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Abstract

Dengue virus remains a significant public health challenge in Brazil, and seasonal prepara-

tion efforts are hindered by variable intra- and interseasonal dynamics. Here, we present a

framework for characterizing weekly dengue activity at the Brazilian mesoregion level from

2010–2016 as time series properties that are relevant to forecasting efforts, focusing on out-

break shape, seasonal timing, and pairwise correlations in magnitude and onset. In addition,

we use a combination of 18 satellite remote sensing imagery, weather, clinical, mobility, and

census data streams and regression methods to identify a parsimonious set of covariates

that explain each time series property. The models explained 54% of the variation in out-

break shape, 38% of seasonal onset, 34% of pairwise correlation in outbreak timing, and

11% of pairwise correlation in outbreak magnitude. Regions that have experienced longer

periods of drought sensitivity, as captured by the “normalized burn ratio,” experienced less

intense outbreaks, while regions with regular fluctuations in relative humidity had less regu-

lar seasonal outbreaks. Both the pairwise correlations in outbreak timing and outbreak trend

between mesoresgions were best predicted by distance. Our analysis also revealed the

presence of distinct geographic clusters where dengue properties tend to be spatially corre-

lated. Forecasting models aimed at predicting the dynamics of dengue activity need to
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identify the most salient variables capable of contributing to accurate predictions. Our find-

ings show that successful models may need to leverage distinct variables in different loca-

tions and be catered to a specific task, such as predicting outbreak magnitude or timing

characteristics, to be useful. This advocates in favor of “adaptive models” rather than “one-

size-fits-all” models. The results of this study can be applied to improving spatial hierarchical

or target-focused forecasting models of dengue activity across Brazil.

Author summary

Dengue virus spreads through mosquitoes in many tropical and subtropical parts of the

world, including Brazil. Each year, dengue virus causes seasonal outbreaks that vary in

magnitude and timing across the country. This variation makes tailoring preparation

efforts for fine spatio-temporal scales challenging. In this study, we described four proper-

ties of historical dengue time series at the mesoregion level, the Brazilian subdivision below

state, and examined how they varied across the country. We found that the duration and

timing of seasonal outbreaks are largely driven by climate factors, while relational proper-

ties, i.e., the similarity in outbreak timing and magnitude between two mesoregions, are

explained by a mix of mobility patterns and climate similarities. Surprisingly, we found that

remote sensing derived products and movement inferred through Twitter were adequate

proxies for climate and mobility patterns respectively. Knowledge of how dengue outbreaks

differ across the country and the factors that may influence specific outbreak properties

may be important for improving efforts to build forecasting and prediction models.

Introduction

Dengue virus (DENV) is a mosquito-borne virus associated with high morbidity and mortal-

ity, and its increasing global burden is of high concern [1]. Transmission in Brazil accounts for

80% of the DENV cases in the Americas, and since 2010 [2] cases caused by all four DENV

serotypes have been recorded annually throughout the country. Brazil’s worsening DENV bur-

den has been linked to urbanization and crowding [2, 3], expanding ranges of suitable habitat

for DENV-adapted mosquitoes [4], and changing human mobility patterns [5]. These changes

have coincided with observed shifts in the epidemiology of DENV in Brazil, including

increases in the proportion of infections among younger age groups [6], the proportion of

severe cases, and the number of smaller cities reporting transmission [2]. Without effective

antiviral treatments and the limited use of an early vaccine, reducing the number of DENV

infections depends on effective vector control and public health messaging.

To enhance public health preparedness, there have been several efforts to develop forecast-

ing models of DENV in Brazil [7–10]. Forecasting models integrate single or multiple data

streams into statistical or mechanistic frameworks to make short-term (e.g., present to multi-

ple weeks ahead) or long-term (e.g., monthly and year-based) predictions of the number of

DENV cases in a given location [11–18]. Data streams aim to capture informative aspects of

the transmission process, and for DENV, data streams have included historical DENV case

data, socioeconomic indicators, internet search behavior, weather indices, satellite remote

sensing data, and entomological observations. Forecasting models can be validated by assess-

ing the accuracy of the predicted versus observed number of cases through time. Another

approach is to evaluate how well the model predicts key outbreak targets, such as outbreak
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onset, peak timing, or duration [19]. Outbreak targets are tied to practical needs, for example,

anticipating when peak infections will occur helps establish when maximum resources are

needed.

However, it is challenging to develop forecasting models because of the ecological, immu-

nological, and epidemiological complexity of DENV in Brazil. First, Brazil’s heterogeneous cli-

mate differentially affects mosquito development and thus DENV dynamics [16, 17]. In

locations that experience distinct rainy seasons, particularly the south and southeastern

regions of the country, DENV cases exhibit seasonal oscillations, while in tropical regions

along the equator, DENV cases are reported year-round. Similarly, climate influences the

annual timing of DENV outbreaks. As seen in Southeast Asia [20–22], the onset of annual

DENV outbreaks follows a traveling wave throughout Brazil [5, 23]; outbreaks first begin in

the northern tropical region, spread counter-clockwise, and end in the more populated coastal

states of southeastern and northeastern regions. Yet, DENV transmission itself is highly local-

ized, and this pattern of outbreaks is often the co-occurrence of multiple unrelated outbreaks

[24]. Second, although DENV has been recorded in Brazil since 1986, the gradual importation

of novel serotypes and the frequent introduction of distinct serotype lineages creates an unpre-

dictable immunological landscape [5, 25, 26], which may contribute to annual differences in

timing and magnitude. Finally, forecasting models are typically trained assuming that histori-

cal case data are accurate and will be as they become available in real time. This is hardly true

in practice, since changes in reporting, misreporting of other co-circulating arboviruses like

chikungunya or Zika, and any other hard to capture data vagaries obscure the epidemiological

signal [27] in the data. These factors further complicate any forecasting efforts.

This dynamic and irregular landscape of DENV in Brazil suggests that a one-size-fits-all

forecasting approach may not offer sufficient flexibility to capture the heterogeneity in histori-

cal and future case data. Instead, a suite of goal-oriented forecasting models that each focus on

specific practical targets may be beneficial, while simultaneously providing insight into differ-

ential drivers of specific outbreak characteristics. For example, the onset of the rainy season

may influence the onset of an annual DENV outbreak, but population size or vegetation levels

may play a stronger role in explaining the magnitude or the length of the outbreak [28]. Isolat-

ing the explanatory power of different drivers on specific outbreak characteristics and identify-

ing which data streams best capture those drivers has the added benefit of increasing the

interpretability of their inclusion in any forecasting model. Such a data-driven approach

would help narrow the growing space of possible models and data streams while balancing

explanatory and predictive power.

