection and group activity recognition. A matching mechanism is designed
for associating the boxes in consecutive frames with the help of an RNN.

Recently, the rise of graph convolution networks (GCN) [27], attention mechanisms [28],
and transformer networks [29] has further promoted the field of group activity recogni-
tion. Gavrilyuk et al. [16] extracted an individual’s static features and dynamic features
by HRNet [13] and a 3D CNN and utilized the transformers to aggregate features by a
self-attention mechanism. Wu et al. [17] built a relation graph and captured the appearance
and position interaction relations among actors by graph convolution. Lu et al. [30] created
a graph attention interaction model to explore potential interaction relationships between
individuals and subgroups. Similar to [17], we also rely on graph representations, but
differently, we explore the interactions among part-level features, which contain detailed
information of individual representation.

2.2. CNN for Action Recognition

With the rapid progress of deep learning technology, the application of CNNs is
becoming more and more extensive. For example, CNNs are used for image classifica-
tion/segmentation [11,31], object/face detection [9,32], speech recognition [33], intelligent
judge systems [34], smart cities safety improvement [35], and so on. However, traditional
2D CNNs have some limitations which cannot be applied in video streams. To solve this
problem, some deep models have been proposed and applied in action recognition [36–40].
In 2014, Simonyan et al. [41] designed a two-stream convolutional network which can cap-
ture temporal and spatial dimensions dependently for video recognition. Carreira et al. [36]
proposed a new network architecture named “Two-Stream Inflated 3D ConvNet (I3D)” in
2017. Currently, it is a widely used backbone for action recognition due to its expressive
performance. In addition, convolutional neural networks not only can find the appearance
features of images, but they can also learn the object’s motion relationship between adjacent
video frames. Some existing works demonstrate the powerful ability of the optical flow for
representing motion information in videos [42]. In this paper, we utilize a 2D CNN, a 3D
CNN, and flow representations to combine actors’ static features and dynamic features for
group activity recognition.

3. Methodology
3.1. Overview

The interaction between different parts can provide better context information for
group activity recognition. The objective of the proposed scheme is to build a group
activity recognition framework that can represent a more fine-grained relationship based
on part-level features. The framework is shown in Figure 2.

The proposed scheme involves four steps: (1) part feature extraction for actors; (2) part
interaction modeling at the intra-actor level; (3) part interaction modeling at the inter-actor
level; and (4) individual action and group activity classification. Firstly, a 2D CNN and two
3D CNNs are used to extract both the static and dynamic features. Two 3D CNNs separately
take the optical flow fields and RGB images as input to capture the motion information.
The feature maps of each actor can then be directly extracted by RoIAlign [43]. Secondly,
graph neural networks are constructed to model the intra-actor part relationships and inject
the structural information of the human body into the part features. Thirdly, another kind
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of graph neural network is added to model the inter-actor part relationships. Finally, the
embeddings involving the two-fold part-level interactions are applied for individual action
and group activity classification. Different classification scores from static and dynamic
branches are fused to obtain the final results.

3.2. Part Feature Extraction

Given video frames with bounding boxes indicating the locations of actors, we aim to
extract the part features for each actor.

There are various features in video frames for group activity recognition. Inspired
by the two-stream network [41], we employ two main branches to extract the static and
dynamic features, respectively. In the static branch, a 2D CNN called Inception v3 [44]
is used for a single frame. In the dynamic branch, a kind of 3D CNN called I3D [36],
which is proved to have excellent performance after pre-training, is used for sequential
frames. Since the motion information between frames is more difficult to capture, we
exploit two different I3D networks that separately act on the RGB images and the optical
flow fields pre-computed from consecutive frames. As a result, there are three backbones
in the proposed framework.

With backbones truncated at certain intermediate layers, we can obtain the feature
maps containing both appearance features and location information for all actors. Taking
advantage of the location information and input bounding boxes, we perform RoIAlign to
obtain the feature maps for each actor. Assume the individual feature maps have a size of
k× k and channel of D. Different from previous methods that mostly transform the feature
maps into the feature vectors for recognition, we treat the individual feature maps as a
set of part features fn = { f p

n }
p=k×k
p=1 , where f p

n ∈ RD denotes the p-th part feature with
dimension of D for the n-th actor. In this way, no extra computation is required, and the
parts can provide more detailed appearance information for the fine-grained individual
action and group activity classification.

