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Long non-coding RNAs (lncRNAs) may play a role in psychiatric diseases including bipolar
disorder (BD). We investigated mRNA-lncRNA co-expression patterns in neuronal-like
cells treated with widely prescribed BDmedications. The aim was to unveil insights into the
complex mechanisms of BD medications and highlight potential targets for new drug
development. Human neuronal-like (NT2-N) cells were treated with either lamotrigine,
lithium, quetiapine, valproate or vehicle for 24 h. Genome-wide mRNA expression was
quantified for weighted gene co-expression network analysis (WGCNA) to correlate the
expression levels of mRNAs with lncRNAs. Functional enrichment analysis and hub
lncRNA identification was conducted on key co-expressed modules associated with
the drug response.We constructed lncRNA-mRNA co-expression networks and identified
key modules underlying these treatments, as well as their enriched biological functions.
Processes enriched in key modules included synaptic vesicle cycle, endoplasmic
reticulum-related functions and neurodevelopment. Several lncRNAs such as GAS6-
AS1 and MIR100HG were highlighted as driver genes of key modules. Our study
demonstrates the key role of lncRNAs in the mechanism(s) of action of BD drugs.
Several lncRNAs have been suggested as major regulators of medication effects and
are worthy of further investigation as novel drug targets to treat BD.
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INTRODUCTION

Bipolar disorder (BD) is among the top 10 causes of disability globally with potentially devastating
consequences for individuals as well as wider society (Association, 2013; James et al., 2018).
Although pharmacotherapy is the first-line management for BD, suboptimal outcomes and
treatment-resistance are common, and polypharmacy is often required (Garnham et al., 2007;
Kukreja et al., 2013; Fornaro et al., 2016). Despite the pressing demand for new therapeutic agents,
new drug discovery for BD remains stagnant due to our lack of understanding of both the
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underlying pathophysiology of the disorder and the
mechanism(s) of action of currently available drugs.

Studies have suggested a role for dysregulation of gene
expression in the pathophysiology of BD, not only with
protein-coding but also with non-coding RNAs (Ponting et al.,
2009; Zuo et al., 2016; Luykx et al., 2019). Most of the non-coding
transcriptome is made up of long non-coding RNAs (lncRNAs).
These comprise >200 nucleotides, and are key regulators of gene
expression possibly via epigenetic regulation and chromatin
remodelling (Hrdlickova et al., 2014). LncRNAs are highly
expressed in the brain, and they may contribute to the
development of psychiatric diseases including BD (Qureshi
et al., 2010; Zuo et al., 2016; Bella and Campo, 2021). In a
genome-wide association study (GWAS), Hou et al. found a
significant association between lithium response and four single
nucleotide polymorphisms (SNPs) in a region containing two
lncRNAs, suggesting a role for these lncRNAs in the biological
mechanism(s) of lithium (Hou et al., 2016). Given that little is
known regarding how lncRNAs may be involved in the
mechanism(s) of action of drugs used to treat BD,
comprehensive gene expression analysis that includes lncRNAs
will help to elucidate the transcriptional perturbations underlying
the therapeutic effects.

When researching brain disorders, reductionist approaches are
still dominant: individual candidate receptors or genes are often
analysed singly, disregarding their interaction with other molecular
factors. To mitigate such limitation, network-based approaches that
consider modules of genes as key regulators offer a complementary
method to address the complex dysregulation occurring in
neuropsychiatric conditions such as BD (Gaiteri et al., 2014).
Moreover, it remains unclear how most genes function, which
has become more puzzling with the recent identification of novel
non-coding genes. A detailed global view of genome-wide
transcriptional perturbations can be yielded with the advent of
high-throughput sequencing technologies. Genes with functional
linkages tend to be co-expressed across various biological states, and
co-expression networks yielded from RNA-sequencing data can
infer gene function and molecular mechanisms by associating
genes of unknown function with biological processes (Gaiteri
et al., 2014; Okamura et al., 2015).

In the current study, we investigated the mechanism(s) of
action of four widely prescribed BD drugs (i.e., lamotrigine,
lithium, quetiapine and valproate) using network-based
approaches, with an emphasis on the role of lncRNAs. We
hypothesised that mRNA-lncRNA crosstalk and regulatory
patterns in neuronal cell models will unveil insights into the

FIGURE 1 | The methodology workflow the current study.
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complex mechanisms of BD drugs and highlight potential new
targets for drug development.