Here, we use six years of weekly reported DENV case data in Brazil to identify spatio-tem-

poral structure in DENV dynamics that could help inform the development of goal-oriented

forecasting models. First, we analyze the differences in DENV dynamics at the subdivision

mesoregion level by exploring four questions that can be tied to measurable properties of the

time series. For each mesoregion, we assess how cases are typically distributed across the

DENV season (intensity) and what is the regularity in seasonal timing (seasonality). Between

pairs of mesoregions, we assess the level of synchronicity in seasonal timing (outbreak timing)

and inter-annual changes in the magnitude of cases (outbreak trend). Next, we determine the

extent of spatial structure in these properties that may be leveraged in future forecasting mod-

els. Finally, we use a regression framework to identify key environmental and human covari-

ates associated with each of these outbreak properties. Together, these results elucidate

differential drivers of DENV properties, help identify data sources useful for inclusion in

future goal-oriented forecasting models, and provide a template for data-driven analysis of

outbreak properties of other infectious diseases.
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Materials and methods

Data

DENV clinical case data. We obtained the number of weekly confirmed DENV cases at

the municipality level (n = 5,570) over the study period of January 2010 to July 2016 from the

Brazilian Ministry of Health (Fig 1). We aggregated the case data to weekly time series at the

mesoregion level (n = 137), a subdivision below the state level. We focused on the mesoregion

level because the majority of DENV transmission in an urban setting has been shown to occur

at a localized scale of< 200 m [24], the flight range of Aedes aegypti—the primary mosquito

vector of DENV in Brazil—is between tens to hundreds of meters [29], and the level of hetero-

geneity in environmental conditions at higher federative (state) levels may obscure explanatory

links between environmental drivers and outbreak properties. To be consistent with the mini-

mum spatial resolution of some of the covariate data, we did not analyze the case data at finer

resolutions than mesoregion. Although the mesoregion subdivision was reclassified in 2017

[30], we retained the previous 1990 classification to make our results comparable to earlier

work. The spatio-temporal heterogeneity in burden (Fig 1A and 1C) and the presence of sea-

sonal dynamics in some locations (Fig 1B and 1C) motivates the approach of adaptive models

rather than a one-size-fits-all.

Environmental data. From a previously published environmental data set for Brazil [9,

10], we collected time series of five satellite remote sensing indices (Table 1: green Normalized

Difference Water Index (green NDWI), short-wave infrared Normalized Difference Water

Index (SWIR NDWI), Normalized Burn Ratio (NBR), Normalized Difference Vegetation

Index (NDVI), and % cloudy pixels), and three climatic weather variables (Table 1: daily range

in temperature, mean temperature, and relative humidity). Satellite remote sensing data from

January 2010 to December 2016 were derived from the multispectral satellites Landsat 5, Land-

sat 7, Landsat 8, and Sentinel-2, and the source images were accessed via the Descartes Labs

Platform [31]. Weather data from April 2009 to April 2017 were retrieved from the National

Oceanic Atmospheric Administration’s Global Surface Summary of the Day (GSOD) data set

[32]. The remote sensing data came in a temporal resolution of nearly weekly measurements.

For the time periods during which satellite data were missing, kriging methods were used to

interpolate the known values. From the original spatial measurement resolution of 30 m2, each

remote sensing index was summarized to obtain the mean weekly value of pixels within a

mesoregion. The GSOD data provided daily raw measurements of temperature and humidity

from 613 ground weather stations across Brazil. Again, we used kriging methods to spatially

and temporally approximate these variables across the country, and then summarized weekly

mean values across each mesoregion. Finally, all satellite and weather station variables were

combined to give weekly values at the mesoregion level across the six years corresponding to

the DENV case data. Full details on how these data were collected, cleaned, and fused can be

found in Refs. [9, 10].

These variables indicate aspects of the environmental suitability for mosquito populations,

which is a precursor of DENV transmission. Vegetation and water indices provide informa-

tion on the water dynamics in an area, which can serve as an indicator of suitability for mos-

quito breeding. Indicators of both healthy and unhealthy vegetation, such as the NBR, can be

correlated with urban environments, where mosquitoes not only reproduce, but also indicate

areas where human-mosquito contact is likely to occur. Temperature variables may contain

information on where the temperature range is suitable for the mosquito life-cycle and virus

development.

Human-mosquito contact. We estimated the level of human-mosquito contact by

approximating the number of Ae. aegypti mosquitoes per person following the approach in
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Fig 1. The spatio-temporal heterogeneity of weekly DENV case data across 137 mesoregions from 2010–2016. (A) Cumulative incidence over the

six-year study period. States are outlined in darker grey and labeled. The underlying shapefiles with political boundaries are publicly and freely available

at Instituto Brasileiro de Geografia e Estatı́stica (IBGE) http://downloads.ibge.gov.br/downloads_geociencias.htm. (B) Examples of mesoregion weekly

DENV time series. Mesoregions were sorted according to cumulative incidence over the six-year study period as follows: “Top” mesoregions recorded

greater than 10K cases per 100K individuals, “Middle” recorded 3–4K cases per 100K individuals, and “Bottom” recorded fewer than 100 cases per 100K

individuals. Top mesoregions come from Acre, Minas Gerais, Rio de Janeiro, São Paulo, Mato Grosso do Sul, and Goiás; Middle come from Rondônia,

Amazonas, Ceará, Rio Grande do Norte, Pernambuco, Alagoas, Minas Gerais, São Paulo, and Mato Grosso; Bottom come from Paraná, Santa Catarina,

and Rio Grande do Sul. (C) Weekly DENV incidence in each mesoregion. Each time series was transformed to zero mean and unit variance.

Mesoregions are ordered from north (top) to south (bottom) by the listed state and then by mesoregion within state.

https://doi.org/10.1371/journal.pntd.0009392.g001
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Zhang et al. [33]. The level of mosquitoes present influences the risk of an infected mosquito

biting a human and the risk of an infected human transmitting DENV to a susceptible mos-

quito. From Kraemer et al. [34], we averaged the 5 km2 cell estimates of vector presence

(derived from a combination of precipitation, temperature, and an enhanced vegetation

index), over each mesoregion. As in Ref. [33], we then assumed that mosquito abundance fol-

lows a monthly modulation function depending on the local temperature. The human-mos-

quito contact variable takes into account the conditions needed for mosquito development,

which temperature and NDVI alone are agnostic to. The resulting estimated number of Ae.
aegypti mosquitoes per person time series covered the same time period as the DENV case

data.