3.3. Intra-Actor Part Graph Module

In existing methods [17,45], the performance of individual action recognition is still
low, which further hinders the improvement of group activity performance. These methods
have ignored the structural information of individuals, which is helpful for individual
action representation. The relationship between different parts of the individual helps
to understand the individual action. Therefore, we establish an intra-actor part graph
module for each individual with shared parameters to explore the structural information.
To explore the relations of parts, we use GCN [27] to model the relations between parts.
We first revisit the traditional GCN and then present our intra-actor part graph module
in detail.

Revisiting Graph Convolution Network. A graph convolution network (GCN) is a
kind of convolutional neural network that can operate directly on irregular graph data and
has the ability to encode graph-structural information. It is suitable for many computer
vision tasks, such as skeleton-based action recognition, traffic forecasting, and person re-
identification. GCN operation can be expressed as follows. Firstly, input a set of features as
nodes X ∈ RN×D; N is the number of nodes, and D represents the node feature dimensions.
Secondly, construct adjacent matrix A ∈ RN×N to represent pair-wise relation among
nodes. Finally, A and learnable weight matrix W are utilized to aggregate neighborhood
information by message passing mechanism, and obtain enhanced feature representation
Y. The graph convolution formula can be represented as follows:

Y = δ(AXW) (1)

where X represents node features and W is learnable weight matrix, A represents a graph
structure that is pre-defined or constructed by dot-product operation between two node
features. The value of A represents the strength of correlation. δ is the activation function.
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Intra-Actor Part Graph Module. The part graph module automatically learns the
weights of the edge between each node pair and passes the message across intra-actor parts
to refine part features. Finally, the part graph module outputs the refined feature map for
the subsequent inter-actor interactions.

As shown in Figure 3, to model the relationship, a fully connected graph Gpart =
{Vpart, Epart} is firstly established, where Vpart is the node set of the graph, corresponding

to all the part features of the n-th actor fn = { f p
n }

p=k×k
p=1 ; Epart is the set of edges. To

represent the importance of different parts, we calculated the weight of the edge between
each pair of parts as follows:

eij
n = h

[
φ f i

n; φ f j
n

]
(2)

where eij
n denotes the edge weight between the i-th and j-th parts for the n-th person. It

represents the correlation between two parts; φ ∈ RD′×D is a symmetrical transformation;
D′ is its embedded dimension; [;] represents the concatenation operation between features;
and h ∈ R1×2D′ is a weight matrix.

Figure 3. Illustration of the intra-actor part graph module. The blue and green cubes mean the
original feature map extracted by backbone and the refined feature maps, respectively. The feature
maps can be treated as a set of part features. We build graphs for each individual, and the nodes in
different colors represent different parts. GCN is applied for message passing among parts to refine
original feature maps. To reduce the parameters, the weights in intra-actor part graph module are
sharing for all individuals.

In this way, for the i-th part of the n-th person, the weights between every neighbor
j ∈ Ni are computed, where Ni is the set of neighbors of part i. Finally, we normalized the
weights across all neighbors of part i as follows:

Aij
n =

exp
(

σ
(

eij
n

))
∑u∈Ni

exp
(
σ
(
eiu

n
)) (3)
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where σ is the LeakyReLU activation function [46], and Aij
n is the normalized weight

between the part i and j of the n-th individual.
Once the graphs are built, we can perform relational reasoning among intra-actor parts

by a single-layer GCN. The refined features contextualize with structural information of
the individual. In addition, we find that introducing a residual connection is helpful for
training the a stable network. The calculation of graph convolution for the i-th part feature
of the n-th individual can be represented as

f
′i
n = ReLU

(
Ai

n f i
nW
)
+ f i

n (4)

where W is a shared linear transformation function, and f
′i
n represents the refined part

features, all of which are integrated into a refined feature map that has the same shape as
the original feature map and preserves the spatial pattern. The refined feature map is the
input for the following inter-actor part graph module.

