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Abstract: The compound APR-246 (PRIMA-1MET) is a known reactivator of (mutant) p53 and inducer
of oxidative stress which can sensitize cancer cells to platinum-based chemotherapeutics. However,
the effect of a hypoxic tumor environment has been largely overlooked in this interaction. This study
focusses on the role of hypoxia-inducible factor-1α (HIF-1α) and the p53 tumor suppressor protein in
hypoxia-induced cisplatin resistance in non-small cell lung cancer (NSCLC) cells and the potential
of APR-246 to overcome this resistance. We observed that hypoxia-induced cisplatin resistance
only occurred in the p53 mutant NCI-H2228Q331* cell line, and not in the wild type A549 and
mutant NCI-H1975R273H cell lines. Cisplatin reduced HIF-1α protein levels in NCI-H2228Q331*
cells, leading to a shift in expression from HIF-1α-dependent to p53-dependent transcription
targets under hypoxia. APR-246 was able to overcome hypoxia-induced cisplatin resistance in
NCI-H2228Q331* cells in a synergistic manner without affecting mutant p53Q331* transcriptional
activity, but significantly depleting total glutathione levels more efficiently under hypoxic conditions.
Synergism was dependent on the presence of mutant p53Q331* and the induction of reactive oxygen
species, with depletion of one or the other leading to loss of synergism. Our data further support
the rationale of combining APR-246 with cisplatin in NSCLC, since their synergistic interaction is
retained or enforced under hypoxic conditions in the presence of mutant p53.
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1. Introduction

Lung cancer remains the leading cause of cancer-related deaths worldwide and is characterized
by a poor overall survival. Although several new therapeutic strategies are being developed, cisplatin
(CDDP)-based therapy remains the golden standard for treatment of late stage non-small cell lung
cancer (NSCLC) [1]. Despite a consistent rate of initial responses, cisplatin treatment often results in the
development of resistance through various mechanisms, leading to therapy failure and relapse [2,3].
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Solid tumors are often characterized by regions with reduced oxygen levels, which can impact
the efficacy of cytotoxic drugs. Hypoxia-inducible factor (HIF)-1 is a major regulator in the response to
hypoxia by acting as a transcription factor for genes involved in angiogenesis, metabolism, and cell
cycle progression, to mediate cellular adaptation to hypoxia [4]. HIF-1 is a heterodimeric complex,
consisting of a constitutively expressed β-subunit and an oxygen-regulated α-subunit [5]. HIF-1α has
been shown to regulate p53 tumor suppressor protein levels in response to hypoxia, while on the
other hand p53 can also negatively regulate HIF-1α protein levels. This complex interaction is strongly
dependent on oxygen levels, the duration of hypoxic exposure, and even cell type, as proposed by the
model of Sermeus and Michiels [6]. Numerous studies have shown that under mild hypoxic conditions,
p53 protein levels are decreased, thereby protecting the cells against apoptosis and promoting cell
survival as an adaptive mechanism to the hypoxic environment, a process regulated by HIF-1α. Under
severe hypoxic or anoxic conditions, p53 is stabilised, thereby decreasing HIF-1α transcriptional
activity, promoting HIF-1α ubiquitination, and inducing apoptotic cell death [6,7]. In addition, HIF-1α
and p53 compete for the interaction with CBP (CREB-binding protein) and p300 transcriptional
co-activators [6]. The presence of mutant p53 could disrupt this balance, leading to increased levels
and activity of HIF-1α and decreased apoptosis in response to hypoxia [8]. As such, high levels of
HIF-1α have been reported to negatively influence the response to cisplatin treatment in various
tumor types, including lung cancer [9–11]. It has been shown that a positive selection pressure exists
for p53-deficient (mutant) cells in hypoxic tumor regions, allowing clonal expansion of cells with
decreased apoptotic potential, chemoresistant properties, and high metastatic capabilities [6,7,12,13].

In this study, we focused on hypoxia-induced cisplatin resistance, particularly on the interaction
between p53 and HIF-1α, to restore treatment response in a panel of NSCLC cell lines with different
p53 status using the compound APR-246 (PRIMA-1MET). All p53 mutants should not be considered as
functionally equivalent, but represent a distinct set of proteins with different properties [14]. Therefore,
we included NSCLC cell lines with wild type p53 (A549), a hotspot missense mutation in the DNA
binding domain (DBD) (R273H, NCI-H1975) and a nonsense mutation in the oligomerization domain
(OD) (Q331*, NCI-H2228) to represent distinct classes of mutant p53. The type of p53 mutation also has
implications for the treatment with APR-246. APR-246 is converted to methylene quinuclidinone (MQ),
which reacts with thiols in cysteines in the p53 core domain, thereby restoring normal conformation of
certain types of mutant p53, including p53R273H [15]. As such, APR-246 is expected to have limited
effect on the transcriptional activity of the p53Q331* mutant. In addition, mutant p53-independent
activity of APR-246 has frequently been reported due to its impact on the cellular redox balance
through the inhibition of major antioxidants such as glutathione (GSH) and thioredoxin reductase
1 [16]. Interestingly, hypoxia increased the susceptibility of mutant p53 breast cancer SKBR3 cells to
lower PRIMA-1 levels, and synergistic interactions between APR-246 and cisplatin have frequently
been reported [16,17]. To the best of our knowledge, we are the first to show that the synergistic
interaction between APR-246 and cisplatin is retained or enhanced under hypoxic conditions in a
p53-mutant background. In addition, we show that APR-246 can overcome hypoxia-induced cisplatin
resistance in an ROS-dependent and mutant p53Q331*-dependent manner through GSH depletion
rather than reactivation of mutant p53 in the NCI-H2228 NSCLC cell line.