Demographics. While the presence of mosquito populations are necessary for DENV

transmission, human living conditions may modulate the level of contact with mosquitoes,

thus influencing DENV risk [35]. To capture socioeconomic effects on DENV transmission,

we used publicly available census data from 2010 that provides information on poverty, educa-

tion, income, and population statistics [36]. We implemented a dimensionality-reduction hier-

archical clustering algorithm [37] to map the original 232 variables contained in the census

Table 1. Candidate covariates for explaining outbreak properties. Measurements indicate the different ways in which a variable was incorporated as a candidate in the

LASSO regression models.

Category Variable Description Measurements

Environmental Normalized difference vegetation

index (NDVI)

Indicator of healthy green vegetation Mean, Intensity, Seasonality; (Pairwise) Euclidean

Distance, Correlation in phase angles, Correlation in

trendGreen normalized difference water

index (Green NDWI)

Indicator of water bodies

Shortwave infrared normalized

difference water index (SWIR

NDWI)

Indicator of moisture in vegetation

Normalized burn ratio (NBR) Indicator of burned areas, sensitive to drought

% Cloudy pixels Degree of cloud cover

Daily range in temperature Weekly average of the difference between the

maximum and minimum daily temperature in

degrees Fahrenheit

Mean temperature Weekly average daily temperature in degrees

Fahrenheit

Relative humidity Weekly average relative humidity calculated from the

dew point and temperature

Human-mosquito contact Number of mosquitoes per person

Human—Risk

Factors

Total population Total resident population Mean

Rural population Resident population living in rural areas

Population density� Ratio of the population living in a private home with

a density greater than 2 persons per room

Garbage collection� Ratio of private households with waste collection by

service provider

Human—

Connectivity

Distance The great-circle distance between mesoregion

centroids (km)

�Pairwise—Median

Population product The log product of two mesoregions’ populations

Air travel� The estimated median number of air travelers

between two mesoregions

Bus travel� The estimated median number of bus travelers

between two mesoregions

Twitter activity� The estimated median number of unique Twitter

users between two mesoregions

https://doi.org/10.1371/journal.pntd.0009392.t001
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onto four representative variables. This process involved partitioning the 232 variables into 22

groups based on their pairwise similarity and then we further identified four clusters with a set

of representative variables with between-cluster correlations less than r = 0.6. The four repre-

sentative variables were Total Population, Rural Population, Population Density, and Garbage

Collection. Population density, rural population, and total population are variables that could

indicate the level of crowding in urban environments that may facilitate human-mosquito

transmission. Areas with low garbage collection service could indicate areas likely to have

large amounts of standing water or general substandard housing conditions. Because the cen-

sus data was provided at the municipality level, we calculated the total population and rural

population as the sum over the municipalities within a specific mesoregion, and the remaining

two variables as each variable’s mean over the municipalities within that mesoregion.

Measurements of human connectivity. Although DENV transmission chains are typi-

cally local, high connectivity between two locations could provide frequent seeding of new

infections that influence outbreak dynamics in disparate locations. We approximated pairwise

connectivity of mesoregions through two different proxy measures: (1) we calculated the

great-circle distance [38] in kilometers (km) between two locations’ centroid coordinates and

(2) we took the log product of the two locations’ population sizes as inspired by a gravity

model that assumes higher flow between larger populations [39].

Additionally, we used empirical measurements of the number of travelers between mesore-

gions from air travel, bus travel, and Twitter data streams. We did not find a correlation

between peak travel months in these data streams and peak cases, and thus used the median

number of travelers between locations over the time period for which the data were available.

To estimate the average number of air travelers between two mesoregions, we used the

monthly number of travelers from January 2014 to December 2016 collected from the Official

Airline Guide (OAG) travel database. These data were used to create a network of subpopula-

tions connected by the flux of individuals flying between them, where subpopulations are the

combination of multiple municipalities and approximate geographical catchment of the air-

port [40]. Since the number of monthly travelers between subpopulations i and j was often not

symmetric, we took the median number of monthly travelers from i to j and from j to i. To get

a median number of travelers between subpopulations over the study period, we calculated the

median number traveling on each pairwise route over the 36 months of data. Lastly, to map

the monthly number of individuals traveling between subpopulations i,j to mesoregions, we

assumed that each unique pairwise combination of mesoregions of the municipalities defined

by subpopulations i,j received the same number of travelers. Patterns of air travelers may be

important for determining the role humans play in seeding outbreaks in distant, i.e., inter-

state, locations.

To estimate the number of bus travelers between mesoregions, we used a dataset from the

National Land Transport Agency of Brazil for January 2013 to September 2016. These data

contain the monthly number of passengers per bus route in Brazil [41], where the origin and

destination of the route are listed at the municipality level. Passengers are categorized by

whether they are full fare, discounted fare, or free fare passengers. For this analysis, we counted

every passenger regardless of type. The origin and destination bus stations were mapped to

mesoregions. These data were used to generate a network of mesoregions connected by the

flux of individuals riding between mesoregions for each month. Since the number of monthly

riders between mesoregions i and j was not symmetrical, we took the median number of

monthly riders from i to j and from j to i. To get the median number of travelers between the

mesoregions over the study period, we calculated the median number riding on each pairwise

route over the 45 months of data. Patterns of bus travelers may be important for determining
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the role humans play in seeding outbreaks in both near and distant locations not serviced by

major airports.

We used a geotagged subset of the 1% Twitter feed to estimate the number of travelers via

Twitter data between mesoregions. We obtained all geotagged tweets within Brazil from

March 2010 to December 2016, which comprised 4.4 million tweets and 1,265,188 unique

Twitter users. Each tweet contained the user account id, the tweet content, as well as the lati-

tude and longitude of the account when the tweet was made. From the latitude and longitude,

it was possible to infer the mesoregion the user was located in, and by examining multiple

tweets of the same id over time, it was possible to infer movement across mesoregions. These

data were used to generate a network of subpopulations connected by the flux of individuals

moving between mesoregions for each month by examining each change in location for users.

As before, we took the median number of monthly travelers from meosoregion i to mesore-

gion j and from mesoregion j to mesoregion i. To get the median number of travelers between

the mesoregions over the study period, we calculated the median number traveling on each

pairwise route over the 88 months of data. While impossible to determine whether an individ-

ual moves by car, bus, or air, movements discerned through Twitter provide a view of mobility

not constrained by a specific transportation mode.

