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Iron is both, an essential compound for many metabolic processes, and iron deficiency
can impact on the proliferation of cells including lymphocytes but also tumor cells. On the
other hand, excess iron-catalyzed radical formation can induce cellular toxicity which has
been previously demonstrated for T cells in hereditary iron overload. Despite these
interconnections, little is known on the effects of clinically approved intravenous iron
supplements for curing cancer-related anemia, on T cell differentiation, tumor proliferation,
anti-tumor T cell responses and, of clinical importance, on efficacy of cancer
immunotherapies. Herein, we analyzed the effects of intravenous iron supplementation
on T cell function and on the effectiveness of anti-cancer chemotherapy with IL-2/
doxorubicin or immunotherapy with checkpoint-inhibitor anti-PD-L1 in C57Bl/6N female
mice with implanted E0771 mammary carcinomas. We found that iron application resulted
to an increased availability of iron in the tumor microenvironment and stimulation of tumor
growth. In parallel, iron application inhibited the activation, expansion and survival of
cytotoxic CD8+ T cells and of CD4+ T helper cells type 1 and significantly reduced the
efficacy of the investigated anti-cancer treatments. Our results indicate that iron
administration has a tumor growth promoting effect and impairs anti-cancer responses
of tumor infiltrating T lymphocytes along with a reduced efficacy of anti-cancer therapies.
Iron supplementation in cancer patients, especially in those treated with immunotherapies
in a curative setting, may be thus used cautiously and prospective studies have to clarify
the impact of such intervention on the outcome of patients.
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INTRODUCTION

Because of its high redox activity iron is a key component of
several enzymatic processes. Virtually every cell of the body,
including malignant cells, requires iron for its metabolism and
proliferation. Especially, the production of hemoglobin during
erythropoiesis consumes about 20–30 mg of iron per day and
additional iron is needed for the synthesis of several enzymes.
Most iron is provided by macrophages which ingest aged or
damaged red blood cells (1). After phagocytosis, the heme of
erythrocyte hemoglobin is mobilized to the cytoplasm, degraded
by heme oxygenase 1, and molecular iron is exported from the
macrophage via the iron-exporter ferroportin-1 to the circulation,
a process which is negatively controlled by the hormone hepcidin
(2). Iron in the circulation is transported bound to transferrin and
is taken up by metabolically active and dividing cells via
transferrin receptor-1 (3). The uptake of iron via transferrin
receptor-1 is thus of highest relevance for the differentiation of
rapidly dividing cells such as erythroblasts and lymphocytes (4, 5).
As a consequence, mutations in the gene coding for transferrin
receptor-1, TFRC, can cause combined immunodeficiency
characterized by impaired function of B and T lymphocytes (6).
On the other hand, an excess of intracellular iron in cells has to be
stored within ferritin to avoid toxicity of labile iron via catalysis of
hydroxyl radical formation (7, 8). Since iron is crucial for both
microbes and mammalian cells, iron homeostasis undergoes
subtle changes during infection and inflammatory processes
resulting in sequestration of the metal within macrophages,
thereby reducing circulating iron pools and making the metal
less available for pathogens. This process, termed nutritional
immunity, is mediated by various cytokines and hepcidin,
whose expression gets upregulated upon multiple inflammatory
and danger signals (9). Such alterations of iron homeostasis also
occur in association with other inflammatory processes including
cancer (10) characterized by normal or high iron stores as
reflected by increased levels of ferritin whereas circulating iron
levels and saturation of transferrin with iron are low. This
functional iron deficiency causes iron limitation of erythroid
progenitor cells and contributes to the development of so called
anemia of inflammation (AI) or anemia of chronic disease (ACD)
or anemia of cancer (11). In addition, this also limits iron
availability for cancer but also for immune cells such as
lymphocytes and may thus impact on anti-cancer immune
effector function and even on the efficacy of anti-tumor
immunotherapy. There is evidence from literature that this can
be traced back to effects of iron on immune and cancer cell
proliferation and differentiation, innate immune function and
regulation of cellular metabolic processes including mitochondrial
activity and micro RNA processing (10, 12–15).
Abbreviations: ACD, anemia of chronic disease; CFSE, Carboxyfluorescein
succinimidyl ester; Ctrl, control; DCFDA, 2′,7′-Dichlorodihydrofluorescein
diacetate; DOX, doxorubicin; ESA, erythropoiesis stimulating agents; IL-2,
interleukin-2; IFNg, interferon gamma; NAC, N-acetyl cysteine; NTBI, non-
transferrin bound iron; PD-L1, programmed death-ligand 1; RBC, red blood
cell; ROS, reactive oxygen species; TBI, transferrin bound iron; Tc, cytotoxic T cell;
Th, helper T cell; Treg, regulatory T cell.
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Breast cancer is the most common type of cancer in women
worldwide and, despite the enormous progress in diagnosis and
treatment, it still represents one of the main causes of cancer-related
death. Several studies have shown a link between dysregulation of
iron metabolism and progression of breast cancer (16, 17).
Particularly, spatio-temporal accumulation of iron in the tumor-
microenvironment was linked to an increased cancer risk and poor
outcome, respectively (18, 19). Mechanistically, apart from the
effects of iron on immune function, the metal can stimulate
cancer metabolism, alter iron dependent redox balance, which
increases mutation rates, organelle damage, loss of tumor
suppressors, oncogene expression and triggers pro-oncogenic
signaling like Wnt and NFkB pathways (20–22).

Tumor growth and progression can be both enhanced and
inhibited by cells of the immune system including T cells by a
process which is called immunosurveillance (23). T lymphocytes
as components of the adaptive immune system can destroy
tumor cells in situ. The predominant tumor infiltrating
lymphocytes are CD4+ T helper cells, CD8+ cytotoxic T cells,
and regulatory T cells (24). CD4+ T cells are classified into TH1
cells secreting proinflammatory cytokines like IFNg and IL-2,
whereas TH2 cells secrete IL-4, IL-5, IL-10, and IL-13. TH2
cytokines induce T cell anergy and lead to an increase of
humoral B cell function (25, 26). The primary role of CD4+

helper T cells in tumor response is to assist in the activation of
CD8+ T cell mediated cell killing. Most tumor cells are positive
for MHC class I, but negative for MHC class II, which makes the
primary anti-tumor response dependent on CD8+ cytotoxic T
cells (27). In cancer patients a tumor response involving CD8+ T
cells, TH1 CD4

+ T cells, and IFNg producing natural killer cells is
associated with a better prognosis (28). In contrast, a B cell and
TH2 polarized response can promote tumor development and
progression (28). Immunosuppressive effects of iron on the T cell
response have been described. Iron can trigger CD4+

differentiation towards a TH2 phenotype (14, 29) and impact
on CD8+ cell numbers (30). A similar impairment of T cell
function has been observed in individuals with hereditary or
transfusion mediated iron overload (31, 32).

