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Abstract
The advent of deep learning has engendered renewed and rapidly growing interest in artificial intelligence (AI) in radiology 
to analyze images, manipulate textual reports, and plan interventions. Applications of deep learning and other AI approaches 
must be guided by sound medical knowledge to assure that they are developed successfully and that they address important 
problems in biomedical research or patient care. To date, AI has been applied to a limited number of real-world radiology 
applications. As AI systems become more pervasive and are applied more broadly, they will benefit from medical knowledge 
on a larger scale, such as that available through computer-based approaches. A key approach to represent computer-based 
knowledge in a particular domain is an ontology. As defined in informatics, an ontology defines a domain’s terms through 
their relationships with other terms in the ontology. Those relationships, then, define the terms’ semantics, or “meaning.” 
Biomedical ontologies commonly define the relationships between terms and more general terms, and can express causal, 
part-whole, and anatomic relationships. Ontologies express knowledge in a form that is both human-readable and machine-
computable. Some ontologies, such as RSNA’s RadLex radiology lexicon, have been applied to applications in clinical 
practice and research, and may be familiar to many radiologists. This article describes how ontologies can support research 
and guide emerging applications of AI in radiology, including natural language processing, image–based machine learning, 
radiomics, and planning.
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Introduction

The successful development and application of artificial 
intelligence (AI) in radiology must be guided by medical  
knowledge. Such knowledge can help AI developers 
select important clinical problems to solve, identify the 
limitations of AI solutions, and establish appropriate  
metrics by which to judge the performance of the solutions. 
Standard vocabularies, coding systems, and computer- 
based representations of medical knowledge can promote 
interoperability and enable sophisticated information systems 

[1]. To date, many of the applications of AI in radiology  
have been “artisanal”: they have focused on relatively  
narrow problems, such as detection of wrist fractures [2]  
or single neurological abnormalities [3]. As AI becomes 
more pervasive and more general—including applications 
in natural language processing (NLP), image–based machine 
and deep learning, radiomics, and treatment planning—there 
is a growing need to incorporate knowledge on a larger scale, 
such as that available through computer-based approaches. 
This article describes how biomedical ontologies— 
computer-based representations of knowledge—can help 
guide emerging applications of AI in radiology.

Ontology

Ontology is the discipline in philosophy that studies the 
nature of being; it aims to understand how things in the 
world are divided into categories and how these categories 
are related to one another. In its modern meaning related to 
computing, an ontology describes a structured representa-
tion of the knowledge within a certain domain. An ontol-
ogy classifies the entities within a domain; each entity is 
said to make up a term, or “class,” of the ontology [4]. An 
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ontology defines a domain’s terms through their relation-
ships with other terms in the ontology; those relationships, 
then, define the terms’ semantics, or “meaning.” Ontologies 
express knowledge in a form that is both human-readable 
and machine-computable [5]. Thus, an ontology can allow 
both humans and computers to describe and reason about 
the concepts in a domain. Ontologies help promote clarity 
and can enable disparate medical systems in radiology to 
work together [1].

Ontologies are based on controlled vocabularies, sev-
eral of which will be familiar to radiologists [1]. Current 
Procedural Terminology (CPT) provides a standardized 
nomenclature and set of codes for imaging procedures. The 
International Classification of Diseases, 10th Edition, Clini-
cal Modification (ICD-10-CM) standardizes the names of 
diseases and medical conditions. Unlike individual termi-
nologies and coding systems, however, ontologies include 
the semantic relationships between their terms.

We introduce several key ontologies that relate to the 
development of AI in radiology (Table 1). The ontologies 
range in size from hundreds of entities to more than 350,000 
terms. They range in scope from very narrow to very broad. 
More than 800 biomedical ontologies are available through 
the National Center for Biomedical Ontology (NCBO) Bio-
Portal site (9, 10).

SNOMED CT

The Systematized Nomenclature of Medicine Clinical Terms 
(SNOMED CT) is the largest multilingual health terminol-
ogy. It enables the electronic interchange of health informa-
tion by assuring consistent representation of clinical content 
in electronic health records. SNOMED CT is the accepted 
US standard for health language, and is freely available in 
the USA through the National Institutes of Health’s National 
Library of Medicine. SNOMED CT is mapped to other inter-
national standards to facilitate semantic interoperability, and 
it is in use in more than 80 countries.