Characterizing spatio-temporal properties of DENV dynamics

Outbreak intensity. Outbreak intensity quantifies how DENV cases are distributed

throughout the year. Mesoregions with high outbreak intensities have shorter outbreaks with

steeper rises to the peak, while mesoregions with low outbreak intensities have cases more

evenly distributed throughout the year (Fig 2A). We first calculated an outbreak intensity met-

ric [28] for each DENV year between September 1-August 31. For DENV year j, we calculated

the proportion of yearly cases in mesoregion m that occurred in each week i as pij. The out-

break intensity of year j, vj, was calculated as the inverse of the Shannon entropy vj = (∑i pij log

pij)−1. Thus, outbreaks with high intensity correspond to low entropy values and outbreaks

with low intensity correspond to high entropy values. We normalized vj to be between 0 and 1

across all mesoregions, with 1 and 0 representing the mesoregions with the maximum and

minimum intensity values across the study period respectively. We calculated the outbreak

intensity metric by averaging the normalized intensity over the six-year study period. Mesore-

gions with years in which low case numbers cluster into a few weeks can return highly-skewed

entropy distributions, thus we did not calculate an outbreak intensity value for a mesoregion

in a year in which there were fewer than 150 total DENV cases (n = 139). With this criteria,

eight mesoregions did not exceed 150 DENV cases in any year over the study period and thus

did not have an overall mean outbreak intensity value. We tested other thresholds ranging

from 5–200 total DENV cases, and found the distribution of mean outbreak intensity values

was not sensitive to the specific criterion between the range of 50–200 total cases (S11 Fig).

Outbreak seasonality. Outbreak seasonality quantifies how strongly a mesoregion’s time

series adheres to a 52-week cycle [42]. Seasonal oscillations in mesoregions with strong out-

break seasonality occur at regular intervals, while seasonal oscillations in mesoregions with

weak seasonality do not. To calculate a seasonality metric, we used the R WaveletComp pack-

age [43] to conduct a wavelet analysis of the frequency structure of the time series. We reduced

each mesoregion’s standardized time series into its periodic signal for periods of 26 to 234

weeks using the Morlet wavelet function. We took the seasonality metric as the average power

value at the 52-week period (Fig 2B).

Outbreak timing. Outbreak timing quantifies the level of synchronicity in seasonal tim-

ing between two mesoregions’ time series. Specifically, it measures the correlation between the

PLOS NEGLECTED TROPICAL DISEASES Identifying signatures of dengue outbreaks in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009392 May 21, 2021 8 / 24

https://doi.org/10.1371/journal.pntd.0009392


Fig 2. Outbreak properties of DENV case time series for mesoregions Campinas (São Paulo, orange) and Oriental do Tocantins (Tocantins,

purple). (A) Outbreak intensity, conceptually represented by the arrows, quantifies the distribution of cases over the DENV season, marked by the

dashed lines. Oriental do Tocantins has a lower intensity (i.e., more equal distribution of cases) than Campinas. (B) Outbreak seasonality quantifies how

well the seasonal time series fits a 52-week period. Campinas average power at the 52-week period (0.89) is higher than Oriental do Tocantins (0.81),

representing a more predictable seasonal pattern. (C) The phase angles of the two mesoregions’ time series, measuring outbreak timing, are in high

correlation (r = 0.86) with each other. The average phase difference between the two indicates that Campinas is on average 1.2 weeks behind Oriental do

Tocantins. (D) The trend components, measuring outbreak trend, of the two mesoregions are negatively correlated over the six years of study. The time

series are scaled prior to extracting the trend component.

https://doi.org/10.1371/journal.pntd.0009392.g002

PLOS NEGLECTED TROPICAL DISEASES Identifying signatures of dengue outbreaks in Brazil

PLOS Neglected Tropical Diseases | https://doi.org/10.1371/journal.pntd.0009392 May 21, 2021 9 / 24

https://doi.org/10.1371/journal.pntd.0009392.g002
https://doi.org/10.1371/journal.pntd.0009392


time series’ frequency components (phase angles [43], Fig 2C). From each mesoregion, we

decomposed the DENV case time series into the phase angles at the 52-week period. We then

calculated the Pearson’s correlation value of the phase angles for all pairwise combinations of

mesoregions (n = 9,316). In addition, we computed the average phase difference between pairs

of mesoregion phase angles. A positive phase difference means that the reference mesoregion

on average leads the other mesoregion in terms of its seasonal DENV pattern, which may or

may not be epidemiologically linked. We found there was a strong negative correlation

between the absolute pairwise correlation of phase angles and the average phase difference (r =

−0.946, p< 2.2e−16), and therefore either metric could be used to assess outbreak timing.

Outbreak trend. Outbreak trend quantifies the level of synchronicity in increases or

decreases of outbreak amplitudes between two mesoregions’ time series. When the seasonal

pattern is removed from a time series, the remaining trend component captures the directional

magnitude changes (Fig 2D). For each mesoregion, we scaled the time series so that increases

or decreases in DENV case counts would be on the same scale and then extracted the trend

component using the decompose additive function in the R Stats package [44], assuming a sea-

sonal cycle of 52 weeks. We calculated the Pearson’s correlation value of outbreak trends

across all pairwise combinations of mesoregions.

Determining spatial structure of DENV properties

We analyzed the spatial structure of the outbreak properties using spatial autocorrelation and

clustering analyses. First, we used the spatial correlation Moran’s I [45] to test the spatial ran-

domness of each of the four properties. For each mesoregion, we summarized singular values

of outbreak timing and outbreak trend by taking the average over all its pairwise correlations

for each property. We used the mean outbreak intensity and mean outbreak seasonality as

described above. Second, we considered all four properties together and used a k-means clus-

tering algorithm with 25 random starts to partition the mesoregions into clusters of similar

overall outbreak profile. We chose the number of clusters to analyze based on groupings that

had a high measure of compactness, defined as the ratio of the sum of squared distances

between clusters over the total sum of squared distances, and validated the groupings using the

silhouette coefficient [46]. A silhouette coefficient > 0 indicates that an observation is well

clustered, with 1 being the highest value; a silhouette coefficient < 0 indicates the observation

is in the wrong cluster.

Identifying covariates of DENV outbreak properties

For each of the four outbreak properties, we developed a series of statistical models to help

determine how explainable a property was by environmental and human drivers. To assess the

relative contribution of different categories of covariates, we built models using subsets of

environmental, human-risk, and human-connectivity variables (Table 1).

To transform each of the environmental variable time series into summary statistics to be

used in the models, we used the mean of the six-year time series and computed a number of

additional summary statistics that mirrored the outbreak properties (Table 1). For each envi-

ronmental variable and mesoregion, we calculated its intensity and seasonality. For each envi-

ronmental variable and pair of mesoregions, we calculated the pairwise correlations between

phase angles and the pairwise correlations between trends, as well as the Euclidean distance

between the raw values as a measure of overall similarity. All property calculations used the

same methodology as described for the DENV case time series. In total, we computed 54 envi-

ronmental candidate covariates.
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Because of the large candidate covariate space, we used LASSO regression to minimize model

complexity. We followed the same procedure for each property analysis. First, we normalized all

candidate covariate data to be between 0 and 1. We split the data into an 80% training and 20%

testing data set randomly by mesoregion and fit a LASSO regression model using five-fold cross

validation on the training data. We then tested the model using the one-standard deviation

lambda value from the training set on the held-out test set and captured two error statistics: the

out-of-sample r2 and the relative mean squared error (MSE). Because the random fold selection

returned different values of lambda and covariates with nonzero coefficients, we repeated this

model-fitting procedure 100 times to calculate the proportion of times that a variable was

included in the final model. All LASSO models were fit using the glmnet R package [47].