2. Results

2.1. APR-246 Acted Synergistically with Cisplatin in a Mutant p53 Background under Normal and Reduced
Oxygen Levels

The cytotoxic effects of APR-246 and CDDP were assessed in a panel of three NSCLC cell lines
under normoxic and hypoxic conditions using the SRB assay. APR-246 significantly increased the
cytotoxic effect of CDDP in the p53 mutant cell lines, as presented by the reduction in IC50 values
(Figure 1A.1–3 and Table S1). The combination index indicated a moderate to very strong synergistic
effect in the p53-mutant cell lines NCI-H1975R273H and NCI-H2228Q331*, which was enforced by
reduced oxygen conditions in the latter (Figure 1B1,B2). This effect was absent in the p53 wild
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type cell line A549wt (Figure 1B3). Interestingly, hypoxia-induced CDDP resistance was limited to
NCI-H2228Q331*, with a nearly 4-fold increase in IC50 value (2.61 ± 0.59 vs. 9.49 ± 2.07 µM, p = 0.005),
which was restored to normoxic values following co-treatment with APR-246 (Figure 1A1, Table S1).
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Figure 1. APR-246 synergistically enhanced the cytotoxic effect of CDDP in a p53-mutant background
under both normoxic and hypoxic conditions. (A1–A3) To determine possible synergism, cells were
simultaneously treated for 72 h with a CDDP (cisplatin) dose range of 0, 0.5, 1, 2, 5, 10 µM (A549wt) or
0, 0.5, 1, 2, 5, 10, 20 µM (NCI-H2228Q331* and NCI-H1975R273H) and fixed concentrations of APR-246,
based on the drug sensitivity of each cell line (Table S1). Cell confluence was determined using the
SRB-assay and IC50 values were calculated using WinNonlin. IC50 values for CDDP monotherapy
or combined with APR-246 are presented as mean ± SD of at least 3 independent experiments.
(B1–B3) The corresponding combination index was calculated using the ‘Additive Model’ for each
concentration presented, in correlation with the affected fraction (FA) of the cells. CI = 1.0 ± 0.2
indicates an additive effect, <0.8 indicates moderate synergism, <0.5 strong synergism, and <0.2
very strong synergism (** p < 0.05 compared to CDDP monotherapy). The corresponding values are
presented in Table S1. Nx: normoxia; Hx: hypoxia.



Cancers 2018, 10, 126 4 of 15

2.2. Hypoxia Affected the Apoptotic Response to CDDP and APR-246 Monotherapy, While Co-Treatment
Resulted in an Equally Strong Apoptotic Response Compared to Normoxia in NCI-H2228Q331*

We focussed in depth on the apoptotic response in NCI-H2228Q331*, since this was the only
cell line showing hypoxia-induced CDDP resistance as well as the strongest synergistic effect of
the combination therapy. Apoptosis was initiated within the first 24 h of treatment (Figure 2A),
and co-treatment ultimately killed nearly all tumor cells after 72 h under both normoxic (Figure 2B
and Figure S1) and hypoxic (Figure 2D and Figure S1) conditions. Hypoxia reduced the cytotoxic
response to CDDP, but increased this response to APR-246, while no difference was observed after
co-treatment compared to normoxia (Figure 2B). Next, we monitored caspase 3/7 activity in real time
(Figure 2E), which was initiated within 24 h after initiation of the treatment under normoxic conditions.
At 24 h, it was clearly observed that hypoxia strongly enforced caspase 3 cleavage after APR-246 and
co-treatment compared to normoxic conditions (Figure 2F), indicating an earlier and stronger apoptotic
response to APR-246 and co-treatment under hypoxia.

2.3. CDDP Induced a Shift from HIF-1α to p53Q331* Protein Expression and Transcription under Both
Normoxic and Hypoxic Conditions

Next, we determined the role of p53 and HIF-1α in hypoxia-induced CDDP resistance.
Both NCI-H1975R273H and NCI-H2228Q331* cell lines showed detectable levels of HIF-1α under
normoxic conditions, which were further induced under hypoxia (Figure 3A). In A549wt, HIF-1α
was only detected under hypoxic conditions (Figure 3A). Interestingly, HIF-1α protein levels were
strongly reduced under both normoxic and hypoxic conditions in response to CDDP therapy in
NCI-H2228Q331*, which was the only cell line characterized by hypoxia-induced CDDP resistance
(Figure 3A,B). In NCI-H1975R273H, a reduction in HIF-1α protein levels after CDDP treatment was
observed under normoxic conditions. However, this effect was not retained under hypoxic conditions
(Figure 3A). Mutant p53 protein levels were slightly increased in response to hypoxia, and both mutant
and wild type p53 levels were increased in response to CDDP treatment under both normoxic and
hypoxic conditions (Figure 3A).

NCI-H2228Q331* cells showed an increase in p53 protein levels, including transcriptionally active
p53Ser15, and a clear reduction in HIF-1α protein levels in response to CDDP treatment, suggesting
a potential switch in transcriptional activity (Figure 3B). A clear increase in p53 transcription targets
(p21, NOXA, PUMA, and MDM2) was observed in response to CDDP (Figure 3C). As expected, all
HIF-1α transcription targets (CA9, GLUT1, GAPDH, BNIP3, and VEGF) were increased in response to
hypoxia (Figure 3D). All HIF-1α targets, except for VEGF, were reduced in response to CDDP treatment
in NCI-H2228Q331* cells. APR-246 had limited to no effect on p53, p53Ser15 protein levels, and the
expression of p53 transcription targets.