MATERIALS AND METHODS

The summary flowchart of the methodology was demonstrated in
Figure 1.

Cell Culture
For the model of human neurons, the study used NT2 human
teratocarcinoma cells (CVCL_0034, ATCC, Manassas, VI,
United States), differentiated into post-mitotic neuronal cells
(NT2-N) after treatment with retinoic acid (Pleasure et al.,
1992; Megiorni et al., 2005). Cells were cultured and
differentiated as previously described (Bortolasci et al., 2018).
Concisely, NT2 cells were maintained in Dulbecco’s modified
Eagle’s Medium (DMEM; Life Technologies, Melbourne,
Australia), 10% fetal bovine serum (FBS; Thermo Fisher
Scientific, Melbourne, Australia) and 1% antibiotic-antimycotic
solution (Life Technologies). NT2-N cells were induced from
NT2 cell cultures by treating with 10−5 M retinoic acid (Sigma-
Aldrich, Sydney, Australia) for 28 days with media refreshed
every 2–3 days. For experiments, cells were seeded onto 24-well
plates coated with 10 μg/ml poly-D-lysine (Sigma-Aldrich) and
10 μg/ml laminin (Sigma-Aldrich) at 2 × 105 cells/well with
further addition of mitotic inhibitors (1 µM cytosine and
10 µM uridine; Sigma-Aldrich) for a total of 7 days, and the
media was refreshed every 2–3 days to generate an enriched
culture of differentiated neuronal cells (NT2-N). NeuroD, Tau,
and GluR expression levels in differentiated cells were measured
to verify the effectiveness of the differentiation process (data not
shown).

Drug Treatments
NT2-N cells were treated with lamotrigine (50 µM), lithium
(2.5 mM), quetiapine (50 µM), or valproate (0.5 mM) for 24 h
(4 replicates for each group). All drugs were purchased from
Sigma-Aldrich (Sydney, Australia). Vehicle control cells were
treated with 0.5%Milli-Q water for lithium or valproate controls,
and 0.2% DMSO for lamotrigine or quetiapine controls. The drug
doses were chosen based on prior dose response studies in our lab
to ensure no impact on cell viability (Kidnapillai et al., 2018).
Using these doses, we have previously observed differences in
gene expression after 24 h treatment (Bortolasci et al., 2018;
Bortolasci et al., 2020b). These drugs have also been
demonstrated to alter gene expression levels in vitro after 24 h
in other studies (Nahman et al., 2012; Meng et al., 2019).

Genome-Wide Gene Expression
Measurement
Total RNA was extracted from cells post-treatment using RNeasyp

mini kits (Qiagen, Melbourne, Australia), then checked for quality
and quantity using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Melbourne, Australia) and NanoDrop 1000
(Thermo Fisher Scientific), respectively. RNA-seq libraries were

prepared for all samples from 1 µg total RNA using a TruSeq RNA
Sample Preparation Kit (Illumina, Victoria, Australia) as per the
manufacturer’s instructions. Samples were analysed on a HiSeq
2500 Rapid system (50 bp single end reads; Illumina) to measure
genomewidemRNA expression, which yielded an average of about
10 × 106 reads/sample. The single end sequencing offered sufficient
quantification of gene expression levels in well-annotated
organisms such as Homo sapiens at cheaper cost than the
paired-end technology (Conesa et al., 2016).

Genome-Wide Gene Expression Analysis
The raw data yielded in FASTQ format were aligned to reference
genomes using the Deakin Genomics Centre RNA-Seq alignment
and expression quantification pipeline (https://github.com/m-
richardson/RNASeq_pipe). Briefly, the pipeline included raw
read quality filtering and adapter trimming (ILLUMINACLIP:
2:30:10:4, SLIDINGWINDOW:5:20, AVGQUAL:20 MINLEN:
36) with Trimmomatic v35 (Bolger et al., 2014), and
alignment to the reference genome using STAR v2.5 in 2-pass
mode (Human genome version GRCh38) (Dobin et al., 2012).
Raw reads were deposited at the Gene Expression Omnibus
(GEO) database under the accession numbers GSE197966.