Results

Outbreak properties show variation across mesoregions

From January 2010 to July 2016, we found distinct patterns of outbreak intensity and seasonal-

ity at the mesoregion level (Fig 3A). Intensity roughly followed a latitudinal gradient with

higher intensity values in the southern and southeastern parts of the country. Outbreak sea-

sonality was stronger in the southeastern and northeastern parts of Brazil, while weaker in the

northern and southern extremes of the country where DENV tends to be less seasonal. The

minimum seasonality power value was 0.05 in Vale do Juruá, Acre; the maximum seasonality

power value was 1.13 in Vale do Paraı́ ba Paulista, São Paolo. The combination of low intensity

and low seasonality in the northern tropic region of Brazil is consistent with the region’s low

level of year-around DENV transmission.

Patterns in pairwise correlations of outbreak timing and outbreak trend also varied across

Brazil (Fig 3B). For both outbreak properties, the correlations were significantly higher for

intra-state comparisons (n = 959) versus inter-state comparisons (n = 17,810) (Both tests: Wil-

coxon rank sum test, p < 2.2e−16). Consistent with the similarity between the pairwise phase

angle correlation (outbreak timing) and the average phase difference (temporal lag), mesore-

gions showed both higher outbreak timing correlations and smaller temporal lags (r = 0.54,

p< 2.2e−16) as a function of decreasing distance.

To visualize the geographic patterns of mean correlations in outbreak timing and outbreak

trend, we calculated state-level mean correlation values by averaging over all pairwise mesore-

gion comparisons of those mesoregions comprising a state. The relative ranking of states was

not consistent between outbreak properties (Fig 3B), although four of the top five most corre-

lated states in outbreak timing were also in the top five most correlated states in outbreak

trend. Neither the relative ranking of outbreak timing nor outbreak trend followed a clear geo-

graphic gradient. Instead, high correlations occurred between smaller clusters of mesoregions

spanning several states (Fig 3C). We noted three main outbreak timing clusters: (1) mesore-

gions which are located in the southern and southeastern parts of the country, including Rio

de Janeiro and São Paulo; (2) a group of mesoregions within three northern states that are also

in high synchrony with group (1); and (3) a group of mesoregions in six northeastern states.

We did not find the same level of clustering in outbreak trend. However, correlations in out-

break trend tended to be higher between neighboring mesoregions, as shown by higher corre-

lations of intra-state outbreak trends (diagonal).

Towards incorporating spatio-temporal structure into prediction models

As shown in Fig 3, outbreak properties have distinct spatial patterns. We used the Moran’s I
with a binary adjacency weighting scheme to assess the level of spatial autocorrelation for each

property. All properties showed strong evidence of positive spatial clustering, i.e., high values
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near high values and low values near low values (Table 2). We found similar results when

assigning weights based on distance between mesoregion centroids.

We used k-means clustering to identify groups of mesoregions that shared similar outbreak

properties. There was modest support for five groups of mesoregions based on overall

Fig 3. Mesoregion DENV outbreak properties. (A) Normalized mesoregion outbreak intensity (top) and outbreak seasonality values (bottom). Dark

grey lines designate state boundaries. Medium grey areas indicate mesoregions where fewer than 150 annual cases were reported each year of the study

period. The underlying shapefiles with political boundaries are publicly and freely available at Instituto Brasileiro de Geografia e Estatı́stica (IBGE)

http://downloads.ibge.gov.br/downloads_geociencias.htm. (B) State ranking of outbreak timing and outbreak trend by average mesoregion

correlations. Colors only serve to visually connect a state’s ranking in outbreak timing to its ranking in outbreak trend. The mean correlation estimate is

included in the parenthesis next to each state label. (C) Heatmap of pairwise correlations between outbreak timing (left) and outbreak trend (right). For

each pair of states, the mean correlation is calculated by averaging over all combinations of mesoregion comparisons between the two states. Three

possible clusters of high correlation in outbreak timing are indicated by black boxes.

https://doi.org/10.1371/journal.pntd.0009392.g003
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outbreak similarity. With k = 5 clusters, the compactness score, a measure of differences

between clusters was 66% and the average silhouette width, a measure of how well-grouped

the observations are, was 0.31. Five mesoregions showed evidence of grouping with another

cluster: Sertão Paraibano (Paraı́ba—Northeast), Noroeste de Minas (Minas Gerias, Southeast),

Noroeste Paranaense (Paraná—South), Parntanais Sul-Mato Grossense (Mato Grosso de Sul—

Central West) and the Distrito Federal (Central West). These mesoregions often were on the

fringes of their grouping (Fig 4A). The southernmost cluster (cluster 2) is characterized by

high intensities, a weak seasonal signal, and higher correlations in outbreak timing and trend

(Fig 4B). Cluster 4, which contains Amazonian mesoregions that border other countries,

showed the most dissimilarity overall. The outbreak dynamics of these mesoregions may be

affected by importations from neighboring countries [5].

Models of outbreak properties

Explanatory power of outbreak properties varies by covariate set. For each outbreak

property, we built a suite of models to determine the relative importance of different categories

of covariates and their overall predictive ability (Table 3). Considering the environmental vari-

ables, the variation in outbreak intensity was marginally more explained by the intensity of the

environmental variables (model 1: 54.4%) than by the annual averages of the environmental

Table 2. Evidence of spatial structure by outbreak property. Moran’s I can be between -1 and 1. A positive Moran’s I
indicates values are more spatially clustered than would be expected if underlying processes were random; a negative

value indicates values are more spatially dispersed.

