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Near-field optical trapping in a  
non-conservative force field
Mohammad Asif Zaman, Punnag Padhy & Lambertus Hesselink

The force-field generated by a near-field optical trap is analyzed. A C-shaped engraving on a gold film is 
considered as the trap. By separating out the conservative component and the solenoidal component of 
the force-field using Helmholtz-Hodge decomposition, it was found that the force is non-conservative. 
Conventional method of calculating the optical potential from the force-field is shown to be inaccurate 
when the trapping force is not purely conservative. An alternative method is presented to accurately 
estimate the potential. The positional statistics of a trapped nanoparticle in this non-conservative field 
is calculated. A model is proposed that relates the position distribution to the conservative component 
of the force. The model is found to be consistent with numerical and experimental results. In order to 
show the generality of the approach, the same analysis is repeated for a plasmonic trap consisting of a 
gold nanopillar. Similar consistency is observed for this structure as well.

Trapping of micron and submicron sized particles have received significant attention in several branches of sci-
ence including biotechnology1–3, physics4, and chemistry5. Optical trapping and manipulation schemes are play-
ing an important role in the operation of lab-on-a-chip (LOC) devices6. Accurate modeling of optical trapping 
forces are becoming more and more important for the design process as the complexity of such devices increase.

Free space optical trapping can be achieved by tightly focusing a laser beam. Such setups are known as optical 
tweezers where particles become trapped near the focus point of the laser beam due to the gradient forces7–9. To 
apply sufficient gradient force for successful trapping, the spot size of the focused laser beam must be comparable 
to the size the particle. As a result, the smallest particle that can be trapped is determined by the diffraction limit. 
To overcome this limitation, near-field optical traps have been developed. Such traps use the evanescent fields 
generated by plasmonic nanostructures10–12 or dielectric waveguides2 to create the gradient forces. Unlike prop-
agating fields, evanescent fields can be focused beyond the diffraction limit11, making it possible to trap particles 
smaller than the limit of optical tweezers. Moreover, compared to the three-dimensional nature of optical twee-
zers, near-field traps, such as plasmonic traps, are planar in nature. This makes it possible to fabricate multiple 
plasmonic traps on a single substrate for LOC applications13. By using multiple plasmonic traps on a chip, it is 
possible to achieve controlled manipulation of nanoparticles14,15. Designing such a complex system requires fast 
and accurate characterization of the force-field and the particle motion near a plasmonic trap.

In this paper, we will investigate the nature of the force-field generated by a plasmonic trap and how it effects 
the trapping dynamics of a dielectric nanoparticle. We will mainly focuse on a plasmonic trap consisting of a 
C-shaped engraving (CSE) on a gold film. C-shaped structures produce strong localized field intensity enhance-
ment and can focus light very tightly (<λ/10)16,17. This can create a strong gradient force that can be utilized for 
particle trapping. As the CSE geometry is asymmetric, the excitation of the structure can be controlled by chang-
ing the polarization of the incident light. Due to these favorable characteristics, CSEs have been successfully used 
for plasmonic trapping and manipulation schemes14,15. To show that the findings presented in this paper is not 
limited CSE only, we also consider a second plasmonic structure consisting of a cylindrical gold nanopillar. This 
is also a well known structure that has been successfully used for near-field trapping10,18.