Every SNOMED CT concept has a Fully Specified Name 
(FSN), a unique, unambiguous description of a concept’s 
meaning. The FSN is particularly useful when different  
concepts are referred to by the same commonly used word  
or phrase. A synonym represents a term that can be used  
to display or select a concept. A concept may have several 
synonyms, which allows one to use the term one prefers for a  
specific clinical meaning. For example, concept 22298006 
has the fully specified name myocardial infarction (disor-
der), and synonyms such as myocardial infarction, heart  
attack, and MI. Top-level classes in SNOMED CT with  
the greatest number of subclasses are body structure, clini-
cal finding, organism, pharmaceutical/biologic product,  

procedure, and substance. A part of the SNOMED CT hier-
archy is shown in Fig. 1.

A relationship represents an association between two 
concepts. Relationships define the meaning of a concept in 
a way that can be processed by a computer. The relationship 
type (or attribute) specifies the meaning of the association 
between the source and destination concepts. There are dif-
ferent types of relationships available within SNOMED CT. 
For example, the is-a attribute links diabetes mellitus type 2 
to diabetes mellitus: it expresses that the former is a subtype 
of the latter. Here are the defined relationships for Pancreas 
divisum:

Pancreas divisum

Synonyms   Pancreatic divisum
Is-a   Congenital malformation of pancreas
Has-associated-morphology   Developmental failure 
of fusion
Has-finding-site   Pancreatic structure

In addition to primitive concepts, some SNOMED CT 
terms are defined logically in relation to other terms. For 
example, viral upper respiratory tract infection depicts a 
fully described concept, which is represented in description 
logic as a logical conjunction:

Viral upper respiratory tract infection

equivalentTo
 Upper respiratory infection 
 and  Viral respiratory infection 
 and  Causative-agent some Virus 
 and  Finding-site some Upper respiratory tract 
structure

 and  Pathological-process some Infectious process  

RadLex

The RadLex radiology lexicon has been developed to create a 
uniform, consistent language for radiology to improve com-
munication of results and to better integrate clinical practice 
with education and the scientific literature. RadLex was cre-
ated, in part, to address the lack of radiology-specific terms 
in a general medical vocabulary such as SNOMED CT [6]. 
As an ontology of radiology, RadLex terms describe relevant 
anatomy, diseases, imaging findings, procedures, and other 
concepts of use in radiology practice [7, 8]. RadLex has 
15 top-level concepts, including anatomical entity, clinical 
finding, and imaging observation (Table 2). RadLex incor-
porates concepts and relations from the Foundational Model 
of Anatomy (FMA), a detailed ontology of human anatomy 
[9]. In addition to the typical class-superclass relationships 
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(is_a and its inverse has_subtype) and part-whole relation-
ships (part_of and its inverse has_part), RadLex includes 
a rich set of relationships, largely derived from FMA, that 
express relationships such as the anatomical site of a finding 

or disease; muscle origin, insertion, and innervation; and 
vascular anatomy. RadLex incorporates frequently used 
synonyms, and has been translated into German (Fig. 2).

RadLex also provides a consistent nomenclature for 
radiology procedures to use in exam ordering, scheduling, 
billing, and image interpretation. Standardized procedure 
codes promote interoperability, facilitate the identification 
of relevant prior imaging studies, and enable data to be col-
lected in national registries, such as the American College of 
Radiology’s Dose Index Registry. RadLex procedure names 
have been integrated with the Logical Observation Identi-
fiers Names and Codes (LOINC) standard, a widely used 
vocabulary for laboratory procedures and results (https://​
loinc.​org), to offer the LOINC-RSNA Radiology Playbook 
as a uniform scheme for imaging procedure names [10, 11].