Property Moran’s I P-Value

Intensity 0.69 p< 2.2e−16

Seasonality 0.50 p< 2.2e−16

Timing 0.36 p = 1.8e−12

Trend 0.44 p< 2.2e−16

https://doi.org/10.1371/journal.pntd.0009392.t002

Fig 4. Mesoregion clusters based on outbreak properties. (A) Clusters of mesoregions with overall similar epidemic properties. For mesoregions in

the southernmost portion of Brazil where intensity values were not calculated (Fig 3A), intensity measures were imputed for the purpose of clustering as

the mean of the top 5% of intensity values over all mesoregions. The underlying shapefiles with political boundaries are publicly and freely available at

Instituto Brasileiro de Geografia e Estatı́stica (IBGE) http://downloads.ibge.gov.br/downloads_geociencias.htm. (B) Property values were normalized

between 0 and 1. Dots represent the mean and error bars represent the inter-quartile range of each property by cluster.

https://doi.org/10.1371/journal.pntd.0009392.g004
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variables (model 3: 53.0%). However, the variation in outbreak seasonality was better

explained by the annual averages of the environmental variables (model 2: 33.2%) rather than

by the seasonality of the environmental variables (model 3: 24.1%). These improvements in

the relative MSE were significant based on Paired Wilcoxon signed rank tests (intensity:

p< 0.001, seasonality: p< 0.001). Human risk factors on their own or in conjunction with the

environmental intensity variables did not further improve the fit for the outbreak intensity

model (MSE Paired Wilcoxon signed rank test, p< 0.001), but combined with the environ-

mental annual averages, improved the outbreak seasonality model (MSE Paired Wilcoxon

signed rank test, p< 0.001).

We conducted a similar analysis of the inter-mesoregion properties using subsets of covari-

ates. We first tested whether similarities in raw measurements of the environmental variables,

as measured by the Euclidean distance between the environmental time series, or similarities

in the properties of environmental variables better predicted the outbreak timing and outbreak

trend correlations between two mesoregions. In both cases, similarity in the decomposed time

series component (timing model 3, trend model 2) was significantly more informative of the

property correlation (Paired Wilcoxon signed rank tests, p<2.2e−16). Human factors indica-

tive of connectivity between mesoregions explained more of the variation in outbreak timing

(model 2) than the environmental variables alone. Finally, the combination of correlations

between the decomposed environmental time series and the human connectivity covariates

further improved the fit, raising the out-of-sample r2 to 0.34 for outbreak timing. Although the

addition of the human-connectivity factors to correlations between the environmental trend

component improved the out-of-sample r2 correlation for outbreak trend to 0.107 (trend

model 1, MSE Paired Wilcoxon signed rank test, p<2.2e−16), these absolute gains were mini-

mal compared to the other outbreak properties.

Determinants of outbreak properties. Because outbreak properties capture different

components of the DENV case time series, we hypothesized that the covariates would differ

between the outbreak property models. We analyzed the inclusion of covariates from the

model which best explained each outbreak property as listed in Table 3.

Table 3. Performance of outbreak property LASSO models. Models are listed in descending order of the mean out-of-sample correlation. The ranked order between the

out-of-sample r2 (higher indicates a better fit) and the relative MSE (lower indicates a better fit) is not exact. Standard deviation of the 100 model fits are listed in

parentheses.

Property Covariates Relative MSE Out-of-sample r2

Intensity 1 Environmental: intensity 0.024 (0.008) 0.544 (0.122)

2 Environmental: intensity & human-risk factors 0.025 (0.008) 0.543 (0.123)

3 Environmental: annual average 0.024 (0.008) 0.530 (0.117)

4 Human-risk factors 0.045 (0.015) 0.137 (0.086)

Seasonality 1 Environmental: annual average & human-risk factors 0.079 (0.018) 0.378 (0.134)

2 Environmental: annual average 0.084 (0.018) 0.332 (0.134)

3 Environmental: seasonality 0.094 (0.019) 0.241 (0.126)

4 Human-risk factors 0.112 (0.016) 0.073 (0.096)

Timing 1 Correlation between environmental phase angles & human-connectivity factors 0.100 (0.004) 0.340 (0.017)

2 Human-connectivity factors 0.108 (0.004) 0.297 (0.017)

3 Correlation between environmental phase angles 0.114 (0.004) 0.250 (0.016)

4 Euclidean distance between environmental time series 0.119 (0.004) 0.214 (0.014)

Trend 1 Correlation between environmental trend & human-connectivity factors 0.764 (0.019) 0.107 (0.013)

2 Correlation between environmental trend 0.773 (0.019) 0.096 (0.013)

3 Euclidean distance between environmental time series 0.777 (0.016) 0.089 (0.012)

4 Human-connectivity factors 0.787 (0.017) 0.081(0.011)

https://doi.org/10.1371/journal.pntd.0009392.t003
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Outbreak intensity. The top two predictors of outbreak intensity were the mean tempera-

ture and the intensity of the mean normalized burn ratio, an indicator of drought (Fig 5A).

Both variables were included in 100% of the fitted models and had negative effects on outbreak

intensity, contributing a predicted decrease in the intensity of DENV outbreaks for increases

in the intensity of these environmental features. The intensities of the green NDWI and the

percent of cloudy pixels variables were also included, however, less than 25% of the time.

Outbreak seasonality. Models that predicted outbreak seasonality occasionally consisted

of a subset of all nine environmental summary variables and four human-risk factors (Fig 5B).

Environmental variables associated with the presence of rain, such as the relative humidity,

green NDWI, and average percent of cloudy pixels, were included most often in the models,

100%, 96%, and 89% of the time respectively. The total population of a mesoregion was the

most included human-risk factor variable, present 90% of the time. Increases in average

Fig 5. Coefficients of the best-performing outbreak property models. (Left) Covariates are ordered by the proportion of times they were included in

the final model. Dark bars indicate a covariate was included in all 100 of the LASSO fits. (Right) The mean and standard deviation coefficient when the

covariate was included in the model. Orange bars indicate a positive effect on the outbreak property value; purple bars indicate a negative effect on the

outbreak property value.

https://doi.org/10.1371/journal.pntd.0009392.g005
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relative humidity and green NDWI decreased the strength of DENV case seasonality in a

mesoregion, while increases in the average percent of cloudy pixels and the total population

size increased the strength of DENV case seasonality. The annual averages of green NDWI,

NDVI, and the daily temperature range are highly correlated with each other (r = 0.75–0.94,

S1 Fig), but in all but two of the 100 LASSO fits, at least one of the coefficients was set to zero.

This suggests that these three parameters are being treated as a group by LASSO. Mean tem-

perature and the human-mosquito contact variables are also correlated with each other

(r = 0.79, S1 Fig), but only appear with nonzero coefficients together three times out of the 100

LASSO fits.

Outbreak timing. The top four predictors of outbreak timing were included in 100% of

the models (Fig 5C). Distance had a negative effect on outbreak timing correlation, while the

product of the population sizes had a positive effect. Correlation of SWIR NDWI and esti-

mated mosquitoes per person phase angles also had positive effects on correlation of outbreak

timing. Of the remaining variables included in more than 50% of the model fits, the other four

were environmental.

Outbreak trend. Five variables were included in the outbreak trend model more than

50% of the time (Fig 5D). Distance again had the strongest negative effect on the values of out-

break trend, while correlations of trends of the two environmental variables, NDVI and the

number of mosquitoes per person, had positive effects. Connectivity estimated using move-

ment inferred through Twitter had a stronger mean effect than the trend correlations in NDVI

and daily temperature range, although with a wide standard deviation.