For differential abundance testing, gene expression quantified
at the gene level was compiled into a m x nmatrix from individual
sample counts. Genes with low expression were omitted (<1 cpm
in n samples, where n is the number of samples in the smallest
group for comparison), and the data was normalized using the
weighted trimmed mean of M-values (TMM) using edgeR
(Robinson et al., 2009) in R (R Core Team, 2021). EdgeR was
used to determine differential gene expression, and the
Benjamini–Hochberg method was used to assess false-
discovery rate (FDR) adjusted q-values for multiple tests
(Benjamini and Hochberg, 1995).

Weighted Gene Co-Expression Network
Analysis
WGCNA is an approach utilizing gene expression data to
construct co-expression networks weighted for high
correlations (Langfelder and Horvath, 2008) and was used in
this study to evaluate correlation between lncRNAs and mRNAs.
The RNA-seq data was used as input for the R package WGCNA
(Langfelder and Horvath, 2008; R Core Team, 2021), from which
a pairwise bi-weight mid-correlation matrix was computed and
then transformed into an adjacency matrix. To construct a scale-
free network, each absolute mid-correlation value was raised to a
soft-thresholding power. Soft-thresholding amplified disparity
between strong and weak correlations, leading to the
construction of the scale-free network. We chose power 7,
which was the lowest power for which the scale-free topology
fit index reached 0.8. To minimise the spurious connections,
WGCNA utilised the topological overlap measure (TOM)
accounting for how large the overlap of each gene pair’s
network neighbours. The TOM matrix considered as a
similarity measure was then transformed into pairwise
dissimilarity measure (calculated by 1-TOM) for the
hierarchical clustering of genes. From this, tightly connected
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genes would be clustered for module assignment (dynamic tree
cut algorithm), and unassigned genes with weak connections
would not be considered for further analyses. The default value of
0.25 was set as the threshold for cut height to merge possible
similar modules. The expression level of each module was
represented by an eigengene value. Module membership values
were also calculated, which reflect the degree of correlation
between genes and modules. Higher absolute values of module
memberships mean stronger correlation, while zero values mean
no association.

Module Preservation and Module-Trait
Analyses
To validate the reproducibility of key modules, module
preservation analysis was undertaken with an independent
dataset (Bortolasci et al., 2020a). The most common measure
of module preservation recommended by the authors ofWGCNA
is Zsummary, which considers the density and connectivity
patterns of module nodes, as well as the overlap among
module membership. Higher Zsummary statistics indicate
more highly preserved modules. Notably, Zsummary can be
heavily dependent on module sizes, which might bias the
statistics towards bigger modules (Langfelder et al., 2011). In
our network, module sizes were spread in a wide range from 30 to
more than 3000, hence we only used a cut off Zsummary >10 as
recommended for strong preservation and then ranked the degree
of preservation based on medianRank. The lower medianRank
one module has, the stronger preservation it tends to exhibit in
another dataset. Langfelder et al. found medianRank to be much
less dependent on module sizes, and hence it can be a useful
measure for comparing relative preservation among multiple
modules (Langfelder et al., 2011).

To identify key modules related to the response to drug
treatments, association analysis between a module and the
trait of each pairwise comparison group (e.g., lithium–water,
quetiapine–DMSO) was performed based on module
eigengenes. Student asymptotic p-values were calculated for
correlation values, and then adjusted for multiple testing with
Benjamini–Hochberg false discovery rate correction.

Functional Enrichment Analysis
In order to find potential pathways that might be driven by key
modules, functional enrichment analysis was deployed on all
genes from each module using the R package ClusterProfiler (Yu
et al., 2012) with pathway reference from the Gene Ontology
(GO) database (Gene Ontology, 2004) filtered by “Biological
Process”. ClusterProfiler is a popular enrichment package,
which was extensively utilized in medical studies (Liu et al.,
2021; Liu et al., 2022a; Liu et al., 2022b).

Despite their comprehensiveness, GO terms are prone to
redundancy, which might complicate the functional
interpretation. Hence, we deployed the Enrichment Map from
Cytoscape (Merico et al., 2010) to intuitively visualise the
enrichment results in a network-based manner. Enrichment
Map clusters similar gene sets together (based on how well-
connected their genes are), offering a more concise overview of

enriched biological functions. In the map, gene sets were
illustrated as nodes and would be linked together if they share
overlapping genes. The overlapping metric was calculated based
on a combination of Jaccard coefficient and overlap coefficient
(50% and 50% respectively), and a cut-off of 0.375 was set to
define edges forming between nodes.

lncRNA-mRNA Co-Expression Networks,
Identification of Hub lncRNAs, Cis- and
Trans-Interactions
The lncRNA-mRNA co-expression network of key modules
associated with the drug treatments was built using the bi-
weight mid-correlation of lncRNA-mRNA pairs. The lncRNA-
mRNA pairs whose weights of connection were at least 0.15 were
selected for co-expression network construction. The network
was imported and visualized in Cytoscape (Shannon et al., 2003).
To find potential key regulators of each module, hub lncRNAs
were identified by degree of centrality levels calculated using
Cytoscape (Shannon et al., 2003).