Of note, individuals carrying the homozygous HFE
C282Y mutation, the most common cause for hereditary
hemochromatosis, are at increased risk of developing cancer,
including breast cancer (19). Whether this is a direct consequence
of iron toxicity or related to quantitative or qualitative alterations in
T cell subsets remains unknown (33).

In spite of the direct effects of iron on tumor cells and anti-
tumor immunity, the impact of intravenous iron preparations
used for treatment of cancer related anemia towards the further
clinical course and outcome of cancer along with their impact on
specific cancer therapy is still unknown (34, 35). On the one
hand, the functional iron deficiency caused by tumor-
accompanying inflammation may be regarded as a measure to
limit tumor progression, on the other hand, iron deficiency and
ACD may result in suboptimal delivery of iron needed for
immune cell function.

Herein we demonstrate that isomaltosoide, an iron formulation
used for correction of iron deficiency in humans, negatively
impacts on the efficacy of cancer immunotherapy and combined
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IL-2/doxorubicin chemo-immunotherapy in a murine E0771
mammary carcinoma model. In vivo, iron supplementation led
to accelerated cancer growth and impaired efficacy of the
investigated therapy protocols along with diminished tumor
infiltration by cellular effectors of anti-tumor response, TH1 and
cytotoxic T cells. Mechanistically we show that iron, both in
transferrin-bound and non-transferrin bound form, dramatically
brakes CD4+ and CD8+ T cell proliferation and cytokine
production and promotes cell death.
MATERIAL AND METHODS

Cell Line
E0771 mouse adenocarcinoma cells (obtained from ATCC) were
maintained in DMEM (Dulbecco`s Modified Eagles`s Medium;
PAN Biotech) plus 10% fetal calf serum (FCS; Biochrom) plus
1% penicillin/streptomycin (Lonza) plus 2 mM L-glutamine
(Lonza) at 37°C, plus 5% carbon dioxide (36).

Mice
Female C57Bl/6N mice (obtained from Charles River) had free
access to food and water and were housed according to
institutional and governmental guidelines in the animal facility
of the Medical University of Innsbruck with a 12-hour light-dark
cycle and an average temperature of 20°C ± 1°C. Animals were
kept on a standard rodent diet (SNIFF, Soest, Germany). Blood
was taken through the facial vein and blood counts were
measured with a VetABC Animal Blood Counter. Animal
experiments were approved by the Austrian Federal Ministry
of Science and Research (BMWF-66.011/0117-WF/V/3b/2017)
according to the directive 2010/63/EU.

Implantation of Tumors
C57Bl/6 derived E0771 adenocarcinoma cells were washed twice
in PBS and 2.5 × 105 cells injected into one of the inguinal
mammary glands into 8–12 weeks old female C57Bl/6N mice
under short-term inhalation anesthesia with isoflurane. Three
days after tumor implantation mice were given intravenously
2 mg elementary iron in the form of iron isomaltoside (Monofer;
Pharmacosmos) or PBS. Tumor growth was monitored weekly
by caliper measurements of length (l) and width (w). Tumor
volume was calculated with the formula V = lw2p/6. Three weeks
after tumor implantation mice were sacrificed by cervical
dislocation, and tumors were isolated by surgical excision.

Tumor Therapy
For checkpoint immunotherapy, tumor-bearing mice were
intraperitoneally administered anti-mouse PD-L1 antibodies (0.5
mg/animal, clone10F.9G2; BioXCell) every third day starting from
day 1 after tumor implantation. For chemo-immunotherapy,
doxorubicin (5 mg/kg, Accord) was administered intraperitoneally
into tumor-bearing mice once on day eight after tumor
implantation and recombinant murine IL-2 (100,000 IU per
animal, Peprotech) daily starting on day nine after tumor
implantation (37).
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Isolation of Tumor-Infiltrating
Lymphocytes
Tumor tissue was minced and digested with Liberase TM (0.15
Wünsch-Units/ml, Roche) and 10 µg/ml DNaseI (Roche) in
FCS-free RPMI-1640 (PAN Biotech) medium with constant
mixing (250 rpm), at 37°C for 1 h. Tumor cell suspension was
collected through a 100 µm cell strainer into a tube containing
RPMI-1640 (PAN Biotech) plus 10% FCS (Biochrom) plus 1%
penicillin/streptomycin (Lonza) plus 2 mM glutamine (Lonza)
and centrifuged at 300g for 5 min. Red blood cells were lysed by
incubation in ACK buffer (150 mM NH4Cl, 10 mM KHCO3, 0.1
mM Na2EDTA) for 2 min at room temperature. Cell suspension
was filtered through a 40 µm cell strainer and used for flow
cytometry staining.

Flow Cytometry Analysis
Flow cytometry staining was performed with panels of
antibodies specific for activated/memory T cells (aCD3-
Biotin, aCD4-FITC, aCD8-APCeF780, aCD62L-PeCy7,
aCD44-APC; all from BioLegend) in PBS with 0.5% FCS 2
mM EDTA for 15 min. For intracellular staining cells will be
stimulated with a mix containing 10 µg/ml Brefeldin A (Sigma),
50 ng/ml PDBu (Sigma) and 500 ng/ml ionomycin (Sigma) in
RPMI-1640 (PAN Biotech) plus 10% FCS (Biochrom) plus 1%
penicillin/streptomycin (Lonza) plus 2 mM L-glutamine
(Lonza) for 4 h. The cells were then formalin-fixed,
permeabilized (0.05% Triton X-100 in PBS) and stained for
cytokines (aIL-2-PE, aIFNg-PeCy7), and transcription factors
(aFOXP3-FITC) or perforin (aPerforin-APC) for 1 h. All
antibodies were from Biolegend. Cells were analyzed with
Gallios and Cytoflex S flow cytometers (Beckman Coulter)
and FlowJo Software (Beckton Dickinson).