3.4. Inter-Actor Part Graph Module

The objective of the inter-actor part graph module is to mine the interaction relation-
ships of parts among individuals. The existing method used the global visual features of
individuals’ output from the fully connected layer to model the relationship, but the global
features lost the local spatial information of individuals. In the antagonistic sports video, in
particular, the same team players wear similar suits, the holistic visual characteristics are
similar, and their actions mainly depend on the more detailed information of posture. The
loss of detailed information will result in performance degradation for individual actions
and group activity. Therefore, we propose an inter-actor part graph module and conduct a
more fine-grained relationship modeling at the part level.

As shown in Figure 4a, in the conventional graph convolution network [27], the nodes
represent the vectors, and the edge is a scalar value to represent the weight between the
nodes. In our proposed inter-actor part graph, the nodes are the feature maps of individuals,
and the edge is a vector in which each element represents the interactive weight of each part.
Specifically, the node set in the inter-actor part graph corresponds to the feature maps of
actors F = { fi|i = 1, . . . , N}, where N is the number of actors in the scene. We constructed
graphs G ∈ RN×N×P to represent the part features relationship among individuals, where
P denotes the number of parts of an actor, and the relation vector Gij ∈ RP denotes the
importance of each part of actor j to actor i, as in Figure 4.

(a) (b)

Figure 4. The difference of graph construction between (a) conventional graph network and (b) our
proposed inter-actor part graph. The different colors represent different individuals in the scene.

To increase the ability of relationship representation between individuals, two kinds
of relations are considered: visual relation and location relation. As the visual relation and
location relation belong to different semantic characteristics, we model these two relations
separately. Our inter-actor part graph module is composed of two kinds of relation graphs,
which will be introduced in detail next.
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Visual relation graph. Each individual is represented as a feature map with a size
of k × k in which each cell represents a part feature. When modeling the interaction of
inter-actor parts, we need to explore the mutually important and relevant features among
parts of different individuals. To solve this problem, we learn from the mutual attention
mechanism [47,48], which is originally introduced in social networks. The mutual attention
mechanism is also used to calculate the edge weight vector in the visual graph in our work.

To model the visual relationship between i-th actor and j-th actor, we first pair their
feature maps fi, f j ∈ RD×P, where P is the number of parts for an actor; D is the dimension
of each part feature. Then, a mutual attention matrix A ∈ RD×D is introduced to calculate
the part correlation matrix Mij ∈ RP×P:

Mij = tanh
((

f i
)T

A f j
)

(5)

where the mutual attention matrix A is a shared matrix among individuals. The part
correlation matrix Mij represents the correlation between each part of the i-th actor and
the j-th actor. Each element Mij

a,b represents the pairwise correlation score between two

part features f i
a, f j

b ∈ RD from actor i and actor j. Similar to [47], we next perform average
pooling on each column of Mij to generate part importance vector Sij ∈ RP, whose elements
represent the weight of each part in actor j to actor i:

Sij
p =

1
P

P

∑
k=1

Mij
k,p (6)

Then, the softmax function is used to normalize the part importance vector to generate
the final relation vector across the same parts in different individuals so that the sum of the
weights of all individuals at the same part is 1. We calculated the p-th element in relation
vector Gij as follows:

Gij
p =

exp
(

Sij
p

)
∑N

k=1 exp
(

Sik
p

) (7)

Location relation graph. In some group activities, such as sport activities, talking in
surveillance videos, and so on, the relationship between individuals is highly correlated
with their relative distance. The closer the two individuals are, the stronger the relationship
between them may be. On the contrary, the farther the distance is, the weaker the rela-
tionship will be. Therefore, we use the relative distance between individuals for building
the graph.

Similar to [49], given the position coordinates of N individuals in the video B =
{bn}N

n=1, where bn = {xn,mid,yn,mid}. xn,mid and yn,mid represent the center coordinates of
the n-th actor along X-axis and Y-axis, and they are normalized as follows:

cn =
(

β
xn,mid

W
, β

yn,mid

H

)
(8)

where cn is the normalized center position of the n-th actor; β is a scale coefficient. We set it
to 10 empirically. W and H are the width and height of the video frame, respectively. Then,
we defined the location correlation score aij based on the relative distance as

aij = exp

(
−
‖ ci − cj ‖2

2
2

)
(9)

In this solution, if the i-th and j-th individuals are close to each other in space, the
corresponding aij will be larger, and vice versa.
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In order to extend the location correlation score to the part level, a simple way is used
to set the location relation score for each part of the j-th actor to the i-th individual as aij:

Sij
p = aij, p = 1, . . . , P (10)

Finally, the same normalization operation used in the visual relation graph is con-
ducted to Sij

p , and the part relation vector Gij based on the relative distance can be obtained.
In this way, the spatial information is embedded into the part relation vector.