We have computed the force a dielectric nanoparticle experiences near a CSE and near a nanopillar. While 
analyzing this force-field, we have uncovered some interesting properties of plasmonic traps that were not pre-
vously reported in the literature. The force-field is decomposed into a conservative/irrotational component and 
a non-conservative/solenoidal component using the Helmholtz-Hodge decomposition (HHD). The force-field 
is found to have non-negligible solenoidal component and thus cannot be considered as a purely conservative 
field. This finding is contrary to the commonly used assumption of the optical trapping force-field to be conserv-
ative19,20. This assumption directly affects how the optical trapping potential is calculated, which is often used to 
characterize optical traps. For a conservative field, this trapping potential can be calculated using a line integral. 
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For fields with significant solenoidal component, such an approach may not be accurate. We show that for the 
plasmonic traps under consideration, this approach of calculating the trapping potential can give significantly 
erroneous results. It should be mentioned that direct line integration has been used to calculate the trapping 
potential of near-field traps in many published literature without verifying whether the force-field is conservative 
or not10,19–21. Since the two plasmonic structures we considered here both generate solenoidal force components, 
it is likely that other structures may also exhibit similar characteristics. In this paper, we present an HHD based 
method of calculating the trapping potential. It is found that the potential obtained from the proposed approach 
represents the trap characteristics more accurately. Since trap stiffness, trapping range and many other charac-
terizing parameters of an optical trap are often extracted from the trapping potential, accurate estimation of the 
trapping potential is of significant importance.

In addition to proposing a method of estimating the trapping potential more accurately, we also relate the 
position distribution of a trapped nanoparticle with the trapping potential. It is well known that the position of a 
particle trapped in a potential well created by a conservative force-field follows a Boltzmann distribution9. No 
similar relationship has been proposed for non-conservative force-fields. We posit that for a trapping force-field 
which is not purely conservative (but the conservative component dominates the solenoidal component), the 
Boltzmann function can still be used to model the position distribution. If the trapping potential is obtained from 
the HHD and is used as the argument of the Boltzmann distribution, it can accurately model the position of a 
trapped nano-particle. We present numerical and experimental data that support our claims. Only a few works 
have investigated whether a trapping force-field is conservative or not22–24. However, these works focused mostly 
on optical tweezers. To the best of our knowledge, our group is the first to apply the HHD method to analyze 
near-field traps25. A detailed analysis on how the trapping potential for a non-conservative force-field can be 
calculated and used to characterize the position distribution of a trapped nanoparticle has not appeared in the 
literature. By calculating the position distribution using the proposed method, it is possible to estimate the trap-
ping range (area of influence)26 of a plasmonic trap. This can be very useful in the design process of LOC systems 
containing multiple traps as the necessary spacing between the traps can be estimated from the trapping range.

The paper is organized as follows. First, the geometry of the plasmonic traps are described. Then the optical 
simulation and force calculations are discussed. It is followed by the formulation of the motion of a nanoparticle 
near the trap. After that, the decomposition of the force-field and the Boltzmann model are discussed. The exper-
imental setup is described next. And finally, the results discussed.

Geometry of the structures.  A three-dimensional representation of the main plasmonic trap under con-
sideration is shown in Fig. 1. The first plasmonic trap consists of a CSE on a gold film. The engraving is filled with 
Hydrogen silsesquioxane (HSQ). The structure is illuminated from the top by a focused 1064 nm Nd:YAG laser. 
A copper heat sink is placed below the gold film to reduce thermal effects10,15. The top and cross-sectional view of 
the structure along with the coordinate system used, are shown in Fig. 2. A second plasmonic trap consisting of a 
cylindrical gold nanopillar was also considered. The geometry of that structure is shown in Fig. 3. The illumina-
tion method for the nanopillar is identical to that of the CSE.

Colloidal solution of nanoparticles in water medium is placed on top of the structure. Fluorescent polystyrene 
spheres of radius 150 nm are used as the nanoparticles. This is a common choice for many biological applica-
tions27,28. The geometry of the CSE is defined by the characteristic parameter, α and the depth of the engraving, 
tHSQ. The nanopillar geometry is defined by its radius, rnp and height, hnp. The values of the parameters are listed 
in Table 1. The parameter values are selected such that the structures are resonant at wavelengths near 1064 nm.

The optical response of the trap depends on the geometry and the material properties. The refractive index of 
the dielectric materials are listed in Table 1. A Drude model is used to characterize the dielectric function of gold. 
The model is consistent with experimental data29 for the wavelength range under consideration (800–1200 nm).