Splenocyte Cell Culture
Spleens were isolated from tumor-naive female C57Bl/6N mice.
After lysis of erythrocytes using the Mouse Erythrocyte Lysing
Kit (R&D Systems) 2.5 × 105 splenocytes per well were then
seeded in a 96-well round bottom plate and stimulated with
4 µg/ml plate-bound or 1 µg/ml soluble rat anti-mouse CD3
(clone 17A2; BD Pharmingen). Ferric chloride FeCl3 (Sigma
Aldrich), ferric sulfate Fe2(SO4)3 (Sigma Aldrich), ferric citrate
FeC6H5O7 (Sigma Aldrich), and holo-transferrin were added at
concentrations of 2.5µM, 5 µM, 10 µM and 20 µM elementary
iron. Splenocytes were cultured in RPMI-1640 medium (PAN
Biotech) supplemented with 10% FCS (Biochrom), 2% sodium
pyruvate (Sigma), 1× non-essential amino acids (Gibco), 0.01%
b-mercaptoethanol (Roth), 1% penicillin/streptomycin (Lonza)
and 2 mM L-glutamine (Lonza).

BrdU Labeling of Splenocytes
Splenocytes were cultured as described before and pulsed with 10
µM BrdU (Sigma-Aldrich) 4 h before harvesting. Intracellular
staining for BrDU with surface co-staining for CD3, CD4 and
CD8 was performed with BrdU Flow Kit (BD) according to the
manufacturers` instructions and cells were analyzed with flow
cytometry. Iron sources ferric chloride FeCl3, ferric sulfate
December 2020 | Volume 10 | Article 584477
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Fe2(SO4)3, ferric citrate FeC6H5O7, and holo-transferrin were
added at indicated concentrations.

CFSE Labeling of Splenocytes
Before culture splenocytes were washed twice with PBS and
labeled with 2.5 µM CFSE (eBioscience) in PBS for 10 min at
37°C, followed by a wash with RPMI-1640 (PAN Biotech)
supplemented with 10% FCS (Biochrom). CFSE dilution after
96 h of culture was measured with flow cytometry. Where
indicated, the ferroptosis inhibitor Ferrostatin-1 (1 µM, Sigma),
cytoplasmic ROS scavenger NAC (N-acetylocysteine, 10 mM,
Sigma), necroptosis inhibitor Necrostatin-1 (30 µM, Sigma),
mitochondrial ROS scavenger MitoTEMPO (20 µM, Sigma), or
the caspsase-3-inhibitor z-DEVD-FMK (20 µM, BD) were added.
Iron was added in the form of 5 µM ferric citrate.

Iron Measurement
Tissue iron was quantified using a colorimetric method with
bathophenanthroline disulfonic acid (38). In brief, organ
lysates were hydrolyzed with acid for 24 h at 65°C, mixed
with a colorimetric solution containing sodium acetate,
bathophenanthroline disulfonic acid and l-ascorbic acid and
absorbance at 539 nm was measured. The iron content of the
organ was calculated from a standard curve and normalized to the
protein content of the lysate determined by the Bradford method.

ROS Measurement
Splenocytes were cultured as described before. For the
determination of mitochondrial and cytoplasmic ROS, cells
were stained with 2.5 µM MitoSOX (Thermofisher) and 2.5
µM DCFDA (Sigma), respectively, for 30 min at 37°C and
analyzed by flow cytometry. Splenocytes stimulated for 4 h
with the inhibitor of mitochondrial oxidative phosphorylation
rotenone (2.5 µM, Sigma) served as a positive control for
cytoplasmic and mitochondrial ROS.
Frontiers in Oncology | www.frontiersin.org 4
Statistics
Statistical analysis was performed with GraphPad Prism 7 and R
programming suite (version 3.6.3) with a tidyverse package
bundle and ggplot2 graphics library. If not stated otherwise,
data are plotted as mean with SEM presented as bars and
whiskers and single animals/observations presented as points
or symbols. Normality of variable distribution was assessed by
Shapiro–Wilk test and visual inspection of the quantile–quantile
plots. Statistical significance for two-group comparisons was
determined by a two-tailed T-test for normally distributed
variables and by the Mann–Whitney U test for non-normally
distributed variables. Statistical significance for comparisons of
more groups/factors was analyzed by one- or two-way ANOVA,
as appropriate, with Tuckey post-hoc test.

Differences in tumor growth rate (Figure 1) (1) between the
untreated tumor bearers and treatment groups (iron alone,
immunotherapy alone, and iron with immunotherapy) and (2)
between the immunotherapy- and immunotherapy/iron-treated
animals were analyzed with separate mixed-effect multiple linear
regression models (fixed effects: time point and therapy group:
time point interaction, random effect: individual animal, R
packages lme4 and lmer test). Regression estimates for the
therapy group: time point interaction term was assumed to
model differences in tumor growth rate (1) between the
untreated animals and the respective therapy regimen and (2)
between the immunotherapy and immunotherapy/iron group.

Statistical significance for differences in T cell counts in cultures
stimulated with iron, ROS scavengers or inhibitors of cell death
(Figure 8) was determined with mixed-effect linear modeling
(fixed effects: iron, cell death/ROS inhibitor and the iron: cell
death/ROS inhibitor interaction; random effect: cell donor). The
estimate of the iron: cell death/ROS inhibitor interaction term was
deemed the measure of reversal of iron effects on T cell expansion.