Reasoning of Inter-Actor Part Graph. After establishing the inter-actor part graph,
it is necessary to conduct relationship reasoning on the graph to obtain relation features
for individual action and group activity recognition. Motivated by the graph convolution
network (GCN) [27], which aggregates node features from neighbors according to the
weights of edges, we defined the rule of message passing in the inter-actor part graph
as follows:

Xi
p = σ(

N

∑
j=1

Gij
p X j

pW) (11)

where Xi
p is the p-th part relation feature of actor i after interactive updating with other

individuals, Gij
p is the part weight of p-th part as aforementioned, and X j

p is the p-th part
of other actor j in the neighborhood of the i-th actor. W is a shared weight matrix, and
σ(·) denotes an activation function. The aggregation computation is performed between
the same parts of the different actors because the same part may contain similar semantic
information, such as the heads, hands, and legs of different people. The correlations
between them are stronger, and the message passing is more effective.

The original GCN network contains a single kind of graph. In contrast, our inter-actor
part graph includes two types of graph structures: visual relation graph and location
relation graph. According to our experiment, we fuse outputs of two graphs by element-
wise sum. Inspired by the residual network, the relational part features are combined with
refined part features from the intra-actor part graph by summation to form the final actor
part representation.

3.5. Fusion of Multiple Branches

Previous works have proved that the fusion of multiple branches holding complemen-
tary information can effectively improve the performance for action recognition [16,50].
Inspired by this, we integrate multiple representations into a framework. We explore the
impact of the branches with dynamic temporal information and static spatial information
on performance. The static spatial branch uses Inception-v3 [44] to extract the individual
features from a single frame, and the dynamic temporal branch uses I3D network [51] to
extract the spatial-temporal features of actors. Because RGB and optical flow can represent
different aspects of dynamic information, two different kinds of inputs are considered. To
fuse the static and dynamic branches, similar to the literature [41], we use the late fusion
strategy to sum the predicted scores of each branch, and we set the weight for the dynamic
branch to be twice as large as the static branch, following [41]. The advantage of late fusion
is that each branch is independent of others and can concentrate on modeling by static and
dynamic representations.

3.6. Training Objective

We embed the feature map of each actor output by the inter-actor part graph to a
d-dimensional vector representation by a fully connected layer, which is used to classify
individual action. All N actors in the scene are maxpooled to obtain the d-dimensional
group-level feature, which is used for group activity classification. The whole model can be
trained in an end-to-end way using cross-entropy loss as follows:

L = λ1L1
(
yg, ŷg

)
+ λ2L2(yi, ŷi) (12)
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where L1 and L2 are the cross-entropy loss functions; yg and yi are the groundtruth labels;
and ŷg and ŷi are the prediction results of group activity and individual action classification.
λ1 and λ2 are weights to balance the two tasks.

4. Experiments

In this section, we present experiments on two widely used benchmarks: the Volleyball
Dataset [14] and Collective Activity Dataset [52]. We first introduce the datasets and the
implementation details of our method. Then, we conduct ablation studies to validate the
effects of the proposed modules in our method. Lastly, we compare the performances of our
model with the state-of-the-art methods and provide a visualization analysis of the results.

4.1. Datasets

The Volleyball Dataset (VD) [14] contains 4830 clips (3493 training clips and 1337
testing clips) from 55 videos of a volleyball game. Every clip has eight group activity
labels (including spiking, setting, passing, and winpoint in the left or right court), and
9 individual action labels (including waiting, setting, digging, failing, spiking, standing,
jumping, moving, and blocking). The individual action categories differ from group
activity categories.