Figure 1.  Near-field trapping using a C-shaped engraving.
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Force calculation.  To find the trapping force generated by the CSE and the nanopillar, the electromagnetic 
field distribution near the structures must be calculated. The force depends on the gradient of the square of the 
electric field. A commercial finite element solver (Comsol Multiphysics) is used to simulate the optical response of 
the structure. The field distribution near a plasmonic structure depends on the geometry of the structure, material 
properties, and the wavelength and polarization of the incident light. The electric field intensity enhancement as a 
function of incident light wavelength is shown in Figs 4(a) and 5(a). No nanoparticle is assumed to be present in 
the system for this simulation. It can be observed that the intensity enhancement is maximum at wavelengths near 
1064 nm and when the light is y-polarized (90 degree polarized). The input intensity is assumed to be 1 mW/μm2. 
The wavelength, polarization and intensity of the incident light are set at these values for the rest of the paper. The 
intensity enhancement at different cut-planes for 1064 nm y-polarized light are also shown in Figs 4 and 5. It can 
be noted that strong localized enhancement is achieved near the center of the CSE and along the top perimeter of 
the nanopillar. This is consistent with published results available in the literature10,15,18.

To find the optical force on a nanoparticle near the CSE, the nanoparticle must be taken into account when 
calculating the electromagnetic field distribution. The Maxwell stress tensor (MST) method can be used to calcu-
late the force from the fields20,30:

∫〈 〉 = 〈 〉 ⋅
↔

ˆ SF T n d , (1)t
S

t

Figure 2.  Geometry of the C-shaped engraving.

Figure 3.  Geometry of the gold nanopillar.

Parameter Value

CSE characteristic parameter, α 60 nm

Depth of the engraving, tHSQ 150 nm

Radius of the nanopillar, rnp 150 nm

Height of the nanopillar, hnp 150 nm

Radius of polystyrene nanoparticle, ro 150 nm

Refractive index of water, nw 1.33

Refractive index of HSQ, nHSQ 1.4

Refractive index of polystyrene, np 1.58

Table 1.  Geometrical and Material parameters.



www.nature.com/scientificreports/

4Scientific Reports |           (2019) 9:649  | DOI:10.1038/s41598-018-36653-0

ε μ=


 − | |



 +



 − | |



.

↔ ↔ ↔
T EE E I HH H I1

2
1
2 (2)w w

2 2

Here, F is the net electromagnetic force acting on the nanoparticle, 〈⋅〉t represents time-averaged value, S is the 
outer surface of the nanoparticle, n̂ is the surface normal to S, 

↔
T is the Maxwell stress tensor, E is electric field, H 

is the magnetic field, εw and μw are the permittivity and permeability of the surrounding medium (water), respec-
tively, and 

↔
I  is the identity tensor. For a given position of the nanoparticle, the E and H fields are calculated and 

Eq. 1 is used to evaluate the force at that point. The position of the nanoparticle is swept in a discrete 
three-dimensional grid near the plasmonic structure and the calculations are repeated to map out the force-field. 
Three-dimensional spline interpolation is applied to this discrete data set to evaluate the force at any arbitrary 
point. The calculated force near the CSE at different slice planes are shown in Fig. 6. A similar figure can be gen-
erated for the nanopillar. We have not included the figure here for brevity. The figure shows pico-newton level 
pulling forces towards the center of the trap at (0, 0, 0). The force generated by the nanopillar has similar magni-
tude and characteristics.