In linear modeling, statistical significance for the regression
estimates was determined by a two-tailed T-test (estimate ≠ 0;
A B

FIGURE 1 | Administration of iron negatively influences the efficacy of different immunotherapies. Female C57Bl/6 mice were subcutaneously implanted with E0771
cells (2.5 × 105 cells per animal), supplemented with intravenous iron isomaltoside (Fe, 2 mg elementary iron per animal) 3 days after tumor implantation and treated
with anti-PD-L1 (A) or IL-2 and doxorubicin (B) as described in Materials and Methods. Therapy-naive: n = 17, therapy-naive/iron: n = 5, anti-PD-L1: n = 14, anti-
PD-L1/iron: n = 17, IL-2/doxorubicin: n = 13, IL-2/doxorubicin/iron: n = 14. Tumor volume was determined weekly by caliper measurements. Statistical significance
was determined by mixed-effect multiple linear regression (fixed effects: time point and time point: treatment group interaction, random effect: individual animal).
Group means with SEM are presented. P values were corrected for multiple comparisons with Benjamini–Hochberg method. P values for differences in growth rate
between the untreated control and the given group and for the differences in growth rate between the immunotherapy and immunotherapy/iron groups (the time
point: treatment group interaction term estimates) are presented under the plots. ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001.
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degrees of freedom calculated with Satterthwaite formula,
package ImerTest) and corrected for multiple comparisons
with the Benjamini–Hochberg method.

Specific statistical data analyzed in main figures:

Figures 1A, B: Mixed-effect multiple linear regression (fixed
effects: therapy group and therapy group: timepoint
interaction, random effect: individual animal). P values for
the time:therapy interaction model terms are shown in the
plots.

Figure 2: Two-way ANOVA (A), (B), (C), (D) ns.

Figure 3B: 2-way ANOVA: treatment IL-2 + doxo, F(1, 41) =
22 P <0.0001; iron, F(1, 41) = 3.2 ns; treatment:iron interaction,
F(1, 41) = 6.9, P = 0.012; treatment aPD-L1, F(1, 45) = 25, P <0.0001;
iron, F(1, 45) = 3.5, ns; treatment:iron interaction, F(1, 45) = 6.2, P =
0.016; Tukey`s post test results presented in the plots.
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Figure 3C: 2-way ANOVA: treatment IL-2 + doxo, F(1, 52) = 1.7,
ns; iron, F(1, 52) = 6.6, P = 0.013; treatment:iron interaction,
F(1, 52) = 7.5, P = 0.0086; treatment aPD-L1, F(1, 46) = 0.00030,
ns; iron, F(1, 46) = 4.3, P = 0.044; treatment:iron interaction,
F(1, 46) = 4.9, P = 0.032; Tukey`s post test results presented in
the plots.

Figure 4A: 2-way ANOVA: treatment IL-2 + doxo, F(1, 54) = 6.55,
P = 0.014; iron, F(1, 54) = 3.1, ns; treatment:iron interaction,
F(1, 54) = 1.4, ns; treatment aPD-L1, F(1, 49) = 1.8, ns; iron,
F(1, 49) = 1.2, ns; treatment:iron interaction, F(1, 49) = 1.3, ns;
Tukey`s post test results presented in the plots.

Figure 4B: 2-way ANOVA: treatment IL-2 + doxo, F(1, 59) = 0.96,
ns; iron, F(1, 59) = 0.0091, ns; treatment:iron interaction,
F(1, 59) = 0.080, ns; treatment aPD-L1, F(1, 54) = 5.5, ns; iron,
F(1, 54) = 0.27, ns; treatment:iron interaction, F(1, 54) = 0.024,
ns; Tukey`s post test results presented in the plots.
A B

D

C

FIGURE 2 | Administration of intravenous iron has no influence on the numbers of effector CD3+ (A), CD4+ (B), CD8+ (C) and effector-memory (D) tumor infiltrating
lymphocytes in different immunotherapeutic settings. Naive TILs were identified as CD62LhiCD44lo, effector-memory TILs were described as CD62LloCD44hi in
tumors 21 days post implantation. Mean with SEM is presented in the plots. Statistical significance was determined by 2-way ANOVA. untreated n = 20, untreated +
iron n = 5, IL-2 + doxorubicin n = 15, IL-2 + doxorubicin + iron n = 14, aPD-L1 n = 17, aPD-L1 + iron n = 11. The results of ANOVA are presented in Materials and
Methods/Specific statistical data analysed in main figures.
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8+ tumor infiltrating lymphocytes (A–C). Representative plots are shown
not significant, *p < 0.05, ** p < 0.01, ***p < 0.001, ****p < 0.0001.
he results of ANOVA are presented in Materials and Methods/Specific
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FIGURE 4 | Effects of intravenous iron on CD4+ TILs (A), regulatory T cells (B) and Th1/Treg or Tc1/Treg ratios (C, D) in immunotherapy and ch
Treg (C) and Tc1/Treg (D) were calculated. Representative plots are shown (mean ± SEM). Statistical significance was determined by 2-way ANO
ns: not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. untreated n = 24, untreated + iron n = 3, IL-2 + doxorubicin n = 14, IL-2 +
The results of ANOVA are presented in Materials and Methods/Specific statistical data analyzed in main figures.
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Figure 4C: 2-way ANOVA: treatment IL-2 + doxo, F(1, 50) = 5.0,
P = 0.030; iron, F(1, 50) = 2.2, ns; treatment:iron interaction,
F(1, 50) = 2.4, ns; treatment aPD-L1, F(1, 45) = 1.9, ns; iron,
F(1, 45) = 1.6, ns; treatment:iron interaction, F(1, 45) = 1.4 ns;
Tukey`s post test results presented in the plots.

Figure 4D: 2-way ANOVA: treatment IL-2 + doxo, F(1, 36) = 12,
P = 0.0017; iron, F(1, 36) = 0.80, ns; treatment:iron interaction,
F(1, 36) = 4.4, P = 0.042; treatment aPD-L1, F(1, 38) = 30,
P <0.0001; iron, F(1, 38) = 5.5, ns; treatment:iron interaction,
F(1, 38) = 11, P = 0.0022; Tukey`s post test results presented in
the plots.

Figure 5: one-way ANOVA for particular iron forms, ANOVA
p values presented in the plot legends.

Figure 6A: two-tailed T test to compare the percentages of
CFSEhi, CFSEmed and CFSElo cells between control- and
iron-stimulated cultures, corrected for multiple comparisons
with Benjamini–Hochberg method. P values presented in the
pie plot.

Figure 6B: two-tailed T test, p values presented in the plot.

Figure 6C: two-way ANOVA: iron, F(1, 15) = 7.2, p = 0.017;
T cell–target ratio, F(1, 15) = 2.1, ns; iron: T cell–target ratio
interaction, F(1, 15) = 0.99, ns; Tukey`s post test results
presented in the plots.