The Collective Activity Dataset (CAD) [52] consists of 44 video sequences. The length
of each sequence ranges from 190 frames to 1800 frames. We follow the experiment setting
of [2] and use 32 videos for training and 12 videos for testing. The dataset contains five
group activities (crossing, walking, queuing, talking, and waiting). The individual action
labels have six categories, including NA, crossing, walking, queuing, talking, and waiting.
The individual action categories are basically consistent with group behavior categories.

4.2. Implementation Details

Following related works, we use the middle frame, five frames before it, and four
frames after it as the input to our model on both datasets. Inception-v3 and I3D are used
as the backbone for the static network and dynamic network, respectively. For the static
network, following [16], we randomly sample a single frame from each clip during training
and use the middle frame of the input video during testing. The size of the feature map
extracted by RoIAlign, k is set to 3 for the static and dynamic branches. In addition to
the RGB stream of the dynamic network, we also use optical flow fields computed by the
TVL1 algorithm [53] as input to another stream. The dimension of the feature vector for
classification d is set to 1024. For the training loss, we set λ1 = λ2 = 1. We use the Adam
optimizer [54] to train the network with fixed hyperparameters to β1 = 0.9, β2 = 0.999,
ε = 10−8. Moreover, we use two metrics for evaluating our framework performance: MCA
(%), which represents multi-class classification accuracy; MPCA (%), which represents
mean per class accuracy; and a confusion matrix. With the help of RoIAlign, matplotlib,
numpy, and torchvision machine learning-based libraries, all experiments are performed
based on the Pytorch deep learning framework, Pycharm IDE, and a single GeForce RTX
2080 GPU.

Volleyball Dataset. For a fair comparison, we use the tracklets generated by [26]. Input
images from the VD are resized to 720× 1280. We follow [14] to divide players into two
groups according to their position to eliminate the confusion of the left team and right team
activity. For the training of the static network, we train the network in 250 epochs using a
minibatch size of 4 and a learning rate ranging from 0.0003 to 0.00001. For the training of
the dynamic network, we train the network in 70 epochs and use a minibatch size of 2 with
a learning rate ranging from 0.0002 to 0.00001.

Collective Activity Dataset. Images from CAD are resized to 480× 720. For the training
of the static branch, we use a minibatch size of 4 and a learning rate ranging from 0.00002 to
0.000001 to train the network. For the training of the dynamic branch, we use a minibatch
size of 8 and trained the network in 70 epochs with a learning rate set to 0.0002.
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4.3. Metrics

MCA/MPCA. MCA represents the percentage of correct predictions. MPCA represents
the average accuracy for each class.

MCA =
Mc

M
(13)

where Mc is the total number of correctly classified samples, and M is the total number
of samples.

MPCA =
1

NG

NG

∑
i=1

Mi
c

Mi (14)

where NG is the number of categories, Mi
c represents the total number of correctly classified

samples in category i, and Mi is the total number of samples in category i.
Confusion matrix. The confusion matrix reflects the classification accuracy of each

category, which can display the classification effect of each category. Each column represents
the ground-truth labels, while each row represents the predicted classes, and the values
reflect classification accuracy.

4.4. Ablation Study

To prove the effectiveness of each component of our proposed model, we perform an
ablation study on the Volleyball Dataset and Collective Activity Dataset using multi-class
classification accuracy (MCA) as the evaluation metric.

Effectiveness of part-based graphs network. To validate the influence of the part-based
graphs network, a variant is implemented by removing the inter-actor part graph and the
intra-actor part graph modules as the simplest baseline, which is denoted as the “Non-Part
Graph”. More specifically, we use Inception-v3 pretrained on ImageNet as the backbone for
the static network and I3D pretrained on Kinetic-400 for dynamic networks. The networks
are fine-tuned on the Volleyball Dataset using cross-entropy loss for individual action and
group activity, respectively. As shown in Table 1, the static branch results of MCA on the
Volleyball Dataset and Collective Activity Dataset reach 92.3% and 88.9%. In comparison
with the results of “Non-Part Graph” models, the MCA scores are improved by a margin of
1.5% and 2.9% on the two datasets. The dynamic branch results of MCA are improved by
about 2% and 3.7%. Thus, our final models of static and dynamic branches perform better
than non-part graph models on the two datasets, which demonstrates the advantages of
our part-based graphs network. These experimental results prove that the part feature
modeling is more effective than individual-level features in acquiring spatial-temporal
relationship information. In our paper, the interaction between parts is divided into two
types: the inter-actor and the intra-actor. In particular, the intra-actor part graph models the
structural information of individuals, and the inter-actor part graph explores the relational
context information among individuals for reasoning group activity. In contrast, the “Non-
Part Graph” model neglects rich interactive information, resulting in an obvious decline
in performance. These results also reflect that it is necessary to use fine-grained structural
information and construct their spatial-temporal relations for group activity recognition.