To find potential cis-targets of lncRNAs in each key module,
nearest protein coding genes located 100 kb upstream or
downstream from the transcription start site of lncRNAs were
identified by BEDTools (Quinlan and Hall, 2010) v2.27 with
annotation from human genome version GRCh38. Otherwise, the
other mRNAs in the module would be considered to have trans-
interaction with lncRNAs in the module. Among these trans-
interactions, we evaluated if any of them could be due to the
regulation of transcription factors on lncRNAs as co-expression
relationships can be interpreted in both directions. Hence, we
searched for trans-acting transcription factors found nearby
lncRNAs (from −30 to 10 kb away from transcription start
sites) using chromatin immunoprecipitation followed by
sequencing (ChIP-seq) data from the ChIPBase database
(Zhou et al., 2017).

RESULTS

Differential Expression Analysis
The characteristics of RNA-seq results for each drug treatment
and differential analysis mainly for mRNAs have been reported in
our previous publication (Bortolasci et al., 2020b). For lncRNAs,
we found 1044 were expressed at detectable levels in NT2-N cells.
Among them, 282 lncRNAs were differentially expressed (FDR
<0.05) following treatment of NT2-N cells with one or more
drugs used to treat BD (Supplementary Table S1). While
differential expression analysis is the initial approach for
evaluating genes driving the difference between different
phenotypes (in our case, treatments and controls), it can be
challenging to study lncRNAs which tend to be expressed at
lower levels than mRNAs (Ulitsky, 2016; 2019). The significance
of p-values was evaluated based on the whole distribution of all
genes detected in our RNA-seq (including mRNAs, lncRNAs),
thus any genes with lower fold change would be less likely to be
significantly differentially expressed after correction for multiple
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FIGURE 2 | Heatmap of module-trait relationships with corresponding p-values between the detected modules on the y-axis and vehicle-drug traits on the x-axis.
The correlation value and Benjamini–Hochberg adjusted p-value for each pair are labelled on the cell in the format: correlation (p-value). Each cell of the heatmap is
coloured based on correlation between each module eigenvalue and the trait: blue is a strong positive correlation, red is a strong negative correlation, and white is little to
no correlation. For example, regarding the DMSO-Lamotrigine trait, the module 5, with the negative correlation value of −0.66 and significant adjusted p-value of
0.002, tends to have lower overall expression (summarised as eigengene value) in lamotrigine treatment compared with the corresponding DMSO vehicle control.
Abbreviation: DMSO_LAM–Lamotrigine treatment versus DMSO vehicle, DMSO_QUE–Quetiapine treatment versus DMSO vehicle, H2O_LIT–Lithium treatment versus
water vehicle, H2O_VAL–Valproate treatment versus water vehicle. Modules labelled with hash (#) were coherently regulated with same directionality by at least three
drugs. LncRNA-mRNA co-expression networks, identification of hub lncRNAs.
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testing. Therefore, differential expression analysis was
complemented with an unsupervised gene co-expression
analysis method to discriminate small but coherent patterns of
differences.

Weighted Gene Co-Expression Network
Analysis
After identifying individual lncRNAs that were differentially
expressed, we next sought to identify co-expressed networks of
genes from the whole transcriptome, as this approach may reveal
additional lncRNAs of interest and other important mechanistic
insights. Without any a priori defined groups like in differential
expression analysis, weighted gene co-expression network
analysis (WGCNA) on the whole transcriptome explored
highly correlated and consistent transcriptional patterns across
24 samples of our RNA-seq results (four samples x two vehicles,
four samples x four drug treatments). While bigger sample size
would be more ideal, 24 samples are within the recommendation
of the WGCNA workflow for robust analyses (Langfelder and
Horvath, 2022). WGCNA identified 29 modules and the full list
of genes in each module is shown in Supplementary Table S2.