Figure 7: Two-tailed T test for control–iron comparisons,
p values presented in the plots.

Figure 8: Mixed-effect multiple linear regression (fixed effects:
fixed effects: iron, cell death/ROS inhibitor and the iron: cell
death/ROS inhibitor interaction, random effect: cell donor).
P values for the iron: cell death/ROS inhibitor interaction
interaction model terms are shown in the Forest plots.

Chromium release assay: Murine B16/OVA melanoma cells
as target cells were cultivated in DMEM medium (PAN Biotech)
supplemented with 10% FCS (Biochrom), 1% penicillin/
streptomycin (Lonza) and 2 mM L-glutamine (Lonza). The
assay was performed as described (39). Briefly, 2 × 106 target
cells were labeled with 200 µCi Na2Cr

51O4 (specific activity 300
to 500 Ci/g chromate; Hartmann Analytik) for 1 h at 37°C,
washed once, and resuspended at a concentration of 5 × 104/ml
in medium. As effector cells CD8+ T cells were isolated from
spleens of C57BL/6-Tg(TcraTcrb) 1,100 Mjb/Crl mice (OTI
mice) with the help of the MagniSort Mouse CD8 T cell Kit
(Thermo Fisher Scientific). 2.5 × 106 cells/ml were then seeded in
a 96 well U-bottom plate (Falcon) and stimulated with 1 µg/ml
soluble rat anti-mouse CD3 (clone 17A2; BD Pharmingen) and 1
µg/ml hamster anti-mouseCD28 (clone 37.51; BD Pharmingen)
in RPMI-1640 medium (PAN Biotech) supplemented with 10%
FCS (Biochrom), 2% sodium pyruvate (Sigma), 1× non-essential
aminoacids (Gibco), 0.01% b-mercaptoethanol (Roth), 1%
penicillin/streptomycin (Lonza) and 2 mM L-glutamine
(Lonza). After 24 h CD8+ T cells were primed for 1 h with 1
µg/ml OVA (257–264) (Anaspec). About 20 µl of target cells (5 ×
103) were incubated with 200 µl of various amounts of effector
cells with effector:target (E:T) ratios ranging from 30:1 to 7.5:1.
After 4 h of incubation in a humidified 5% CO2/95% air
atmosphere, 100 µl of the culture supernatant were counted
Frontiers in Oncology | www.frontiersin.org 8
with a gamma-scintillation counter. Results are presented as
percentage of specific lysis.
RESULTS

The administration of intravenous iron is an established therapy
for cancer-related anemia but its effects on the underlying
malignancy, anti-tumor immunity and efficacy of tumor
immunotherapy remain incompletely understood. We thus
investigated the effects of intravenous administration of a
clinically applicable iron preparation, ferric isomaltoside, in the
implantable E0771 mouse mammary carcinoma model. Of note,
mice bearing E0771 neoplasms display mild impairment of
erythropoiesis as demonstrated by a significantly reduced
blood hemoglobin content and hematocrit as compared with
tumor-free mice (Supplementary Figure 1), hence, in part,
mimicking cancer-anemia phenotype observed at a substantial
percent of breast cancer patients.

Iron concentrations used for in vivo iron studies in mice differ
a lot (0.27–35 mg per mouse) and furthermore the basal
metabolic rate per gram body weight in mice is higher than in
humans (40). Therefore, we used a supra-clinical dose of 2 mg
per mouse (approx. 100 mg/kg, corresponding to 6–8 g in
humans), which was found to cause a significant accumulation
of iron in the canonical iron-storage organs, spleen and liver, in
tumor-free animals (spleen P = 0.033; liver P = 0.0013,
Supplementary Figures 2A, B). To investigate, if such iron
supplementation may cause a similar iron accumulation in the
tumor tissue, we implanted E0771 adenocarcinoma cells into
wildtype C57Bl/6N female hosts followed by intravenous
administration of ferric isomaltoside 3 days after tumor
implantation. As shown in Supplementary Figure 2C, we could
not observe any increase of tissue iron measured with the
colorimetric, bathophenanthroline disulfonic acid-based assay in
the neoplastic tissue on day 21 post implantation arguing against
an overt iron overload in the tumor like in the liver and spleen.
mRNA levels of transferrin receptor 1 (TFR1 or CD71) are tightly
negatively regulated by biologically active intracellular iron (41)
and, thus, cell surface levels of the protein may be used as a
sensitive surrogate marker for gauging iron availability in the
tumor microenvironment. Interestingly, both CD45- tumor
epithelial cells as well as CD45+ tumor-infiltrating leukocytes
isolated from the iron-treated E0771 tumor mice demonstrated
significantly decreased cell surface levels of CD71 (tumor
epithelium and leukocytes) and percentages of CD71-positive
cells (tumor epithelium) indicative of a better availability of
reactive iron in the tumor milieu upon systemic intravenous
iron supplementation (Supplementary Figure 2D).Our data
indicate that intravenous iron accumulates in the spleen and
liver without altering the total iron content of the tumor tissue
and increasing the local intracellular availability of reactive iron in
the malignant tissue.

As a therapy, mice were either treated with immunotherapy in
the form of repeated anti-PD-L1 antibody injections every third
day, starting at tumor implantation, or chemo-immunotherapy in
the form of single doxorubicin injection followed by daily
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administration of highly dosed IL-2 starting on day 8 after
tumor implantation.

Checkpoint immunotherapy with anti-PD-L1 or combined
chemo-immunotherapy with IL-2 and doxorubicin significantly
reduced tumor growth as compared with therapy-naive mice
(p = 0.00031 and p = 0.00011, respectively), whereas iron
supplementation without any therapy led to a significantly faster
tumor progression (p = 0.039) for comparison with therapy- and
iron-naïve animals. In addition, intravenous iron supplementation
led to a substantial albeit not significant reduction of the
therapeutic effects of checkpoint anti-PD-L1 therapy (Figure
1A, p = 0.016 for the therapy naive–anti-PD-L1/iron group
comparison and p = 0.10 for the anti-PD-L1–anti-PD-L1/iron
group comparison) and to a significant reduction of the efficacy of
IL-2/doxorubicin therapy (Figure 1B, p = 0.15 for the therapy
naive–IL-2/doxorubicin/iron group comparison and p = 0.0032
for the IL-2/doxorubicin–IL-2/doxorubicin/iron group
comparison). We then studied whether the impaired therapeutic
Frontiers in Oncology | www.frontiersin.org 10
effect of both therapies upon iron loading is linked to the function
of tumor infiltrating lymphocytes, such as CD8+ cytotoxic T cells
(Tc1), which are the responsible subset for effective anti-tumor
T cell response, and/or CD4+ T helper cells which are needed as
assist to ensure full functionality of CD8+ cytotoxic T cells.