Table 1. Performance comparison with different variants for the proposed method on Volleyball and
Collective Activity datasets. ’-S’ denotes the results of the static branch; ’-D’ denotes the results of the
dynamic branch.

Models MCA(VD)-S MCA(VD)-D MCA(CAD)-S MCA(CAD)-D

Non-Part Graph 90.8 91.3 86.0 87.9
w/o Inter-Actor Part Graph (V+L) 91.2 92.1 86.9 88.5

w/o Inter-Actor Part Graph (V) 91.4 92.7 87.1 90.7
w/o Inter-Actor Part Graph (L) 91.4 92.4 87.3 89.0

w/o Intra-Actor Part Graph 91.7 92.8 87.9 89.6

Ours(RGB) 92.3 93.3 88.9 91.6
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Effectiveness of Intra-Actor Part Graph and Inter-Actor Part Graph. To evaluate the
contributions of these proposed modules, we design four variants. w/o Intra-Actor Part
Graph: this variant removes the intra-actor part graph and constructs the inter-actor part
graph by original appearance features. w/o Inter-Actor Part Graph (V+L): this variant
unloads the visual graph (V) and location graph (L). The features refine by the intra-actor
part graph are directly used for classification without exploring interactions among actors.
w/o Inter-Actor Part Graph (V): we only unload the visual graph in this variant, which
is implemented to understand the effect of the visual graph for group activity inference.
To examine the efficacy of the location graph, a variant without this component is studied,
which is denoted by w/o Inter-Actor Part Graph (L).

As shown in Table 1, our final model consistently outperforms these variants of static
and dynamic branches on both datasets by learning part interaction in intra-actor and inter-
actor simultaneously. This indicates that exploring relationships among parts is beneficial
for group activity recognition. By comparing the results of “w/o Inter-Actor Part Graph
(V+L)” and “w/o Intra-Actor Part Graph” in Table 1, the MCA(VD)-S and MCA(VD)-D are
improved by about 0.5% and 0.7% on the Volleyball Dataset. As for the Collective Activity
Dataset, the results of the static branch increased from 86.9% to 87.9%, and the dynamic
results of “w/o Intra-Actor Part Graph” reaches 89.6%, improved by about 1% compared
with “w/o Inter-Actor Part Graph (V+L)”. These results indicate that “w/o Intra-Actor Part
Graph” slightly outperforms “w/o Inter-Actor Part Graph (V+L)”, which also suggests that
the inter-actor part graph is able to bring more information cues for inferring group activity.

We also observe that the MCA of “w/o Inter-Actor Part Graph (V)” reaches 91.4%
in the static branch and 92.7% in the dynamic branch on the Volleyball Dataset, which
indicates that the visual relation graph will affect about 0.9% and 0.6%, respectively. The
MCA of “w/o Inter-Actor Part Graph (L)” on the Volleyball Dataset is lower than our final
model by about 0.9% and 0.9% in two branches. These results indicate that the location
graph is more important than the visual graph in the dynamic branch. As for the Collective
Activity Dataset, the conclusions are similar to those obtained from the Volleyball Dataset.
The MCA of “w/o Inter-Actor Part Graph (V)” or “w/o Inter-Actor Part Graph (L)” perform
lower than our final model, which indicates that the visual graph and location graph can
complement each other.

The impact of number of parts in part graphs. In this experiment, we evaluated the
results in the dynamic network for RGB as input when k = 2, 3, 4, 5. k is the crop size
of the feature map extracted by the RoIAlign layer, and the number of parts in the part
graph is k × k. As shown in Table 2, the model has the best performance when k = 3,
which can reach about 93.3% on the Volleyball Dataset and 91.6% on the Collective Activity
Dataset. When the number of parts is too small or large, the performance will be reduced.
The reason is that the image will be divided too delicately and can not contain effective
information when it is too large. On the contrary, when the number of parts is too small,
subtle but discriminative information may be ignored.