To study the potential role of mutant p53Q331* in HIF-1α downregulation and the expression
of p53 transcription targets, we stably transfected NCI-H2228Q331* cells with a set of three vectors
containing TP53 shRNA, in order to knock down mutant p53 levels (Figure 4A). Mutant p53 was
clearly a strong mediator of the cytotoxic response to CDDP under both normoxic and hypoxic
conditions, as indicated by the absence of confluence reduction in the p53 knockdown clones compared
to the nontemplate control (NTC) (Figure 4B). When looking at unprocessed HIF-1α protein levels
(96 kDa) under hypoxic conditions, a clear reduction was observed after treatment with CDDP in
NTC cells, while this reduction was absent in shRNA.1 cells, indicating that p53Q331* is involved in the
CDDP-dependent reduction of HIF-1α (96 kDa). In addition, p53 knockdown led to a strong increase in
processed HIF-1α protein levels (116 kDa) compared to NTC, while a similar trend of p53 increase and
HIF-1α downregulation in response to CDDP were still observed compared to the parental cell line due
to the residual p53 protein in shRNA.1 (Figure 4C). Furthermore, CDDP-induced expression of NOXA,
PUMA, and p21 was reduced after p53 knockdown under both normoxic and hypoxic conditions,
suggesting that transcription of these target genes is p53Q331*-dependent (Figure 4D). For the HIF-1α
transcriptional targets CA9, BNIP3, and VEGF, we did not observe any change in expression under
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normoxic conditions. On the other hand, higher levels of CA9 and BNIP3 were observed after CDDP
treatment in the p53 knockdown clone compared to the NTC clone, while lower levels of VEGF were
observed, indicating increased HIF-1α-dependent transcription (Figure 4D).
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Figure 2. Influence of oxygen levels and treatment on apoptosis of NCI-H2228 cells. Cells were
treated for 72 h (A–E) or 24 h (F) with vehicle, CDDP, APR-246, or CDDP/APR-246. (A) Apoptosis was
monitored using the IncuCyte Annexin V Green reagent under normoxic conditions. Presented as mean
± SD Green Object Confluence/Phase Object Confluence of 3 replicates. (B) Viability was assessed
by flow cytometry using the AnnexinV/PI assay. AnnV-/PI-cells are marked as viable cells. Data is
presented as mean ± SD of 3 independent experiments. (C,D) Apoptosis/cell death was assessed by
flow cytometry under normoxic and hypoxic conditions. Percentage of AnnV−/PI−; AnnV+/PI−;
AnnV+/PI+ and AnnV−/PI+ cells is shown as mean ± SD of 3 independent experiments. * p < 0.05
compared to vehicle treated sample; ** p < 0.05 compared to vehicle, CDDP and APR-246 treated
samples. Dotplots are presented in Figure S1. (E) Caspase activity was monitored using the IncuCyte
Caspase-3/7 Green reagent. Presented as mean ± SD of 3 replicates Green Object Confluence/Phase
Object Confluence. (F) Procaspase-3 and cleaved caspase-3 levels were determined by Western blotting;
β-actin was used as an internal standard. ARD: Adjusted Relative Density; Nx: normoxia; Hx: hypoxia.



Cancers 2018, 10, 126 6 of 15
Cancers 2018, 10, x 6 of 15 

 

 

Figure 3. Balance between HIF-1α and p53 protein levels and transcriptional activity. (A) A549wt, NCI-

H1975R273H, and NCI-H2228Q331* cell lines were treated with either vehicle or CDDP under normoxic 

and hypoxic conditions. Protein levels of HIF-1α 116 kDa (processed), HIF-1α 96 kDa (unprocessed), 

full p53wt/R273H, and truncated p53Q331* were determined by Western blotting. β-actin was used as 

internal control. (B–D) NCI-H2228 cells were treated for 24 h with with CDDP, APR-246, or combined 

therapy under normoxic and hypoxic conditions. (B) Protein levels of HIF-1α 116 kDa (processed), 

HIF-1α 96 kDa (unprocessed), p53Q331*, and p53-serine 15 were determined by Western blotting. β-

actin was used as internal control. (C,D) Relative mRNA expression levels of p53 (C) and HIF-1α (D) 

transcriptional targets. Expression levels are presented relative to the vehicle-treated sample under 

normoxia as mean ± SEM of 3 independent experiments (★ p < 0.05 normoxia vs. hypoxia; * p < 0.05 

compared to vehicle-treated sample under normoxia; ** p < 0.05 compared to vehicle-treated sample 

under hypoxia.). ARD: Adjusted Relative Density; Nx: normoxia; Hx: hypoxia. 