Therefore, tumor infiltrating T cells were isolated. Interestingly,
we could not detect any significant, iron- or cancer therapy-
dependent differences in the numbers of CD3+, CD4+ and CD8+

tumor infiltrating lymphocytes per mm3 tumor (Figures 2A–C
respectively). Although the percentage of CD4+ effector-memory
cells (CD4+CD44hiCD62Llo) was consistently reduced in mice
receiving intravenous iron, these changes were not statistically
significant (Figure 2D). However, when we further studied the
function of tumor infiltrating lymphocytes, we found that
intravenous iron supplementation significantly reduced the
production of cytokines IL-2 and IFNg by tumor CD8+ cytotoxic
T cells, indicating iron-dependent reduced functionality of these
cells (Figures 3A, B, C). Of note, also CD4+ T helper cells in our
A

B C

FIGURE 6 | In vitro addition of iron to splenocytes decreases the number of proliferating CD8+ T cells (CFSE low) (A), negatively affects perforin degranulation in
CD8+ cytotoxic T cells (B) and significantly reduces the CD8+ T cell dependent lysis of target cells (C). (A, B) Splenocytes isolated from tumor-naive C57Bl/6N mice
were stimulated with plate-bound anti-CD3 antibodies and iron in form of iron citrate (FeC6H5O7; non-transferrin bound iron, NTBI) was added. Proliferation of CD8+

T cells was measured by flow cytometry depending on CFSE 72h after culture start. Data are presented as Pie Plots (mean ± SEM) n = 4. Perforin was stained
intracellularly as described in Materials and Methods n=5. Statistical significance was determined by a two-tailed T-test and corrected for multiple comparisons with
the Benjamini–Hochberg method. (C) The capability of iron treated and non-iron treated CD8+ T cells to lyse target cells was measured with a chromium release
assay as described in Material and Methods. Representative flow cytometry results and summary plots are shown (mean ± SEM). Statistical significance was
determined by 2-way ANOVA. The results of Tuckey post-hoc-test are presented in the plots: ns: not significant, *p < 0.05, **: p < 0.01. control, Fe (ratio 15:1) n =
5, control, Fe (ratio 30:1) n = 4. The results of ANOVA are presented in Materials and Methods/Specific statistical data analyzed in main figures.
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tumor model showed reduced functionality as reflected by reduced
production of IFNg. However, this effect could only be
demonstrated in IL-2/doxorubicin treatment (Figure 4A). Of
interest, we could not find any differences in the percentage of
regulatory T cells (CD4+FoxP3+) (Figure 4B). Although TH1/Treg
ratios were found significantly lowered by iron solely for the IL-2/
doxorubicin protocols, the highly significantly diminished Tc1/
Treg ratios upon iron supplementation could be observed for both
treatments, most of all in anti-PD-L1 treatment (Figures 4C, D).

Based on these observations, we asked whether iron generally
influences proliferation and cytokine production of CD8+

cytotoxic T cells and CD4+ T helper cells. In the body fluids,
iron can generally exist in two forms: as transferrin-bound iron
(TBI), when iron concentration does not exceed binding capacities
of transferrin, and as chemically reactive, potentially toxic non-
transferrin-bound iron (NTBI), when the concentration of iron is
higher than the binding capacity of transferrin (42). Importantly,
both forms can be taken up by T cells (43, 44). We isolated
splenocytes from tumor-naive C57Bl/6N female mice and
stimulated them with anti-CD3 antibodies. To induce NTBI, we
supplemented the culture with 5 µM ferric iron, a concentration
shown by us and others to generate measurable NTBI (43, 45), in
the form of salts ferric chloride (FeCl3), ferric sulfate (Fe2(SO4)3),
and ferric citrate (FeC6H5O7). Holo-transferrin was added as a
source of TBI. Iron, both in its physiological TBI form as well as
NTBI, halted proliferation of both CD8+ cytotoxic T cells and
CD4+ T helper cells as shown by a dramatically reduced fraction of
Frontiers in Oncology | www.frontiersin.org 11
S-phase cells (CD8+ S-phase cells FeCl3 p = 0.0003, Fe2(SO4)3 p =
0.001, FeC6H5O7 p = 0.0001, holo-transferrin p = 0.0001; CD4+ S-
phase cells FeCl3 p = 0.01, Fe2(SO4)3 p = 0.01, FeC6H5O7 p = 0.03,
holo-transferrin p = 0.02 and promoted apoptosis measured by
sub-G1 fractions (Figures 5A–C). This phenomenon was
paralleled by a strongly decreased production of the key anti-
tumor cytokine IFNg by CD4+ cells (FeC6H5O7 p = 0.002) (Figure
5D). Importantly, the detrimental effects of iron on T cell
expansion were corroborated by the results of another
proliferation assay employing dilution of the fluorescent CFSE
dye (CFSE low population p = 0.0055) (Figure 6A). CFSE is a
widely used method to monitor lymphocyte proliferation due to
the progressive halving of CFSE fluorescence within daughter cells
following each cell division (46).