To validate the reproducibility of the modules in the current
WGCNA network, we performed preservation analysis of
topology and connectivity patterns against an independent
RNA-seq dataset from our previous study that used different
treatments of psychotropic drugs on the same NT2-N cell model
(Bortolasci et al., 2020b). Biologically interesting modules are
expected to be preserved in other samples with a homogeneous
cellular population, which implies sets of genes working in
concert for specific biological functions. From the results of
the module preservation analysis (illustrated in
Supplementary Figure S1), any module with a z-summary
score higher than 10 was regarded as strongly preserved,
meaning the co-expression relationships of its member genes
were maintained across the two datasets. Among the 11 modules
found to be strongly preserved in this independent dataset,
module five was the most highly preserved module.

Identification of Key Modules Associated
With Drug Treatment (Module-Trait
Analysis)
Results from the module-trait association analysis for the 11
preserved modules are shown in Figure 2 (each cell in the
heatmap has a correlation value and an adjusted p-value). The
acquired module-trait relationships enabled the evaluation of
which module(s) were most affected by each drug. While the
most significant module associated with each drug treatment was
of interest, we cannot rule out the possibility that such an
association could be accounted for by off-target effects. Hence,
we further filtered modules which were coherently associated
with at least three drug-vehicle pairs in a similar manner with
statistical significance of adjusted p-value < 0.05 (correlation
values can be either negative or positive, but they must share
the same directionality in at least three traits), as similar effects of
multiple drug treatments on one module tend to imply the

common therapeutic mechanisms of the drugs rather than
distinct side effects of each drug. We identified seven modules
meeting such requirements (modules 1, 3, 4, 5, 7, 9, and
10—labelled with a hash symbol in Figure 2) and these
modules were regarded as key modules associated with BD
drug treatments. In further analyses, we focused on the key
modules to find co-expressed relationships of genes belonging
to each module, and which drug treatment was most strongly
associated with each module.

The lncRNA-mRNA co-expression networks were
constructed on the six key modules coherently regulated with
the same directionality by three or more drugs to shed light on the
molecular mechanism of lncRNAs that might be potential targets
of drugs used to treat BD. Module nine was eliminated from this
step due to the lack of lncRNA presence in the module. Hence,
there were five key modules associated with the effects of BD drug
treatments (i.e., modules 1, 4, 5, 7, and 10) being constructed for
the lncRNA-mRNA co-expression networks. The integrated
network of these modules is illustrated in Supplementary
Figure S2 and separated sub-networks for single modules are
shown in Figure 3.

Network statistics of lncRNAs identified from these modules
are presented in Supplementary Table S3. Genes from each
module were ranked by degree of centrality, which measures the
number of edges (interactions) each node has. Nodes with greater
importance tend to lie on multiple paths (edges) between other
nodes and hence finding hub genes with high degrees of centrality
can illuminate the greatest influencers of the biological networks
(Mason and Verwoerd, 2007). Interestingly, the most connected
lncRNAs (hub lncRNAs) identified tended to be differentially
expressed in the drug treatments having highest module-trait
relationships with these lncRNAs’ modules. The complementary
results of differential expression analysis reinforced the role of
these lncRNAs in their corresponding module: the eigen value
representing a module most correlated with a certain treatment
(module-trait relationship in co-expression network analysis),
and hence the hub genes that have the greatest contribution to
such module regulation tended to have more significant
difference induced by such treatment (reflected as log fold
change) than other treatments, to an extent that reached the
FDR 0.05 cut-off in differential expression analysis for
single genes.

Cis- and Trans-Interactions
To explore the characteristics of regulatory relationships between
lncRNAs and mRNAs, we searched for cis-targets within each
module based on proximity of coding genes to transcription start
sites of lncRNAs, as well as genes encoding transcription factors
trans-interacting with lncRNAs based on known binding
evidence from chromatin immunoprecipitation followed by
sequencing (ChIP-seq) data (Supplementary Table S4). In the
five lncRNA-mRNA key modules, SETD1B identified as potential
cis-targets identified within 100 kb of LINC01089. We identified
four lncRNAs that might potentially be regulated themselves by
coding genes in the same module that are trans-acting
transcription factors found nearby the promoter or enhancer
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region of those lncRNAs. These transcription factor-lncRNA
regulation relationships were found only in several lncRNAs
located in two modules, and most trans-interactions of
lncRNAs-mRNAs tended to be regulated by lncRNAs rather
than the other way around.