Figure 3. Balance between HIF-1α and p53 protein levels and transcriptional activity. (A) A549wt,
NCI-H1975R273H, and NCI-H2228Q331* cell lines were treated with either vehicle or CDDP under
normoxic and hypoxic conditions. Protein levels of HIF-1α 116 kDa (processed), HIF-1α 96 kDa
(unprocessed), full p53wt/R273H, and truncated p53Q331* were determined by Western blotting.
β-actin was used as internal control. (B–D) NCI-H2228 cells were treated for 24 h with with CDDP,
APR-246, or combined therapy under normoxic and hypoxic conditions. (B) Protein levels of HIF-1α
116 kDa (processed), HIF-1α 96 kDa (unprocessed), p53Q331*, and p53-serine 15 were determined
by Western blotting. β-actin was used as internal control. (C,D) Relative mRNA expression levels
of p53 (C) and HIF-1α (D) transcriptional targets. Expression levels are presented relative to the
vehicle-treated sample under normoxia as mean ± SEM of 3 independent experiments (F p < 0.05
normoxia vs. hypoxia; * p < 0.05 compared to vehicle-treated sample under normoxia; ** p < 0.05
compared to vehicle-treated sample under hypoxia.). ARD: Adjusted Relative Density; Nx: normoxia;
Hx: hypoxia.



Cancers 2018, 10, 126 7 of 15
Cancers 2018, 10, x 7 of 15 

 

 

Figure 4. Role of p53 in CDDP resistance. (A) P53 protein levels determined by Western blotting after 

48 h treatment with 5 µM CDDP of the NCI-H2228Q331* parental cell line, nontemplate control (NTC), 

and three TP53 shRNA monoclonal subclones under normoxia. β-actin was used as an internal 

standard. (B) Cell proliferation presented as mean ± SD of 3 replicates Green Object Confluence using 

the IncuCyte system. Cells were treated with either vehicle or 5 µM CDDP under normoxia or 1% O2. 

(C) Protein levels of HIF-1α 116 kDa (processed), HIF-1α 96 kDa (unprocessed), and p53 were 

determined by Western blotting after treatment with vehicle, CDDP, APR-246, or combination 

therapy for 24 h in NTC and shRNA.1 (TP53 shRNA) cell lines under normoxic and hypoxic 

conditions. β-actin was used as internal control. (D) mRNA levels of p53 (NOXA, PUMA, p21) and 

HIF-1α (CA9, BNIP3, VEGF) transcription targets. NTC and shRNA.1 cells were treated with 5 µM 

CDDP for 24 h under normoxia or 1% O2 and expression levels are presented relative to the vehicle-

treated sample under normoxia. (* p < 0.05 compared to vehicle-treated sample at the 72 h time-point). 

ARD: Adjusted Relative Density; Nx: normoxia; Hx: hypoxia. 

2.4. The Synergistic Interaction between APR-246 and CDDP was Both Mutant p53Q331*- and ROS-Dependent 

Following APR-246-Induced GSH Reduction under Hypoxic Conditions 

As indicated by the data presented in Figure 3, it is clear that APR-246 did not affect p53Q331* 

protein levels, nor did it affect p53Q331* transcriptional activity for the selected targets, either as 

monotherapy or in combination with CDDP. Therefore, the hypothesis that APR-246 could induce a 

shift from HIF-1α- to p53-dependent transcriptional activity was not supported. Nevertheless, p53 

knockdown reduced the apoptotic response to APR-246 and greatly reduced the synergistic apoptotic 

effect after co-treatment with CDDP under normoxic conditions as indicated by the reduction in 

caspase 3/7 positive cells in p53 knockdown cell lines (shRNA.1–3) versus the NTC and parental cell 

line (Figure 5A). This reduction was consistent with the residual p53 levels, as shRNA.2 cells had the 

highest residual p53 levels and highest level of caspase 3/7 positive cells compared to shRNA.1 and 

shRNA.3 (Figure 4A). 

Next, we measured the total cellular GSH content after the different treatment options. While 

cisplatin did not affect GSH levels, a significant reduction was observed after APR-246 treatment 

Figure 4. Role of p53 in CDDP resistance. (A) P53 protein levels determined by Western blotting
after 48 h treatment with 5 µM CDDP of the NCI-H2228Q331* parental cell line, nontemplate control
(NTC), and three TP53 shRNA monoclonal subclones under normoxia. β-actin was used as an internal
standard. (B) Cell proliferation presented as mean ± SD of 3 replicates Green Object Confluence
using the IncuCyte system. Cells were treated with either vehicle or 5 µM CDDP under normoxia
or 1% O2. (C) Protein levels of HIF-1α 116 kDa (processed), HIF-1α 96 kDa (unprocessed), and p53
were determined by Western blotting after treatment with vehicle, CDDP, APR-246, or combination
therapy for 24 h in NTC and shRNA.1 (TP53 shRNA) cell lines under normoxic and hypoxic conditions.
β-actin was used as internal control. (D) mRNA levels of p53 (NOXA, PUMA, p21) and HIF-1α (CA9,
BNIP3, VEGF) transcription targets. NTC and shRNA.1 cells were treated with 5 µM CDDP for 24 h
under normoxia or 1% O2 and expression levels are presented relative to the vehicle-treated sample
under normoxia. (* p < 0.05 compared to vehicle-treated sample at the 72 h time-point). ARD: Adjusted
Relative Density; Nx: normoxia; Hx: hypoxia.

Overall, we observed that CDDP reduced HIF-1α protein levels as well as mRNA expression
levels of several of its transcription targets, while at the same time an increase in p53 protein levels
and transcription targets was observed. In addition, all these effects were mutant p53Q331*-dependent
as they were affected by p53 knockdown.