Discussion

We reduced DENV case time series to outbreak properties to identify and analyze targets that

can be practically incorporated into future goal-oriented DENV forecasting models. Overall,

we found that outbreak shape (intensity) and regularity in seasonal oscillations (seasonality)

vary across the country independently of each other. Similarly, mesoregions that have a high

degree of synchronicity in their seasonal oscillations (outbreak timing) do not demonstrate the

same degree of synchronicity in inter-annual magnitude changes (outbreak trend). In addi-

tion, our analysis revealed spatial structure of individual outbreak properties and of an overall

outbreak profile that could be leveraged in hierarchical modeling approaches. Finally, we

determined that environmental and human associated variables have different roles in shaping

these outbreak properties. Intra-mesoregion properties, i.e., outbreak intensity and seasonality,

were best explained by satellite remote sensing and climatic variables. Inter-mesoregion prop-

erties, i.e., outbreak timing and trend, were best explained by a combination of environmental

variables and human-connectivity proxies such as the distance between locations and the

product of the population sizes. Altogether, this analysis suggests that developing forecasting

models around individual targets may be more effective for single or groups of mesoregions

based on regional needs.

Our results revealed that there is wide variation in the predictability of outbreak properties.

Outbreak intensity was the most explainable property. In contrast with influenza, we did not

find evidence that population size or density played a strong role [28] in predicting outbreak

intensity. Theory has traditionally assumed that vector-borne diseases are transmitted in a fre-

quency-dependent manner, where the number of human contacts with mosquitoes are inde-

pendent of the population size, while person-to-person transmitted diseases like influenza are

assumed to be transmitted in a density-dependent manner [48–50]. However, for DENV,

whose vector Ae. aegypti thrives in urban environments [51], these assumptions may not hold

across the spatial heterogeneity of urban landscapes. Romeo-Aznar et al. found evidence of
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dependencies on the force of infection between human density and mosquito abundance at

fine urban scales in Delhi, with differences stemming from socio-economic conditions [52].

One possibility therefore is that we analyzed outbreak intensity at a higher spatial resolution,

where differing relationships between density and outbreak dynamics obscurred any signal.

Further, population density may not have been a significant covariate because its operational

definition used by the Instituto Brasileiro de Geografia e Estatı́stica [36]—the ratio of the pop-

ulation living in a private home with a density greater than 2 persons per room—is more spe-

cific than a standard population per geographic unit area definition. When looking at the

spatial variation of population density (S9 Fig), high values correspond to areas in the north of

the country, with medium values in urban areas such as Rio de Janeiro and São Paulo. Total

population size, however, was an important factor in predicting the seasonality of outbreaks,

consistent with Ref. [3] that found epidemic persistence is associated with population size. The

higher populations of urban environments may lead to consistent annual outbreaks because of

widespread water retention storage and the presence of substandard housing or sewerage and

management systems. Additionally, in urban environments, subsequent annual outbreaks may

appear at the mesoregion level, although occurring in different pockets throughout the city as

immunity is gained [24, 35].

We found NBR to predict outbreak intensity and outbreak timing. Locations with lower

values of NBR intensity, indicating more consistent NBR measurements, had higher intensity

DENV outbreaks. This may be because NBR, as an indicator of land cover with less vegetation,

could reflect places where ambient temperatures are warmer due to the urban island effect,

which may promote mosquito populations that help fuel larger outbreaks [3]. Similarly, we

found the intensity of temperature to be negatively associated with concentrated outbreaks.

Mesoregions with changing temperatures may indicate areas where temperature is seasonally

inconducive for breeding, survival, and transmission [53–55]. Additionally, NBR, as an indica-

tor of drought, could indicate areas where storage of rainfall in containers may facilitate mos-

quito breeding [56]. Monitoring for anomalies in NBR within cities could inform whether a

DENV season is likely to be more or less intense than usual, which has implications for health-

care surge capacity.

Our findings on outbreak timing across Brazil agree with prior studies that show the pres-

ence of a traveling wave and a decaying relationship in outbreak timing with distance [23, 57].

Similarly, we found that environmental variables related to precipitation, such as SWIR

NDWI, vector presence, and markers of human connectivity were needed to explain the varia-

tion in outbreak timing. At the mesoregion spatial scale, Churakov et al. [23] found that pre-

cipitation played a stronger role than human mobility. However, in our analysis, the effects of

distance and the product of the population sizes were 2.9 and 1.4 times bigger respectively

than the correlation in SWIR NDWI, which is not a direct measure of precipitation but cap-

tures the moisture content in vegetation. The inclusion of multiple indirect precipitation satel-

lite remote sensing metrics, including NDVI and NBR, may have diluted the effect of any

single one, but suggest that each are capturing subtle water-related differences important to

the DENV transmission cycle. SWIR NDWI may be capturing local similarities in precipita-

tion and humidity. Rainfall impacts the life-cycle of Ae. aegypti in the egg, larva, and pupa

stages and has been shown to precede the occurrence of DENV cases in parts of Brazil [58, 59].

Anticipating long-term changes in magnitude is an important target for a forecasting sys-

tem, yet correlation in outbreak trend was the least explainable property. We introduced a new

metric for measuring synchrony in trend compared to prior studies which have measured syn-

chrony as the correlation in the raw time series. We chose a different definition to ensure that

spurious relationships were not inflated by similarities in the seasonal pattern. In our models,

environmental and human connectivity variables were able to explain 11% of the variation in
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outbreak trend, which was slightly less than the models correlating the time series. Interest-

ingly, connectivity estimated through Twitter activity was included in over 50% of the models.

Compared to the connectivity estimated through bus and airline proxies, the Twitter connec-

tivity matrix is more complete and may be a better indicator of individual movement as it is

not as biased towards mesoregions with transportation hubs. However, the large amount of

unexplained variation suggests that key additional data streams are absent. Given the complex

interaction between human susceptibility and circulating DENV serotypes, data streams that

capture serological information and current circulating pathogen genotypes could improve

the ability to explain trend. This type of data is difficult to receive in real time over a broad geo-

graphic scale, and may be more suited for modeling at a finer spatial resolution. Additionally,

reporting differences across mesoregions and years could obscure the true signal.

This study had several limitations. First, our analysis was only based on six years of data for

which we had overlapping clinical, satellite remote sensing, weather, and human connectivity

data, potentially missing multi-year DENV cycles that have been shown to occur in other

regions and climatic weather events such as El Niño [21, 22, 60, 61]. Second, to increase the

parsimony and interpretability of the models, we only considered the weekly mean of the envi-

ronmental time series. However, there are environmental limits that govern DENV dynamics,

such as where temperature is not conducive to mosquito survival [54]. Statistics that capture

the upper and lower bounds of environmental conditions may be more informative variables.