Particle dynamics.  Nanoparticles suspended in a liquid medium exhibit Brownian motion. Assuming a 
low Reynolds number environment, the motion of a nanoparticle in water under the influence of an external 
force-field can be modeled using the modified Langevin equation31–33:
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Figure 4.  Electric field intensity enhancement near a CSE: (a) As a function of wavelength at the point 
(0,0,5 nm), (b) at y = 0 plane, (c) at z = 0 plane, and (d) at x = 0 plane. A y-polarized incident light of wavelength 
1064 nm is considered for (b), (c) and (d). The plots share the same colorbar. Input intensity is set at 1 mW/μm2.
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Figure 5.  Electric field intensity enhancement near a gold nanopillar: (a) As a function of wavelength at the 
point (0,150 nm,5 nm), (b) at y = 0 plane, (c) at z = 0 plane, and (d) at x = 0 plane. A y-polarized incident light of 
wavelength 1064 nm is considered for (b), (c) and (d). The plots share the same colorbar. Input intensity is set at 
1 mW/μm2.

Figure 6.  Force-field near the CSE at different slice planes.
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Here, r is the position of the center of the nanoparticle, F is the optical trapping force acting on the nanoparticle, 
kB is the Boltzmann constant, T is the temperature, 

←→
D  is the diffusion tensor, and W(t) is a vector white noise 

term. The tensor 
←→
D1

2
 is obtained by taking element-wise square root of 

←→
D . Each Cartesian component of W(t) is a 

Gaussian random process with zero mean and unit variance. The hydrodynamic interaction between the nano-
particle and the solid bottom surface (z = 0 plane) affects the motion of the nanoparticle. These effects are 
included in the terms of the diffusion tensor. 

←→
D r( ) is a diagonal tensor with = =D D Dr r r( ) ( ) ( )11 22 , and 

D33(r) = D⊥(r), where the components are defined as34–36:
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Here η is the dynamic viscosity of the medium (water), ro is the radius of the nanoparticle, and z is the z-coordinate 
of the center of the nanoparticle. As the separation from the z = 0 surface increases, the hydrodynamic interac-
tions between the surface and the nanoparticle decreases. So, for large z, D∥(r) and D⊥(r) converge to the free 
space diffusion coefficient of kBT/6πηro.

Equation 3 is a stochastic differential equation that can be discretized to obtain the following finite difference 
equation32:
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The Euler-Maruyama method can be used to solve this finite difference equation numerically37. A large number of 
independent trajectories are solved to obtain the position distribution of a trapped nanoparticle. This distribution 
will be compared against the proposed Boltzmann model and the experimental results later.

Helmholtz-Hodge decomposition (HHD) and position distribution.  The Helmholtz theorem states 
that under reasonable regularity condition, a force-field can be decomposed into a conservative component and 
a non-conservative/solenoidal component:

= − ∇ + ∇ × .uF A (7)

Here −∇u is the conservative component and ∇ × A is the solenoidal component. u is a scalar potential function 
and A is a vector potential function. For a conservative force-field, the solenoidal component is zero and the sca-
lar potential can be obtained from direct integration, ∫= − ′ ⋅ ′

−∞
u dr F r r( ) ( )DI

r . However, for fields with sole-
noidal component, this approach does not work. For a sufficiently smooth F defined in a bounded domain Ω with 
a smooth boundary ∂Ω, the HHD can be applied to separate out the components. The function u can be calcu-
lated by solving the following equations:

−∇ = ∇ ⋅ Ωu F on , (8)2

∇ ⋅ = ⋅ ∂Ω.ˆ ˆu n F n on (9)

This is a partial differential equation with Neumann boundary conditions that can be numerically solved. The 
results are shown in Figs 7 and 8. From u, the two components: ∇u and ∇ × A can be calculated using Eq. 7. From 
this analysis, we have found that the force-field of a CSE has non-negligible solenoidal component. The norm 
of the solenoidal component is 40% of the norm of the conservative component for the CSE. For the nanopillar 
structure, the ratio has lower value of 24%. This finding is significant as some works have considered the force 
from plasmonic traps to be conservative19–21. Due to the solenoidal component, the scalar potential obtained 
from direct integration differs significantly from the one obtained from HHD. Figures 7(c) and 8(c) show the 
comparison between the two methods.