2.4. The Synergistic Interaction between APR-246 and CDDP was Both Mutant p53Q331*- and
ROS-Dependent Following APR-246-Induced GSH Reduction under Hypoxic Conditions

As indicated by the data presented in Figure 3, it is clear that APR-246 did not affect p53Q331*
protein levels, nor did it affect p53Q331* transcriptional activity for the selected targets, either as
monotherapy or in combination with CDDP. Therefore, the hypothesis that APR-246 could induce a
shift from HIF-1α- to p53-dependent transcriptional activity was not supported. Nevertheless, p53
knockdown reduced the apoptotic response to APR-246 and greatly reduced the synergistic apoptotic
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effect after co-treatment with CDDP under normoxic conditions as indicated by the reduction in
caspase 3/7 positive cells in p53 knockdown cell lines (shRNA.1–3) versus the NTC and parental cell
line (Figure 5A). This reduction was consistent with the residual p53 levels, as shRNA.2 cells had the
highest residual p53 levels and highest level of caspase 3/7 positive cells compared to shRNA.1 and
shRNA.3 (Figure 4A).
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Figure 5. Role of p53Q331* and ROS in the synergistic combinatory effect of CDDP and APR-246 under
hypoxia. (A) NCI-H2228Q331* parental cell line, non-template control (NTC), and three TP53 shRNA
monoclonal subclones were treated with APR-246 or CDDP/APR-246 under 1% O2. Caspase-3/7
activity was measured using the IncuCyte Caspase 3/7 Red reagent under hypoxia and presented
as mean ± SD of the number of Red Object Counts/mm2 of 3 replicates. (B) NCI-H2228Q331* cells
were treated with vehicle, CDDP, APR-246, or CDDP/APR-246 for 24 h and total glutathione (GSH)
content was measured under normoxia and hypoxia. Data is presented as mean µM GSH/well ± SD
of 3 independent experiments. (C) NCI-H2228Q331* cells were treated with vehicle, CDDP, APR-246,
or CDDP/APR-246 for 72 h in the absence or presence of 5 mM NAC under 1% O2. Intracellular
mean intensity (GCU) of the CellROX dye was measured using the IncuCyte system and presented as
mean fold change to untreated sample ± SEM of 4 independent experiments (D) NCI-H2228 cells were
treated with vehicle, CDDP, APR-246, or CDDP/APR-246 for 72 h in the absence or presence of 5 mM
NAC under 1% O2. The percentage of viable cells (AnnV−/PI−) was measured by flow cytometry and
presented as mean percentage ± SD of 3 independent experiments. (F p < 0.05 Nx vs. Hx; * p < 0.05
compared to vehicle-treated sample; ** p < 0.05 compared to vehicle-, CDDP-, and APR-246-treated
samples) Nx: normoxia; Hx: hypoxia.

Next, we measured the total cellular GSH content after the different treatment options.
While cisplatin did not affect GSH levels, a significant reduction was observed after APR-246 treatment
under both normoxic and hypoxic conditions. Interestingly, APR-246 GSH inhibition was significantly
more effective under hypoxic conditions (Figure 5B).

Both CDDP and APR-246 increased cellular ROS levels, as indicated by a noticeable increase
in CellRox intensity (GCU), while a stronger and significant increase was observed after combined
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treatment under hypoxia (Figure 5C). Using the ROS scavenger NAC, we were able to reduce basal
and therapy-induced ROS accumulation in the NCI-H2228Q331* cells (Figure 5C). In addition, NAC
completely annulled the synergistic apoptotic response to APR-246 and CDDP co-treatment under
hypoxia as indicated by the number of viable (AnnV−/PI−) cells (Figure 5D). Furthermore, NAC
treatment inhibited the cytotoxic effect of both CDDP and APR-246 as monotherapy, indicating a
prominent role of ROS induction for both compounds under hypoxia. In conclusion, both the presence
of mutant p53Q331* and ROS accumulation seem crucial mediators in the synergistic interaction
between APR-246 and CDDP under hypoxia.

3. Discussion

The findings presented in this study support our hypothesis that APR-246 can be used to overcome
hypoxia-induced cisplatin resistance in vitro in NCI-H2228Q331* cells. Numerous studies have
previously reported strong synergistic effects for the combination of cisplatin with APR-246 [18–20],
consistent with our results under normoxic conditions in a p53-mutant background. To the best
of our knowledge, our study is the first to show that APR-246 more efficiently inhibits GSH under
hypoxic conditions and is able to overcome hypoxia-dependent resistance to cisplatin in a mutant p53-
and ROS-dependent manner. In addition, we are the first to show that cisplatin can act on HIF-1α
protein levels through the induction of truncated mutant p53Q331*, leading to a shift from HIF-1α- to
p53-dependent transcription. A limitation of this study is that the data is supported by one cell line.
We searched the COSMIC Cell Lines Project v83 and IARC database for NSCLC cell lines with a similar
truncating mutation in the OD, but no such cell line was found.

Hypoxia-induced cisplatin resistance was limited to the NCI-H2228Q331* cell line. Interestingly,
this was the only tested NSCLC cell line in which cisplatin reduced HIF-1α protein levels under
hypoxic conditions. The fact that cisplatin did not affect HIF-1α levels in the p53 wt A549 cell line is in
line with findings previously reported by others [21]. The role of wild type p53 in the regulation of
HIF-1α has extensively been discussed by others, suggesting that DNA damage is a prerequisite for
p53-mediated repression of HIF-1α [6,22]. However, this was not observed by us in A549wt cells in
response to cisplatin treatment, indicating that other factors might be at play.