Functional Enrichment Analysis
Over-representation analysis was undertaken for genes from five
key modules with hub lncRNAs prominently contributing to the

module regulation (i.e., modules 1, 4, 5, 7, and 10) to identify the
main biological processes driven by each module (detailed results
provided in Supplementary Table S5). GO terms from each
module with p-values <0.001 were then analysed in Enrichment
Map to be grouped into clusters, which highlights the major
functional themes enriched in the five key modules (Figure 4).

The Enrichment Map showed a clear separation of biological
functions enriched by the five key modules. Module one appears
to be related to epigenetic modification via the enrichment of

FIGURE 3 | Separated lncRNA-mRNA subnetworks of five key modules. In the network, nodes representing genes and edges representing co-expression
connections between them, mRNAs are circle nodes while lncRNAs are diamond shaped. Each subnetwork corresponds to a module: (A) Module 1 (red nodes), (B)
Module 4 (pink nodes), (C) Module 5 (orange nodes), (D) Module 7 (yellow nodes), and (E) Module 10 (blue nodes).
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genes regulating histone acetylation. Module four showed
enrichment in cell morphogenesis, RNA metabolism and
response to oxidative stress. Module five focused on vesicle
docking and fusion of trans-synaptic transmission. Module
seven was enriched for peptidyl tyrosine phosphorylation and
protein catabolism, which might be involved in the response to
endoplasmic reticulum stress. Module 10 may regulate the
formation of Purkinje cells and the basement membrane
organization.

DISCUSSION

In the current study, multi-stepped approaches using systems
biology methodology were deployed to investigate the molecular
mechanisms of commonly prescribed BD drugs with a focus on
lncRNAs and their potential regulatory connections with
mRNAs. LncRNAs are generally expressed at lower levels than
protein coding RNAs, but the cascade of regulations induced by
lncRNAs may amplify the effects they produce (Ulitsky, 2016; Hu
et al., 2018; Encode, 2019). However, they might be overlooked by
conventional pair-wise gene expression comparisons, in which
the extent of differential expression highlights significant genes
for further analyses. Despite their low abundance that could be
considered barely changed using conventional differential
expression methods, lncRNAs can exert pronounced effects via
their distinct mechanisms, e.g., one to ten molecules per cell is
likely adequate for enabling cis-acting lncRNAs to affect
transcription at a single locus or at several loci through either
direct base-pairing with genomic DNA or recruitment of
chromatin modifiers (Wu et al., 2021). Several lncRNAs were
found to drive vital processes even with subtle changes such as

RepA (X-chromosome inactivation) (Zhao et al., 2008), and
VELUCT (lung cancer cellular viability) (Seiler et al., 2017).
Since genes rarely act alone, considering them in the context
of biological networks that they shared interactions with is
fundamental to gain better understanding of regulatory entities
such as transcription factors and lncRNAs.

Network-based analyses such as co-expression networks
prioritised relationships (co-expression) rather than just the
states of singular components (mean expression changes). An
analysis based only on mean changes in expression could lead to
an incorrect conclusion about a particular pathway’s involvement
in a condition given that genes may change their partners
depending on dynamic biological demands to recruit or
disassociate groups of co-regulated genes for a particular task
(Mentzen et al., 2009). Pathways with significant mean expression
alteration but decreased co-expression could imply a change in
functional assignment but do not guarantee whether genes a
priori assumed to be in the certain biological pathways are
actually dedicated to such pathways since genes could have
switched roles and interacted with genes from different
pathways (Mentzen et al., 2009; de la Fuente, 2010). The
essential need to consider co-expression changes in addition to
differential mean expression when comparing gene expression
datasets has been emphasised in multiple biological contexts
(Mentzen et al., 2009; de la Fuente, 2010; Savino et al., 2020;
Weighill et al., 2021). For example, co-expression analyses of
cancer gene expression datasets found several transcription
factors known to regulate cancer development were identified
as highly differentially co-expressed, despite their mean
expression levels not having significant changes (de la Fuente,
2010). A proof-of-concept example from Hudson et al. showed
co-expression analysis correctly identified a causal gene with a

FIGURE 4 | Enrichment Map of five key modules with hub lncRNAs contributing to the modular regulation induced by bipolar disorder drugs. Enriched gene sets
are represented as nodes, while edges connect the similar gene sets together. Nodes are coloured by the module they enriched with the coloured patches covering all
enriched gene sets by module; one node might be enriched in multiple modules. The bigger the node, the higher the number of genes found in the gene set. The
thickness of each edge is proportional to the number of mutual genes between nodes. Gene sets with similar functions are clustered and labelled based on themain
theme they belonged to. Abbreviation: ER–endoplasmic reticulum.
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mutation between two bull varieties, whereas the gene had non-
significant mean expression changes (Hudson et al., 2009).