Radiology Gamuts Ontology

Differential diagnosis has formed the core of traditional 
knowledge in radiology, and various reference texts have 
provided knowledge of differential diagnosis for clinical 
radiology practice, such as Reeder and Felson’s Gamuts in 
Radiology: Comprehensive Lists of Roentgen Differential 
Diagnosis [12]. Knowledge of radiological differential 
diagnosis has been incorporated into the Radiology Gamuts 
Ontology (RGO). RGO comprises 16,912 concepts that  

Fig. 1   Parts of the SNOMED CT ontology are shown as a directed 
acyclic graph. The nodes of the graph represent an ontology’s con-
cepts, such as papillary thyroid cancer. The is-a relationships that 
relate a more specific concept to a more general one are shown as 

heavy arrows. The graph also shows the finding site attribute, which 
links a disease or condition to an anatomic structure. Some of the 
concepts related to thyroid structure are presented

Table 2   Top-level concepts of the RadLex ontology. A descendant is 
any concept directly or indirectly specified as a subclass (or “child”)

Top-level concept Number of 
descend-
ants

Anatomical entity 38,165
Clinical finding 2230
Imaging observation 1134
Imaging specialty 86
Non-anatomical substance 392
Object 403
Procedure 610
Procedure step 98
Process 35
Property 1308
RadLex descriptor 1311
RadLex non-anatomical set 7
Report 0
Report component 22
Temporal entity 4

https://loinc.org
https://loinc.org
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specify disorders (e.g., Apert syndrome), interventions  
(e.g., Whipple procedure), and imaging manifestations (e.g., 
gastric fold thickening) [13]. In addition to the conventional 
hierarchical (“is a”) relation between more specific and more 
general concepts, RGO defines the “may cause” relation (and 
its inverse, “may be caused by”) that encodes links between 
conditions and their imaging manifestations. For example, RGO 
asserts that gastric fold thickening may be caused by gastric 
varices, Ménétrier disease, and 46 other conditions. RGO 
terms—together with their 1782 hierarchical (“is a”) and 55,564 
causal relationships—form a large, interconnected network of 
knowledge for radiological diagnosis (Fig. 3). In addition to 
publication on the NCBO BioPortal site and a custom web 
site, an application programming interface (API) makes the 
ontology’s knowledge available in machine-readable form. 
Grouping of RGO terms by organ system and imaging modality 
reveals the breadth of content in each subdomain (Table 3).

Disease Ontology

The Disease Ontology (DO) is an extensive, hierarchi-
cally organized vocabulary of 12,694 human diseases that 
provides a framework to identify relationships between 
diseases and phenotypes, genotypes, and various other dis-
ease attributes [14]. DO provides semantically consistent 
annotations that allow one to compare diagnostic evalu-
ations, treatments, and patient-care data over time and 
between studies. DO incorporates concepts and extensive 
cross-mapping from standard clinical and medical ter-
minologies, such as Medical Subject Headings (MeSH), 
International Classification of Diseases (ICD), Online 
Mendelian Inheritance in Man (OMIM), and the National 
Cancer Institute Thesaurus. The ontology provides a 
resource to connect genetic and phenotypic information 
related to human disease.

Fig. 2   Example of RadLex concepts. One can view the hierarchy of concepts related to gallstone in gallbladder and its associated imaging signs
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Human Phenotype Ontology

The Human Phenotype Ontology (HPO) describes phenotypic 
features of hereditary, congenital, and acquired diseases using 
a structured and controlled set of terms [15]. Although focused 
initially on monogenic diseases—about 50,000 annotations 
connect HPO terms to 4779 diseases in the OMIM database 
of genetic disorders—HPO now includes features of more 
than 3400 common non-Mendelian disorders. HPO terms  
can have more than one parent in the phenotypic hierarchy:  
for example, podagra (gout of the big toe) has parent terms 
gout and abnormality of the foot. HPO has been linked to 
OMIM and to the Orphanet Rare Disease Ontology (ORDO)  
to increase the interoperability of phenotypic knowledge in rare  
diseases. One can match clinical information to phenotypes 
at varying levels of specificity in the ontology’s hierarchy to 
formulate differential diagnoses; for example, a clinical record 
describing a “short 2nd toe” would be linked to the HPO term 
short 2nd toe and its more general terms, short toe, short digit, 
and abnormal digit morphology.