It should be noted that there is a clear difference in the p53 mutations of both mutant cell lines
used in this study. The R273H mutation in the NCI-H1975R273H cell line is a hotspot mutation in
the p53 DBD, while the NCI-H2228Q331* harbors a truncating mutation in the p53 OD, suggesting
that different types of mutations might have different effects on HIF-1α. Our observations warrant
further investigation into the effects of similar truncating mutations, whether or not in the p53 OD.
Although less frequent, truncating mutations still account for 36% of the p53 mutations found in the
TCGA LUAD (The Cancer Genome Atlas, Lung Adenocarcinoma) cohort, of which 12% occurs in the
OD [23].

Similar to Mohell et al., we observed strong synergistic effects when combining CDDP with
APR-246 in the NCI-H1975R273H cells under normoxic conditions [19]. They proposed activation of
p53 transcription as a potential cause of synergism, which we did not observe in our study in the
NCI-H2228Q331* cell line. Hypoxia did not enforce the synergistic cytotoxic effect in NCI-H1975R273H

cells, in contrast to the NCI-H2228Q331* cell line. Our initial hypothesis that APR-246 could induce
a shift from HIF-1α-dependent transcription, promoting cell survival, towards p53-dependent
transcription, promoting cell death/apoptosis, was not supported by our data. However, we did
observe that cell death following the combination therapy was dependent on both the presence
of mutant p53Q331* and the induction of ROS, with inhibition of one or the other leading to the
loss of synergism. In addition, we showed that cisplatin induced mutant p53Q331*-dependent
HIF-1α degradation. Ai et al. recently showed that cisplatin induced HIF-1α degradation in
cisplatin-sensitive ovarian cancer cells, but did not downregulate HIF-1α in their cisplatin-resistant
counterpart, indicating that HIF-1α downregulation is an important mediator in the response to
cisplatin [11]. In addition, knockdown of HIF-1α redirected aerobic glycolysis towards mitochondrial
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oxidative phosphorylation and enhanced cisplatin-induced cell death through overproduction of
ROS as a by-product of oxidative phosphorylation [11]. It should be noted that this study was not
performed in the context of hypoxia-induced HIF-1α and did not take into account the p53 status of
the different cell lines.

It has been shown that HIF-1α can be upregulated in an ROS-dependent manner to maintain
ROS homeostasis by redirecting the cellular metabolism [24–27]. We observed that HIF-1α protein
levels were upregulated in response to APR-246 in p53 knockdown cells, while no noticeable difference
was observed in the parental tumor cells. In addition, co-treatment with the ROS scavenger NAC
reduced HIF-1α levels under hypoxia in response to cisplatin treatment (data not shown) [28].
These observations indicate that HIF-1α is upregulated in response to oxidative stress under hypoxia.
The fact that NAC inhibited the cytotoxic response to cisplatin in our study under hypoxic conditions
indicates that ROS has at least a partial role in the cytotoxic response.

Based on these data we propose the following mechanism of strong synergism in the
NCI-H2228Q331* cell line under hypoxic conditions (Figure 6): cisplatin induces upregulation of
mutant, truncated p53, which in turn depletes HIF-1α protein levels. HIF-1α reduction leads to a shift
in metabolism, resulting in induction of ROS. By adding APR-246, which effectively depletes cellular
GSH content, the antioxidant mechanism is disturbed, leading to a strong synergistic induction of
intracellular ROS, which in turn induces massive cell death.
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Figure 6. Underlying mechanism of the synergistic interaction between CDDP and APR-246 under
hypoxic conditions. Cisplatin induces upregulation of mutant, truncated p53, which in turn degrades
HIF-1α protein. HIF-1α reduction leads to a shift in metabolism, resulting in induction of reactive
oxygen species (ROS). APR-246 further increases oxidative stress through inhibition of glutathione
(GSH) leading to a synergistic induction of intracellular ROS, which in turn induces massive cell death.

APR-246-dependent GSH depletion is an important mediator of the synergistic antitumor effects
we observed and inhibitors of GSH synthesis like buthionine sulfoximine (BSO) could yield similar
results. PRIMA-1 and APR-246 have been shown to synergize with BSO, while BSO by itself did not
affect cell viability in MCF-7 tumor cells [17,29,30]. The additional mechanisms of action of APR-246,
like reactivation of certain forms of mutant p53 or induction of ER stress, can affect tumor cells in
various ways resulting in an enhanced antitumor efficacy compared to BSO.

4. Materials and Methods

4.1. Cell Culture

The NSCLC cell lines A549wt (CCL-185, TP53wt), NCI-H1975R273H (CRL-5908, TP53R273H), and
NCI-H2228Q331* (CRL-5935, TP53Q331*) were obtained from ATCC. Cells were grown as monolayers
and maintained in exponential growth in 5% CO2/95% air in a humidified incubator at 37 ◦C under
normoxic conditions. A549wt cells were cultured in DMEM (10% FBS, 100 U/mL penicillin, 100 µg/mL
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streptomycin, and 2 mM L-glutamine) (Life Technologies, Carlsbad, CA, USA). NCI-H1975R273H and
NCI-H2228Q331* were cultured in RPMI supplemented as described above, with the addition of 1 mM
sodium pyruvate (Life Technologies).

Experiments performed under reduced oxygen conditions were plated out and settled overnight
under normoxic conditions as described above. A Bactron IV anaerobic chamber (Shell Lab) was used
to obtain hypoxic conditions (1% O2; 4% CO2; 95% N2). Cells were adjusted to reduced oxygen levels
for 6 h before treatment was initiated, after which HIF-1α protein levels were increased (Figure S2).