Third, we assumed a linear relationship between covariates and DENV properties. As men-

tioned above, there may be hard cutoffs where a linear relationship does not exist. We explored

fitting polynomial LASSO models to include interactions between variables, but found the

increase in model performance to be negligible. Finally, our study is limited by the accuracy of

the DENV surveillance data. Because all reported DENV cases may not be confirmed via labo-

ratory testing, the DENV cases may be more reflective of general arbovirus activity, rather

than DENV specific dynamics. Nonetheless, we believe our methods and results provide useful

insight into the patterns of mosquito-driven disease activity that can be used for surveillance

and mitigation efforts.

The motivation for this work was to identify relevant spatio-temporal structure in historical

DENV case data that could be leveraged for forecasting efforts. First, separating a time series

into decomposed features has precedent in the field of forecasting. Brooks et al. established an

empirical Bayes approach for influenza forecasting that used distributions of historical shape,

noise level, peak height, peak week, and pacing transformations [62]. This technique was

applied to predict DENV risk during the 2014 World Cup in Brazil [8]. Second, incorporating

spatio-temporal structure into forecasting models has been shown to improve influenza pre-

dictions [63]. Our spatial clustering results can provide direction in how to incorporate current

and historical spatial information in an informed and efficient way. Finally, our results also

revealed that broad capturing and integration of disparate data streams are beneficial for

explaining disease dynamics, and their utility in forecasting systems should continue to be

explored [9, 10]. Here, we found that an individual time series data stream, such as tempera-

ture, can be used in numerous ways, whether as a standard summary statistic (e.g., mean), or

as more complex dynamic measurements (e.g., intensity). Yet, the challenge remains that

introducing more data streams and measurements increases the potential source of biases and

risks obfuscating potential mechanistic insights that lend a model credibility. The increasing

interface between infectious disease modelers, public health officials, and decision makers

could guide the balance of incorporating big data and techniques while producing effective

operational surveillance and forecasting systems. In addition to applying these results to

mesoregion level forecasting efforts, future studies could consider how climate-change

induced environmental changes may influence outbreak properties across the country.
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Supporting information

S1 Data. Supporting files for analyses and figures.

(ZIP)

S1 Fig. Correlations between the mean values of the environmental variables. The diagonal

shows the distribution of normalized values. The upper triangle contains the Pearson’s correla-

tion value between two environmental variables.

(TIF)

S2 Fig. Correlations between the intensity values of the environmental variables. The diag-

onal shows the distribution of normalized values. The upper triangle contains the Pearson’s

correlation value between two environmental variables.

(TIF)

S3 Fig. Correlations between the seasonality values of the environmental variables. The

diagonal shows the distribution of normalized values. The upper triangle contains the Pear-

son’s correlation value between two environmental variables.

(TIF)

S4 Fig. Correlations between pairwise correlations of environmental phase angles. The

diagonal shows the distribution of normalized pairwise correlations of a specific environmen-

tal variable’s phase angle across all combinations of mesoregions. The upper triangle contains

the Pearson’s correlation between two different environmental variables’ pairwise correlations.

(TIF)

S5 Fig. Correlations between pairwise correlations of environmental trends. The diagonal

shows the distribution of the normalized pairwise correlations of a specific environmental var-

iable’s trends across all combinations of mesoregions. The upper triangle contains the Pear-

son’s correlation between two different environmental variables’ pairwise correlations.

(TIF)

S6 Fig. Spatial variation in the mean values of the environmental variables. All variables

have been normalized such that darker areas represent higher values and lighter areas repre-

sent lower values. The underlying shapefiles with political boundaries are publicly and freely

available at Instituto Brasileiro de Geografia e Estatı́stica (IBGE) http://downloads.ibge.gov.br/

downloads_geociencias.htm.

(TIF)

S7 Fig. Spatial variation in the intensity values of the environmental variables. All variables

have been normalized such that darker areas represent higher values and lighter areas repre-

sent lower values. The underlying shapefiles with political boundaries are publicly and freely

available at Instituto Brasileiro de Geografia e Estatı́stica (IBGE) http://downloads.ibge.gov.br/

downloads_geociencias.htm.

(TIF)

S8 Fig. Spatial variation in the seasonality values of the environmental variables. All vari-

ables have been normalized such that darker areas represent higher values and lighter areas

represent lower values. The underlying shapefiles with political boundaries are publicly and

freely available at Instituto Brasileiro de Geografia e Estatı́stica (IBGE) http://downloads.ibge.

gov.br/downloads_geociencias.htm.

(TIF)
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S9 Fig. Spatial variation in the human-risk factors. All variables have been normalized such

that darker areas represent higher values and lighter areas represent lower values. The underly-

ing shapefiles with political boundaries are publicly and freely available at Instituto Brasileiro

de Geografia e Estatı́stica (IBGE) http://downloads.ibge.gov.br/downloads_geociencias.htm.

(TIF)

S10 Fig. In-sample and out-of-sample fits from the best-fit model. Each panel shows one of

the 100 LASSO fits. The orange dots represent the in-sample target values versus the fitted val-

ues; the grey dots represent the out-of-sample target values versus the fitted values. The smooth

lines show the relationship of yx̃, while the dotted line indicates a perfect agreement between

the target and fitted values.

(TIF)

S11 Fig. Sensitivity of the outbreak intensity threshold. (A) Mean intensity values across all

mesoregions when excluding annual outbreaks in mesoregions that do not exceed an annual

threshold of 5–200 total DENV cases. By including years when a mesoregion has fewer than 10

cumulative DENV cases, the resulting mean intensity distribution is highly skewed. Using

thresholds of 50–200 cases results in similar mean intensity distributions. A threshold of 50

completely excludes five mesoregions, a threshold of 100 completely excludes seven mesore-

gions, and thresholds of 150 and 200 completely exclude eight mesoregions. (B) For the

remaining 129 mesoregions, when using a threshold of 150 annual DENV cases, the mean

intensity values computed when excluding years with fewer than 150 cases are higher than

when including all outbreaks. Orange dots represent mesoregions that had at least one year

with fewer than 150 DENV cases. Purple dots represent mesoregions where there were at least

150 DENV cases in all years across the six-year study period. (C) Including years when a

mesoregion had fewer than 150 total DENV cases results in a skewed distribution of the overall

mean intensity values. In the main manuscript, we use the mean intensity distribution corre-

sponding to the blue line, excluding outbreak years in which a mesoregion had fewer than 150

DENV cases.

(TIF)
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