It can be noted that the direct integration method overestimates the potential depth by more than a factor of 
two. Thus, any subsequent computations based on these results may also differ significantly. The difference in the 
results from the two methods is larger for the CSE structure. This is expected as the solenoidal component was 
found to be weaker in the nanopillar structure. Our analysis shows that the u obtained from the HHD can be 
considered as a the optical trapping potential even if the force is not purely conservative.

The position distribution or the spatial extent of a trapped nanoparticle, f(r), depends on the potential func-
tion. For a conservative force-field, the Boltzmann distribution can be used to model the phenomenon9,38–40:

= .
−

f A er( ) (10)N

u
k T
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Here AN is a normalizing factor given by ∫= ′
−∞

∞ − ′
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u
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r( )
. For a non-conservative force-field, the Boltzmann 

distribution is not expected to be valid. However, we have found that even though the force-field from the plas-
monic trap is non-conservative, if the scalar potential obtained from the HHD is used as the argument of the 
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Boltzmann function, the resulting distribution is consistent with numerical and experimental results. We discuss 
this further in the following sections.

Experiment.  We have performed experiments to study the motion of a nanoparticle trapped on a CSE. The 
CSE was fabricated using the same methods as described in15. The experimental setup is shown in Fig. 9. A 
half-wave plate on a rotary stage is used to control the polarization of the laser light hitting the CSE. Fluorescence 
imaging is performed using an inverted microscope (Nikon Eclipse TE2000-U). A mercury lamp is used to excite 
the fluorescence of the polystyrene nanoparticle. A CCD camera is used to monitor the focused laser beam. A 
CMOS camera is used to capture video of the motion of the nanoparticle. The captured video is digitally pro-
cessed for noise reduction and a particle tracking algorithm is used to calculate the position of the nanoparticle 
center.

The sample is prepared by placing a small droplet of dilute solution of fluorescent polystyrene beads on a cover 
slip. The fabricated device is placed on top of the cover slip (gold side facing down). The sample is placed on a 
picomotor stage. The laser power is adjusted to 1 mW/μm2 and the half-wave plate is rotated to match the orien-
tation of the CSE. Once a trapping event is observed, the video is recorded for further processing.

Results and Discussion
For the CSE structure, the position distribution of a trapped nanoparticle obtained from the experiment (fexp) is 
shown in Fig. 10. The numerical results from the Brownian dynamics (fBrownian) and the Boltzmann models are also 
shown on the same plots. The Boltzmann distribution with potential function obtained from the HHD (fBoltz,HHD) 
matches closely with numerical and experimental results. However, when the potential obtained from direct inte-
gration is used in the Boltzmann model (fBoltz,DI), it gives a result which differs significantly from the rest. It can be 
noted that the experimental distribution along x and y axis both show a slight asymmetry. Imperfections in the 
fabrication process may lead to such variations. The same plots for the nanopillar structure are shown in Fig. 11. 
Only numerical data are presented for this structure.

The results show that the potential obtained from direct integration is not a good indicator of the trap char-
acteristics when the force-field has large solenoidal component. This is a significant finding as direct line integra-
tion is a commonly used method to estimate the optical potential10,19,21. As we have shown that the the trapping 
force-field of a CSE and a nanopillar is not purely conservative, it is reasonable to assume that other plasmonic 
structures may share similar properties. An analysis is necessary to check if a solenoidal component exists in the 
force-field. In such a case, the conservative component can be extracted from the force-field using the HHD. We 
have shown that the scalar potential obtained from the HHD is more representative of the trap behavior.