For APR-246 (PRIMA-1MET; Tocris, Bristol, UK) a stock solution of 50 mmol/L was prepared in
dimethyl sulfoxide (DMSO) and stored at −20 ◦C. For cisplatin (CDDP, Tocris), a stock solution of
5 mmol/L was prepared in 0.9 NaCl and stored at −80 ◦C. Dilutions were made in PBS.

4.2. Survival Assay and Synergism

End-point cell density was assessed using the sulforhodamine B (SRB) assay as previously
described [31]. To determine IC50 values, cells were exposed to 0–20 µM cisplatin or 0–40 µM APR-246
for 72 h and IC50 values were calculated using WinNonlin® software (Phoenix, AZ, USA). Combination
studies were performed by simultaneously exposing cells to a concentration range of CDDP (0–20 µM)
and a fixed concentration of APR-246, corresponding with approximately IC20 or IC40 values for
each cell line for 72 h. In order to determine possible synergism, data was analysed according to
the ‘Additive Model’, as described by others [19,32,33]. All experiments were performed under both
normoxic and hypoxic conditions.

4.3. Western Blot Analysis

Cells were treated with either vehicle, a fixed cell line-dependent concentration of CDDP,
APR-246, or CDDP/APR-246 combined treatment for 24 h under normoxic and hypoxic conditions.
Western blotting was performed as previously described [34]. Blocking and primary and secondary
antibody incubation were performed using the SNAP id® 2.0 protein detection system (Merck Millipore,
Burlington, MA, USA) according to the manufacturer’s instructions. The following antibodies
were used: rabbit monoclonal anti-p53 (Cell Signalling Technology, Danvers, MA, USA, no. 9282;
1:1000); rabbit polyclonal anti-phospho-p53 (S15, R&D systems, #AF1043, 1:1000); mouse monoclonal
anti-HIF-1α (Becton Dickinson Pharmingen, clone 54/HIF-1α; 1:1000, 96 kDa: unprocessed; 116 kDa:
fully post-translationally modified); Apoptosis Western Blot Cocktail (procaspase 3, cleaved caspase 3,
β-actin; Abcam no. ab136812); mouse monoclonal anti-β-actin (Sigma-Aldrich, St. Louis, MO, USA;
clone AC-15; 1:2500); anti-mouse and anti-rabbit HRP-labelled secondary antibodies (Cell Signalling;
no. 7076S and no. 7074S, respectively; 1:2500). Chemiluminescent detection was performed using the
LuminataTM Forte Western HRP Substrate (Merck Millipore). Image J software was used to quantify
the relative density of the Western Blot bands and was presented as Adjusted Relative Density (ARD):
(area sample/area standard)/(area loading control sample/area loading control standard).

4.4. Apoptotic/Cell Death Assays

Tumor cells were treated with either vehicle, CDDP, APR-246, or a combination of both
under normoxic and hypoxic conditions. Apoptotic cell death was assessed by the Annexin
V-FITC/Propidium Iodide assay (Becton Dickinson Pharmingen) after 72 h. All assays were performed
on a FACScan flow cytometer (Becton Dickinson) and analysed with FlowJo v10 (TreeStar Inc., Ashland,
OR, USA).

Real-time cell proliferation and induction of cell death were monitored using the IncuCyte®

ZOOM live-cell analysis instrument (Essen Bioscience, Ann Arbor, MI, USA) equipped with a 10×
objective. Cells were plated on a Corning® 96-well plate (Sigma Aldrich) and settled overnight. Images
were taken every two hours under normoxic conditions from the start of the treatment. A scan on
demand (SCOD) was performed for plates incubated under hypoxic conditions at multiple time points
after start of the treatment. To ensure hypoxic conditions were maintained during the SCOD, plates
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were sealed with an adhesive plate seal inside the hypoxic chamber, protecting the inside of the wells
from the normoxic environment in which the IncuCyte® was placed. After each SCOD, the plate
was replaced in the hypoxic chamber and the seal was removed. Green channel acquisition time was
400 ms, whereas red channel acquisition time was 800 ms. IncuCyte® reagents (Essen Bioscience)
were added at the start of the treatment, after which the image acquisition was started. The Annexin
V Green Reagent (Essen Bioscience, Cat #4642) was used at a final dilution of 1:200 in full medium
supplemented with 1 mM CaCl2. The Caspase 3/7 Green Apoptosis Reagent (Essen Bioscience, Cat
#4440) was used at a final concentration of 2.5 µM and the Caspase 3/7 Red Reagent (Essen Bioscience,
Cat #4704) at 0.25 µM. Analysis was performed using the IncuCyte® ZOOM2016B software (Ann Arbor,
MI, USA). Green and red channel background noise was subtracted with the Top-Hat method. Data are
presented either as confluence or object count and normalization is described in the corresponding
figure legends.