Following these observations, we tested the effect of iron on
the cellular levels on the turnover of the cytolytic protein perforin
in in vitro iron or non-iron supplemented splenocytes. Perforin
is found in the granules of CD8+ cytotoxic T cells and is centrally
involved in anti-cancer immune function whereby perforin binds
to the cell membrane of target cells, forming a pore allowing for
granzyme B injection and killing of the target cell (47). We found
increased intracellular perforin in iron-stimulated CD8+

splenocytes as compared to splenocytes without iron
supplementation indicating that perforin is retained in CD8+

cells (p = 0.006) (Figure 6B). Moreover, performing chromium
release assays, we could demonstrate that CD8+ T cells incubated
with iron significantly attenuate their ability to kill target cells
A

B

FIGURE 7 | Iron administration to splenocytes leads to oxidative stress and increased production of mitochondrial reactive oxygen species (ROS). Splenocytes were
isolated from tumor-naive C57Bl/6N female mice and cultured in 96 well plates coated with anti-CD3. Fe2(SO4)3 and holo-transferrin were added as NTBI and TBI,
the inhibitor of oxidative phosphorylation rotenone was used as a positive control for ROS formation. After 24h DCFDA+ and MitoSox+ CD8+ T cells (A) and CD4+ T
cells (B) were analysed by flow cytometry. DCFDA is defined as indicator for cytoplasmic ROS, MitoSox for mitochondrial ROS. Statistical significance was
determined by Student`s t-test. Representative flow cytometry results and summary plots are shown (mean±SEM; n = 3).
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compared to CD8+ T cells without iron application (CD8+ T cell:
target cell ratio 30:1 p = 0.017) (Figure 6C).

The main mechanism of toxicity of chemically reactive cellular
iron relies on the excellent redox properties of the element
culminating in the generation of reactive oxygen species (1, 42).
In line with that, we found a significant accumulation of
mitochondrial ROS in CD8+ T cells in splenocyte cultures
supplemented with TBI or NTBI (CD8+ T cells ferric sulfate
p <0.05; holo-transferrin p <0.05) as measured by the fluorescent
dye MitoSOX. In turn, cytoplasmic ROS formation detected by the
DCFDA dye was unaltered by iron stimulation (Figure 7A).
Interestingly, these effects could not be observed in the CD4+ T
cells fraction in the same culture (Figure 7B). The iron-dependent
effect on T cell growth was reversed by the addition of MitoTempo,
a mitochondria specific anti-oxidant (iron:cell death/ROS inhibitor
interaction CD4+ p = 0.009, CD8+ p = 0.0026). Other cell death and
stress inhibitors like Ferrostatin-1 (inhibits ferroptosis), the
cytoplasmic ROS scavenger NAC (cell death/ROS inhibitor),
Necrostatin (inhibits necroptosis), or the Casp3i z-DEVD-FMK
(inhibits apoptosis; cell death/ROS) showed no significant effects in
regard to reversal of iron-mediated impairment of T cell
proliferation (Figures 8A, B). These results suggest that iron
Frontiers in Oncology | www.frontiersin.org 12
exposition negatively impacts on T cell function by inhibiting
CD8+ cytotoxic T cells degranulation and perforin-mediated
killing of target cells as well as on IFNg formation by CD4+ and
CD8+ T cells. In addition, iron exposure induces mitochondrial
ROS causing growth arrest and cell death of those lymphocytes.
This is in line with the reduced efficacy of cancer immunotherapy in
iron-administered animals as described herein.

Taken together, increased iron concentration in the tumor
milieu caused by intravenous iron supplementation hampers
activation, expansion, survival and functionality of the two key
effectors of anti-tumor immunity, CD8+ cytotoxic T cells and
CD4+ T helper cells (Figure 9). Our results indicate strong
immunosuppressive effects of iron on anti-tumor immunity
and on the efficacy of immune-therapies for cancer.
DISCUSSION

Patients with breast cancer and other malignant diseases often
develop functional iron deficiency or overt anemia as a
consequence of their underlying disease (10, 11, 48). Anemia
per se may negatively affect cardiovascular function and quality
A

B

FIGURE 8 | The mitochondrial ROS scavenger MitoTempo reverses the iron-mediated inhibition of T cell growth. Splenocytes were isolated from tumor-naive
C57Bl/6 mice (n = 3 separate cell donors) and cultured for 72 h in presence of 1 µg/ml activating anti-CD3 antibody and the inhibitors of ferroptosis (Ferrostatin: 1
µM), necroptosis (Necrostatin: 30 µM), apoptosis (Casp3i, z-DEVD-FMK: 20 µM) or cytoplasmic (NAC, N-acetylcysteine, 10 mM) or mitochondrial (MitoTempo, 20
µM) ROS scavengers. CD4+ T cells (A) and CD8+ T cells (B) were enumerated by flow cytometry. Statistical significance for reversal of the iron-mediated inhibition of
T cell growth measured as the positive interaction of iron and cell death/ROS inhibitor was assessed by mixed-effect linear regression (fixed effects: iron, cell death/
ROS inhibitor and the iron: cell death/ROS inhibitor interaction; random effect: cell donor). Left panels: cell counts are presented as points, lines connect data for the
same cell donor; right panels: forest plots showing the regression coefficients (beta) of the iron:cell death/ROS inhibitor interaction as points and 95% confidence
intervals as error bars.
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of life in affected patients, so that physicians frequently see the
necessity to correct anemia by different treatments (34, 35).
Intravenous iron administration is one of the treatment
options for ACD in oncologic patients specifically if they suffer
from absolute iron deficiency with low serum ferritin levels (49)
which often coexists based on chronic blood losses and which
aggravates the severity of ACD (50, 51). In parallel, intravenous
iron preparations improve response rates to and exert dose-
sparing effects on the use of erythropoiesis stimulating agents
(ESA) (52, 53). This is relevant because treatments with high
doses of ESA have been linked to tumor progression as the
erythropoietin receptors are expressed on cancer cells including
mammary carcinoma, whereas erythropoietin inhibits pro-
inflammatory immune responses of innate immune cells which
may hamper cancer control (54–57). While the effects of iron
treatment on the hematological response have been well studied,
no data are available on the effect of such intervention on the
clinical course of the underlying tumor disease including end
point data (11, 58). Principally, there are several ways by which
iron administration may affect the clinical course of breast
cancer. First, iron may have direct effects on either the division
or the death of breast cancer cells. Consequently, iron can either
sustain tumor cell metabolism and promote their proliferation
(16, 59) or may sensitize cancer cells to ferroptosis, especially in
the context of anti-tumor therapies (60). Second, the
administration of iron may impact on the immune control of
the tumor and either stimulate or inhibit the activity of distinct
immune pathways against malignant cells. Third, iron may affect
the susceptibility of tumors cells to immune- or chemotherapy
in different ways, either by aggravating radical formation
Frontiers in Oncology | www.frontiersin.org 13
and cancer cell apoptosis/ferroptosis or by inducing their
proliferation thereby making them more sensitive to the effects
of anti-proliferative agents.