Figure 7.  Scalar potential profile obtained from HHD for the CSE structure: (a) at different slice planes, (b) 
at z = 155 nm plane, and (c) along y = 0, z = 155 nm line. The potential obtained from direct integration is also 
shown in (c).
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It should be noted that the error level in the position distribution obtained from direct integration method is 
smaller for the nanopillar structure than the CSE structure. Due to the smaller magnitude of the solenoidal com-
ponent for the nanopillar structure, the direct integration method introduces less error in estimating the trapping 
potential. If the solenoidal component was zero, then the direct integration method and the HHD method would 
give identical results. For conservative force-fields (e.g. optical tweezers), the solenoidal component is negligible 
and the direct integration method can give results that are consistent with experimental values. The asymmetrical 
geometry of the CSE may play a role in creating larger solenoidal forces. Asymmetric geometries can create orbital 
angular momentum41 and rotational forces42 which indicate the presence of solenoidal forces. Even though the 
nanopillar structure is symmetric, the field distribution it produces is not symmetric. This is because the localized 
field intensity enhancement of the structure is aligned along the polarization axis of the incident light (as can be 
seen in Fig. 5(d)). This asymmetry in field may lead to the creation of a solenoidal component in the force profile.

Figure 8.  Scalar potential profile obtained from HHD for the nanopillar structure: (a) at different slice planes, 
(b) at z = 155 nm plane, and (c) along x = 0, z = 155 nm line. The potential obtained from direct integration is 
also shown in (c).

Figure 9.  Experimental setup.
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Another finding is that despite the presence of a solenoidal component in the force, the Boltzmann distri-
bution can be used to model the position distribution of a trapped nanoparticle. The model is accurate when 
the potential function from the HHD is used as its argument. This finding is interesting as it suggests that the 
steady state position distribution only depends on one of the components of the force. Despite the solenoidal 
component being non-negligible, only the conservative component determines the position distribution. We 
posit that the solenoidal component induces a rotational/spinning motion which does not affect the steady-state 
statistics significantly. For example, if the nanoparticle experiences some spinning motion around its axis, then 
the net displacement due to the spinning is expected to be close to zero (assuming no precession). The solenoidal 
component can be thought of as the part of the force that is not related to the net trapping force. Working under 
this assumption, we can concluded that the solenoidal component is unlikely to affect the particle distribution. 
However, further investigation is required to completely explain the phenomenon. As the conservative compo-
nent solely effects the steady state particle position, it is not surprising that the distribution follows the statistics 
of a purely conservative field.

The position distribution/spatial spread of a nanoparticle is an important parameter for LOC system design. 
It determines the maximum separation between two independent traps that allows a nanoparticle to be trans-
ported from one trap to another14,15. To obtain position statistics from Brownian simulation, a large number 
of independent trajectories must be calculated. This requires large computational time. The applicability of the 
Boltzmann model for non-conservative force-fields opens up an alternative approach of obtaining the position 

Figure 10.  Position distribution of a trapped nanoparticle at z = 155 nm plane for the CSE structure: (a) 
along x-direction, (b) along y-direction. The inset shows a frame of the captured video. The arrows in the inset 
indicate the direction along which the distribution is taken.

Figure 11.  Position distribution of a trapped nanoparticle at z = 155 nm plane along y-direction for the 
nanopillar structure.
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distribution. The Boltzmann model requires only the computation of the potential function. Extracting the poten-
tial from the force-field using the HHD requires considerably less computational time. So, the Boltzmann model 
allows faster estimation of the particle position spread. This could be useful in the design process of LOC systems. 
If the direct integration method is used to estimate the spatial spread, it would underestimate the spread by a fac-
tor of two for the CSE structure. The corresponding LOC design would contain twice as many CSEs than actually 
necessary. In some cases, direct integration method may suggest a separation value smaller than what can be 
fabricated accurately.

Although this paper analyzes the force-field of a CSE and a nanopillar, the same analysis can be applied to 
other structures used for near-field trapping. The methods used for calculating the force-field and the HHD 
will be the same for any structure. It is reasonable to assume that other plasmonic structures may also generate 
non-conservative force-fields. For those cases, the results presented in this paper can be useful.

Data Availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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