4.5. Quantitative Reverse Transcription PCR (RT-qPCR)

NCI-H2228Q331* cells were treated with either vehicle, cisplatin, APR-246, or a combination
of both under normoxic and hypoxic conditions. RNA was isolated 24 h post treatment using
the TRIzol® method (Life Technologies). Total RNA yield and quality were measured using the
NanoDrop® ND-1000 (Thermo Scientific) and stored at −80 ◦C. RT-qPCR was performed as previously
described [35]. A panel of 8 potential housekeeping genes (HKGs) (SDHA1, HMBS, GAPDH, YWHAZ,
PMM1, RPL13A, B2M, and HPRT1) were tested on 8 representative samples and the qbase+ software
(Biogazelle, Zwijnaarde, Belgium) was used to determine the most stable HKGs. B2M and HPRT1
were selected as optimal reference targets (geNorm M < 0.5 and geNorm V < 0.15). P21, BAX, PUMA,
NOXA, and MDM2 were used as genes of interest to assess p53-mediated transcription. CA9, GLUT1,
GAPDH, BNIP3, and VEGF were uses as genes of interest to assess HIF-1α-mediated transcription.
Primer sequences are presented in Table S2.

4.6. Reactive Oxygen Species Detection

Tumor cells were treated with either vehicle, CDDP, APR-246, or a combination of both under
normoxic and hypoxic conditions for 72 h. The CellROX® Green Reagent (Thermo Scientific) was used
to monitor oxidative stress in real time using the IncuCyte® ZOOM. The cell-permeant dye is weakly
fluorescent while in a reduced state and exhibits bright green photostable fluorescence upon oxidation
by reactive oxygen species (ROS) and subsequent binding to DNA. This way, the dye accumulated in
the nucleus of the cell in accordance with intracellular basal and induced ROS levels. NCI-H2228Q331*
cells were treated with either vehicle, cisplatin, APR-246, or a combination of both under hypoxic
conditions in the presence of 2.5 µM CellROX by a SCOD under hypoxic conditions at multiple
time points. Analysis was performed using the IncuCyte® ZOOM2016B software. Green channel
background noise was subtracted with the Top-Hat method. The data are presented as Average Mean
Green Intensity (GCU). As a control, cells were co-treated with the ROS scavenger N-acetyl-L-cysteine
(NAC, Sigma-Aldrich), which acts as a precursor of GSH.

4.7. Total Glutathione Content

Tumor cells were treated with either vehicle, CDDP, APR-246, or a combination of both
under normoxic and hypoxic conditions for 24 h. Total GSH content was measured with the
luminescence-based GSH/GSSGTM assay (Promega, Madison, WI, USA) according to the manufacturer
instructions. The luminescent signal was measured using the VICTORTM X5 Multilabel Plate reader
(PerkinElmer, Zaventem, Belgium). Absolute quantification was obtained with a GSH standard curve
and concentrations are presented as µM GSH/well.
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4.8. Transduction

NCI-H2228Q331* cells were transduced using the GIPZ lentiviral shRNA VGH5526-EG7157 viral
particle set (Thermo Scientific), which consists of one nontemplate control (NTC) vector and three
different TP53 shRNA constructs containing a puromycin resistance gene and green fluorescent protein
(GFP) reporter gene. Transduction was performed according to the manufacturer’s instruction with
either the NTC vector or three TP53 shRNA vectors. Selection was made by exposing cells to 5 µg/mL
puromycin and monitoring GFP expression. After one week of puromycin selection, single cell colonies
were grown for the TP53 shRNA cells, resulting in three monoclonal subclones, shRNA.1, shRNA.2,
and shRNA.3, with stable p53 knockdown as confirmed by Western Blotting. In order to maintain
stably transduced cell lines, cells were frequently challenged with puromycin (5 µg/mL).

4.9. Statistical Analysis

Prism 7.03 software (GraphPad, La Jolla, CA, USA) was used for data comparison and artwork.
Statistical analysis was performed using SPSS Statistics 24 software (IBM, Armonk, NY, USA).
Normality of the data was assessed by the Shapiro–Wilk test. Data that followed a normal distribution
(p > 0.05) were assessed by unpaired parametric tests to compare medians between two (Unpaired
Student t-test) or multiple groups (One Way Anova with Tukey post-hoc testing).

5. Conclusions

In this study, we show that hypoxia-induced cisplatin resistance only occurred when cisplatin
affected HIF-1α protein levels. We showed that HIF-1α protein levels were downregulated in
a mutant-p53-dependent manner, more specifically a truncating mutation in the p53 OD, whose
expression was induced by cisplatin. This could indicate a novel gain-of-function effect which warrants
further investigation of similar (truncating) mutations. Cell death following the combination of
APR-246 and cisplatin was dependent on both the presence of mutant p53 and the induction ROS, with
inhibition of one or the other leading to the loss of synergism. This ROS accumulation was potentially
mediated by a shift in HIF-1α-regulated metabolism due to cisplatin-induced HIF-1α degradation
via mutant p53Q331* and inhibition of antioxidant GSH by APR-246. Our results further support the
use of APR-246 in combination with cisplatin-based therapies in NSCLC patients due to the strong
synergistic interaction and potentiating effect of hypoxic conditions.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/10/4/126/s1,
Figure S1: Cells were treated for 72 h with vehicle, CDDP, APR-246 or CDDP/APR-246. AnnexinV/PI
flowcytometric assay presented as dotplot in four quadrants (AnnV-/PI-; AnnV+/PI-; AnnV+/PI+ and
AnnV-/PI+) under normoxic (21% O2) and hypoxic (1% O2) conditions, Figure S2: HIF-1α and p53 protein
levels in NCI-H2228Q331* in response to increasing exposure times to hypoxic conditions (1% O2) determined by
western blotting. HIF-1α staining showed two bands at 116 kDa (processed HIF-1α) and 96 kDa (unprocessed
HIF-1α). β-actin was used as internal control, Table S1: IC50-values and Average Combination Index, Table S2:
Primers RT-qPCR.
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