Table 2. Performance comparison with different numbers of parts in our model on the VD and CAD.

Number of Parts MCA(VD) MCA(CAD)

4 92.7 89.3
9 93.3 91.6
16 92.9 91.0
25 93.2 90.3

4.5. Comparison to the State of the Art

Volleyball Dataset. We compare our method with the state-of-the-art approaches on
the Volleyball Dataset in Table 3. G-MCA and I-MCA respectively denote the accuracy of
group activity recognition and individual action recognition. For a fair comparison, we
report the result of ACRF without using AlphaPose [55] obtained in [45]. We report two
variants of our model, the fusion of two dynamic branches of RGB and flow input and
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the fusion of two dynamic branches with the static branch. The proposed method has
a competitive result with the best-performing methods of [16,45,56] and surpasses other
approaches [15,17,50,56–60]. On the Volleyball Dataset, our method can achieve better
results, mainly because the spatial-temporal relation information based on part features is
more discriminative than modeling based on individual features. Our method surpasses
ACRF [45], which achieved the best performance on the Volleyball Dataset, by 0.3% and
1.9% for group activity and individual action recognition, respectively. With the same I3D
backbone using the late fusion of RGB and flow representation, our method improves the
performance of the actor-transformer [16] more than 1.1% and 0.4% with respect to the
accuracy of group activity and individual action and outperforms the CRM [50] by 1.1%
for group activity recognition.

Table 3. Comparison with the state-of-the-art methods on the Volleyball Dataset (VD) and Collective
Activity Dataset (CAD). ‘G-’ and ‘I-’ denote ‘Group Activity Classification’ and ‘Individual Action
Classification’.

Method Backbone G-MCA(VD) I-MCA(VD) G-MCA(CAD) G-MPCA(CAD)

HDTM(RGB) [14] AlexNet 81.9 - 81.5 -
PCTDM(RGB+Flow) [15] AlexNet 87.7 - - 92.2

CERN(RGB) [57] VGG16 83.3 - 87.2 88.3
stagNet(RGB) [2] VGG16 89.3 - 89.1 91.0

PRL(RGB) [58] VGG16 91.4 - - 93.8
HiGCIN(RGB) [1] ResNet18 91.4 - 93.4 93.0

SPTS(RGB+Flow) [61] VGG 90.7 - - 95.7
SSU(RGB) [26] Inception-v3 90.6 81.8 - -
ARG(RGB) [17] Inception-v3 92.5 83.0 91.0 -

CRM(RGB+Flow) [50] I3D 93.0 - 85.8 94.2
Actor-

Transformer(RGB+Flow) [16] I3D 93.0 83.7 92.8 98.5

Actor-Transformer(Pose
+Flow) [16] HRNet + I3D 94.4 85.9 91.2 -

ACRF(RGB+Flow) [45] I3D+FPN+ResNet50 94.5 83.1 94.6 -
STDIN(RGB) [59] ResNet18 93.3 - - 95.3

STBiP(RGB+Pose) [56] HRNet+Vgg16 94.7 - - 96.4
GroupFormer(RGB+Flow) [19] I3D 94.9 84.0 94.7 -

Detector-Free(RGB) [60] ResNet18 90.5 - - -

Ours(RGB+Flow) I3D 94.1 84.1 92.2 98.8
Ours(RGB+Flow) I3D+Inception-v3 94.8 85.0 93.2 98.8

Collective Activity Dataset. We compare the proposed method with previous methods
on the Collective Activity Dataset. Firstly, we compare the results of the multi-class classifi-
cation accuracy (MCA) of our model. The results of each branch are as follows: Inception
v3—88.9%, I3D RGB—91.6%, and I3D Flow—82.3%. It is worth mentioning that our single
dynamic branch of RGB input already outperforms many existing methods [2,17,57]. We
explore the late fusion of dynamic and static branches, reaching a 93.2% group activity
recognition accuracy, slightly outperforming most existing state-of-the-art methods, which
demonstrates its effectiveness. However, ACRF achieves a better result than our model
since they adopt ResNet50, a stronger backbone network, and utilize FPN [62] to improve
the ability of feature representation. Several works [23,50] have argued that the walking
class is ill-defined. Therefore, we merge the “walking” and “crossing” classes as “moving”
and report the mean per class accuracy (MPCA) to evaluate the performance, following [23].
The results of some methods [2,16] are calculated from the confusion matrix reported in
their paper. According to the results, our model outperforms other approaches in this
setting. The results indicate that the most incorrect predictions of our model are between
walking and crossing activities.