In our analyses, co-expression network analysis utilised the
whole transcriptome to offer insights on the role of lncRNAs via
their connection to other biological entities such as mRNAs
(Parikshak et al., 2015). Hence, such a systems biology
approach is more ideal to characterise the complexity of BD as
well as its treatments (Gaiteri et al., 2014). While WGCNA has
been deployed in some psychiatric disorders including BD (Akula
et al., 2016; Fromer et al., 2016; Kim et al., 2016; Liu et al., 2019;
Zhang et al., 2021), to our knowledge, this is the first-time co-
expression network analysis was used for exploring
mechanism(s) of action of drugs used to treat BD.

Based on RNA-seq gene expression profiles of four BD drug
treatments in NT2-N cells, we applied WGCNA to explore co-
expressed genes with a focus on lncRNA-mRNA connectivity and
to further identify hub lncRNAs associated with the drug
treatments. In many cases, hub genes, particularly
intramodular hubs, play a greater role than other network
nodes in determining the network’s functionality (Horvath,
2011). Hence, identification of hub lncRNAs might illuminate
major lncRNAs influencing the transcriptional regulation of their
corresponding modules, which were strongly associated to a
certain drug treatment. We also evaluated the type of
regulatory interactions between lncRNA and mRNAs, such as
potential cis mRNA targets, and trans-acting transcription factor-
lncRNA relationships based on current knowledge of
transcription factor binding sites. As lncRNAs might be cis- or
trans-acting, while the prior can be identified based on the
proximity of coding genes to the lncRNAs, pinpointing the
latter is challenging due to the complex mechanisms (Statello
et al., 2021). Therefore, we identified the potential transcription
factors that might regulate lncRNAs, leaving the rest of lncRNA-
mRNA trans-interactions more likely to be regulated by
lncRNAs.

From 29 modules clustered upon the co-expression pattern of
the whole dataset, we identified five key modules for lncRNA-
mRNA networks as potential drivers of BD drug treatments. As
the roles of lncRNAs are mainly unknown in BD, their functions
can be speculated via the connected mRNAs in the modules as per
the ‘guilt-by-association’ principle (van Dam et al., 2018). Such
association was employed based on how genes co-expressed with
one and another across all samples, with the justification that
closely regulated genes are more likely to be associated with
similar functions. Interestingly, our enrichment analysis showed
while there was separation in functional annotations between
modules, the enriched functions tended to be complementary,
serving several major biological processes such as synaptic vesicle
cycle, actin filament organization, endoplasmic reticulum-related
functions and neurodevelopment. Findings from previous studies
using co-expression network analysis for bipolar disorder have
found similar processes significantly enriched by hub genes, e.g.,
regulation of transcription, postsynaptic density, ribosomal
subunit, endocytosis (Akula et al., 2016; Liu et al., 2019), actin
filament-based process, axon development (Zhang et al., 2021).
Co-expression analysis on RNA-seq of whole blood from BD
patients found the co-expressed modules associated to lithium

usage enriched endoplasmic reticulum related functions (Krebs
et al., 2020). However, it should be acknowledged that these
studies mainly focused on mRNAs rather than lncRNAs for their
co-expression network construction, hence the involvement of
lncRNAs was not evaluated. Nevertheless, the similar enriched
biological processes in BD-related phenotypes supported the
findings found in our current study.

Our functional enrichment analysis on key modules
highlighted their association to the synaptic vesicle cycle,
in which module five was enriched for vesicle docking and
fusion processes. The synaptic vesicle cycle is highly relevant
to BD given that the classic pathophysiological hypothesis has
been built upon dysregulation of monoamine transmission
(Stahl, 2013). The expression of the hub lncRNA of module 5,
GAS6-AS1, was upregulated by valproate–the treatment that
module five correlated to the most. While the role of GAS6-
AS1 in BD is unclear, it promoted cell proliferation, migration
and invasion in several cancer cell lines (Zhang et al., 2019; Li
et al., 2020). Interestingly, GAS6-AS1 was also shown to
activate the PI3K/AKT pathway (Li et al., 2020), which
itself plays a vital role in vesicle trafficking (Bhattacharya
et al., 2016; Bilanges et al., 2019).