We designed our study to investigate the effects of iron
isomaltoside, a clinically approved intravenous iron compound,
on the course of disease, therapeutic efficacy of anti-cancer
immunotherapies and anti-tumor response of CD4+ and CD8+

tumor infiltrating T cells in the E0771 breast cancer model (61).
Blood counts of untreated tumor-bearing mice point out
significantly lower hemoglobin concentrations 21 days after
tumor implantation as compared with tumor free-mice,
referring to a mild impairment of erythropoiesis, which, partly,
recapitulates cancer-associated anemia found in a substancial
percent of breast cancer patients.

Our results obtained in vivo show that iron isomaltoside
accelerates tumor progression in therapy-naive mice as compared
with iron-untreated tumor bearers. Of practical relevance for cancer
treatment, it also significantly diminished the efficacy of the IL-2/
doxorubicin chemo-immunotherapy treatment regimen and
substantially, yet not significantly, aggravated the effects of the
anti-PD-L1 treatment. Notably, CD8+ IFNg+ T cell-mediated anti-
tumor response poses one of the mechanisms of action of
doxorubicin therapy as demonstrated by us previously (62) and is
of critical importance for the anti-PD-L1 immune checkpoint
therapy (63, 64). Our results show significant reduction of this T
cell population in the tumor tissue of mice treated with either
therapy regimen combined with iron, suggesting that inhibition of
anti-tumor T cell response poses the common mechanism of the
detrimental action of iron supplementation. Another argument for
the common mode of action is the cross-talk between the immune
FIGURE 9 | Administration of intravenous iron in the form of ferric isomaltose leads to higher iron concentrations in the tumor milieu. This leads to the inhibition of
anti-tumor CD8+ T cells.
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checkpoint pathways and signaling induced by IL-2 and
doxorubicin. In breast cancer, CD8+ T cell numbers correlate
with PD-L1 expression (65, 66) because tumor-infiltrating CD8+

T cells carry PD-L1 (67). Furthermore, CD8+ T cells are required to
mediate the anti-tumor effect of PD-L1 blockade against cancer
cells, as shown in a mouse model of malignant melanoma (68). In
addition, doxorubicin co-administered with cisplatin (the latter not
used in our study) upregulates PD-L1 expression in breast cancer
(69) and PD-L1 inhibition in combination with IL-2 has synergistic
effects on CD8+ T cells, suggesting that these two therapies may
activate converging pathways (70). Moreover, the PD-L1 and IL-2
pathways are interconnected: On the one hand, the PD-1/PD-L1
interaction inhibits IL-2 production. On the other hand, exogenous
IL-2 is known to overcome the inhibitory effects of this interaction
(71). Taken together, it is reasonable to assume that iron impairs the
anti-tumor effects of anti-PD-L1 antibodies and of IL-2/doxorubicin
immunochemotherapy mainly by impairing CD8+ T cell functions.

This hypothesis is further supported by the results of in vitro
experiments clearly demonstrating that increased iron supply,
not only as potentially toxic NTBI but also in its physiological
transferrin-bound form impairs CD8+ T cell proliferation,
cytokine production and degranulation. Of interest, the effects
of iron isomaltoside on CD4+ T cells were less pronounced
supporting the fact that the main function of CD4+ T cells in the
tumor setting is the initiation and maintenance of CD8+ tumor
infiltrating killer cells or rather to shape the anti-tumor response
in spleens and lymph nodes. In line, the administration of iron
isomaltoside had consistent yet not significant effects on effector/
memory tumor infiltrating lymphocyte populations. In contrast,
numbers of FoxP3+ CD4+ Tregs were comparable across
treatment arms suggesting that the adverse effects of iron
towards effector T cell populations where direct rather than
indirect and Treg-mediated (72, 73).

Our observations raise the question of how iron may impair
tumor infiltrating lymphocyte responses in breast cancer-bearing
mice. First, iron may impair the proliferation, differentiation or
maturation of naïve tumor infiltrating lymphocytes by
mitochondrial ROS generation resulting in cell death as indicated
by our in vitro data. Notably, such a process may take place both in
the spleen, which, together with the liver, represent the major
storage organ upon ferric isomaltoside treatment, and in the tumor
milieu displaying improved iron availability as demonstrated by
reduced CD71 levels on the bona-fide neoplastic epithelium. The
tendency towards reduced numbers of CD4+ effector T cells
following iron isomaltoside administration presented in Figure
2D may in fact reflect such iron-mediated cell death happening
locally in the tumor microenvironment. Second, iron may impair T
cell receptor signaling and thus T cell activation. The in vitro data
on the increased cell death, reduced proliferation and impaired
IFNg production of iron-exposed CD4+ and CD8+ T cells upon
CD3 stimulation support this hypothesis. Third, it is feasible to
assume that co-stimulatory pathways are undermined by high iron
levels in the tumor microenvironment. Yet, in our in vitro system,
we did not activate CD28 or other co-stimulatory pathways or study
putative effects of iron on down-stream signaling events. Fourth,
high iron concentrations in the microenvironment of tumor
Frontiers in Oncology | www.frontiersin.org 14
infiltrating lymphocytes may impair IFNg output by direct
negative effects on the transcription or translation of cytokine
genes and mRNAs, respectively (74). This would be in line with
the negative effects of iron on IFNg signaling and IFNg inducible
pathways in macrophages, which impact also on TH1/TH2 cell
differentiation (29, 75, 76). In summary, the administration of iron
to mice with mammary carcinoma exacerbated the disease and
impaired the therapeutic response to cancer-immunotherapy.
Further studies are underway to characterize the molecular
mechanisms by which iron administration impacts on anti-tumor
T cell responses in our clinically relevant breast cancer model.
Nonetheless, iron administration to cancer patients may have
multiple adverse effects on the course of the underlying
malignant disease. Therefore, prospective trials are needed which
investigate those most important questions beyond the correction
of hemoglobin levels.
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