4.6. Visualization

To further understand our model, we visualized the relations captured by the visual
relation graph in Figure 5. Numbers of 0 to 11 are assigned to 12 actors respectively in
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Figure 5a. We summed part-level relation values of actors in the relation vector to a scalar,
indicating the global relation weight among actors. We describe the pairwise global relation
weights as a N×N adjacency matrix, which is shown in Figure 5b. We can see that our
model can mine high relations between actors 5 and 8, who are blocking and spiking, as
is shown in columns 5 and 8 of the matrix. Our model can discover the relevant actors
who determine the group activity. Furthermore, our model is able to suppress the actors
who are standing and have almost no relation to the others, as shown from columns 0 to
4 in the matrix, because these actors in the left team do not participate in the right spike
activity. We also illustrate two examples of the weight vector learned by the visual relation
graph in Figure 5c, and it shows that our model can capture effective relation information
for group activity recognition. Each element of the weight vector indicates the importance
of the corresponding part to the others. Actor 5 who is in the blocking action has higher
relation values in the upper-body part than actor 8 since his arms can provide more visual
cues. Actor 11, who is irrelevant for group activity, has small values for all the parts.

(a) Right Spike

(b)
(c)

Figure 5. Visualization of part-level inter-actor interaction relations captured by the visual relation
graph on Volleyball Dataset. (a) Input frame with ground-truth bounding box. Each actor is assigned
one of numbers in [0, 11]; (b) N × N dependency matrix. N denotes the number of actor in the
video. The values change from large to small along with the colors changing from blue to white;
(c) Examples of part-level weight vector.

Additionally, we draw the confusion matrix based on our model to analyze the
performance, as shown in Figures 6 and 7. As seen from these figures, our method can
achieve a recognition accuracy over 90% in terms of all of the group activities on the
Volleyball Dataset. Nevertheless, it shows confusion between set and pass as two kinds of
activities having similar interaction relationships. Compared with the confusion matrix
results of HIGCIN [1], stagNet [2], and HDTM [14], our method has the best accuracy in
each category. The main reason is that we use the representations of parts that are more
correlated with group activity to conduct spatial-temporal modeling; this method makes it
more effective to find associations between specific parts of the body and group activity.
For the Collective Dataset, our model is easily confused by “walking” and “crossing”:
about 17% of the samples in “crossing” are misclassified as “walking”. The reason for
the false classification is that these two kinds of activities have a similar appearance and
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spatial-temporal relationship information. Moreover, “walking”, “crossing”, and “waiting”
always appear together in the same scene, such as a traffic intersection, which will affect
the performance of our model.

Figure 6. Confusion matrices for I3D + Inception-v3 model on Volleyball Dataset. “l-” and “r-” are
abbreviations for “Left” and “Right” in the group activity labels.

Figure 7. Confusion matrices for I3D + Inception-v3 model on Collective Activity Dataset.

5. Conclusions

In this work, we propose a multi-perspective representation to a part-based graph
method for group activity recognition to explore the relationship between intra-actor
and inter-actor parts. More specifically, we propose an intra-actor part graph module to
learn structural information of individuals and an inter-actor part graph to capture the
visual relation and location relation simultaneously, exploring latent part-level context
information. The compared evaluation on two standard benchmarks demonstrates that the
proposed method achieves competitive results compared to state-of-the-art methods. These
results indicate that our module can effectively and accurately complete the relationship
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modeling in body part-level features. Moreover, the fine-grained structural information
relationship modeling plays an important role in improving classification tasks. This
research can be further extended to pedestrian search, vehicle/pedestrian re-identification,
and other scenarios. In the future, we will explore how to combine fine-grained information
and semantic information effectively.
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