Targeting the endoplasmic reticulum (ER) and its related
processes could be one major function regulated by BD drugs,
as inferred from multiple modules in this study: response to
ER stress mainly in module seven and partially in module 5.
When ER stress occurs, autophagy is activated to restore
cellular homeostasis, but this response is compromised in
BD (Susanne et al., 2016). There is converging evidence
demonstrating that lithium increases autophagy via inositol
depletion (Bar-Yosef et al., 2019). An analysis of the lithium
response gene network in BD-patient derived lymphoblastoid
cell lines also identified ER stress as a major module (Breen
et al., 2016). LINC02381 was identified as the hub lncRNA in
module 7. LINC02381 has not been researched in BD
previously. Evidence from gastric cancer cell lines
suggested LINC02381 can reduce Wnt pathway activity and
increase apoptosis (Jafarzadeh and Soltani, 2020). Our
previous study presented the downregulation of the Wnt
pathway in multiple antipsychotic treatments including
quetiapine, suggesting this pathway might be a common
mechanism induced by different antipsychotics (Panizzutti
et al., 2021). In the current study, such an effect could be
partially explained by the upregulation of hub lncRNA
LINC02381 by quetiapine shown in differential expression
analysis, which in turn attenuates the Wnt pathway.

Module 10 appears to contain an integrated cluster of
functions related to neurodevelopment via its effect on
Purkinje cells and the basement membrane. The basement
membrane is part of the extracellular matrix system that
plays a critical role in corticogenesis involving Purkinje cells
in the cerebral cortex (Franco and Müller, 2011). Damage-
associated molecular patterns of extracellular matrix
components of the basement membrane induce an immune
response suggested to be part of the pathogenesis of BD (Rege
and Hodgkinson, 2013). The expression of two hub lncRNAs of
module 10, MIR124-2HG and MIR100HG, were found to be
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differentially expressed by several drug treatments. MIR124-
2HG is the host gene of miR-124, which is the most abundant
brain-specific miRNA regulating neuronal differentiation
during CNS development and adult neurogenesis (Sonntag
et al., 2012). Moreover, miR-124 was shown to have a
pathophysiological contribution in some neuropsychiatric
disorders such as Alzheimer’s disease and autism (Tabarés-
Seisdedos and Rubenstein, 2009; Fang et al., 2012).
MIR100HG (alternative name Linc-NeD125) was suggested in
human neuroblastoma-derived cells to be specifically induced
during neuronal differentiation to support cell survival
(Bevilacqua et al., 2015). While MIR100HG encodes three
miRNAs in its intron (i.e., miR-100, miR-125b and let-7a)
(Ottaviani et al., 2018), it might work independently of the
hosted microRNAs to promote the required conditions for
differentiation by attenuating cell proliferation and exerting
its anti-apoptotic function via the activation of BCL-2
(Bevilacqua et al., 2015). These hub genes have yet to be
explained in terms of their biological functions in BD, hence
more studies are needed to illuminate their involvement in the
disorder.

This study is not without limitations. We used the in vitro
model of NT2-N cells that have limited capacity to represent the
disease state. In addition, the 24-h administration with a single
dose for each drug for our NGS analyses limits the overall
evaluation on the long-term pharmacological regulation.
Finally, the analysis was focused on one dataset due to the
limited availability of high-throughput expression data of BD
drug responses. More representative results could be obtained
from the incorporation of multiple datasets, as well as the
addition of other ncRNA species such as miRNAs and siRNAs
to obtain more comprehensive insights on the molecular
mechanism(s) of BD drugs.

In conclusion, our study demonstrates the potential key role of
lncRNAs in the regulatory effect of BD drugs via the associated
lncRNA-mRNA co-expression networks. Several major processes
were enriched in key modules associated with drug treatments
such as synaptic vesicle cycle, cell cycle, endoplasmic reticulum-
related functions and neurodevelopment. These results
contribute to our understanding of the mechanisms of action
of BD drugs and suggest potential novel targets for therapeutic
intervention.
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