Integration of Ontologies

Individual ontologies can serve as building blocks of 
broader, more general knowledge resources. By inte-
grating related ontologies, knowledge can be shared 
and reused across domains. The US National Library of 
Medicine’s Unified Medical Language System (UMLS) 
Metathesaurus seeks to provide semantic integration of 
concepts across ontologies and vocabularies; a single con-
cept unique identifier (CUI) in the UMLS Metathesaurus 
may refer to concepts in several component vocabularies. 
As described above, the Foundational Model of Anatomy 
(FMA) forms much of the basis of the anatomical terms in 
RadLex. Knowledge of radiological differential diagnosis 
in RGO has been integrated with SNOMED CT, RadLex, 
DO, HPO, and the ORDO [16–18]. This integration allows 
one to pose new, abstract questions that relate diseases and 
their imaging phenotypes such as, “Which gastrointestinal 
system diseases may cause an abnormality of the genitou-
rinary system?” (Fig. 4).

Fig. 3   A portion of the network of Radiology Gamuts Ontology 
(RGO) terms and their causal relationships displayed as a graph, lim-
ited to a subset of conditions related to the stomach. RGO concepts, 
such as gastric fold thickening, are the nodes, shown as solid blue 

circles. The green arcs between nodes represent causal relationships. 
The inset at lower left provides a magnified view of a demarcated 
portion of the graph
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Limitations

Although ontologies provide a powerful framework to 
organize information, they have several limitations both in 
their design and application. With more than 800 ontolo-
gies available through NCBO BioPortal (https://​biopo​rtal.​
bioon​tology.​org), it can be challenging to discover new or 
relevant ontologies. Mappings between these ontologies 
are sparse and few are included in the UMLS Metathesau-
rus. SNOMED CT, LOINC, and ICD-10-CM are part of 
the Metathesaurus, but, notably, RadLex is not. Licens-
ing of ontologies can pose another barrier: the US federal  
government licenses SNOMED CT for use in the USA, but 
the ontology is not openly available worldwide. Uneven or 
incomplete development of ontologies can limit their use: 
many ontologies, including RadLex, are built either through 
volunteer effort or are part of a larger initiative. Only a 
minority of RadLex terms include a definition; new con-
cepts that enter the vocabulary of radiology may not yet be 
incorporated, and there are ongoing questions of the scope 
and purpose of any ontology. As ontologies grow larger, it is  
increasingly challenging to assure that they are maintained  

Table 3   Number of imaging findings and diseases defined in the 
Radiology Gamuts Ontology by organ system and imaging modality. 
Entities may be listed in one or more categories

Category Number of imaging 
findings

Number of 
diseases

Breast imaging 2 60
Cardiac radiology 106 1178
Chest radiology 286 2958
Computed tomography 1232 9081
Diagnostic radiology 1432 9266
Gastrointestinal radiology 363 2869
Genitourinary radiology 236 1901
Head and neck radiology 272 2627
Musculoskeletal radiology 719 4069
Magnetic resonance imaging 1042 6947
Neuroradiology 462 2767
Obstetric/gynecologic radiology 72 653
Oncologic imaging 65 736
Pediatric radiology 198 2449
Ultrasound 499 4605
Vascular imaging 172 1809

Fig. 4   Radiology Gamuts Ontology’s causal knowledge and map-
pings to the Disease Ontology and Human Phenotype Ontology allow 
one to answer questions such as, “Which gastrointestinal disease(s) 
may cause an abnormality of the genitournary system?” The example 

presented shows the causal relationship from Crohn disease to blad-
der fistula, with corresponding hierarchical relationships of diseases 
and phenotypic abnormalities

https://bioportal.bioontology.org
https://bioportal.bioontology.org
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appropriately and that the ontology’s axioms are logically 
consistent.

Few ontologies other than SNOMED CT and LOINC 
have been incorporated broadly into commercial products, 
and solutions adopted in industry often resort to simpler, 
non-standards-based textual information. Towbin et  al.  
have highlighted the widespread and substantial limi-
tations of traditional free-text body part labeling in  
DICOM and the importance of an ontology for body part 
labeling to enable enterprise imaging [19]. Smith et al. 
review many of the challenges of ontologies for biomedical 
imaging, and propose a coordinated suite of ontologies to 
address the needs of biomedical imaging [20]. There may 
be lack of incentive in the commercial space as organizing 
or labeling data ontologically requires more work and main-
tenance; it is unclear what might motivate such adoption.

Applications

Natural Language Processing

Natural language processing (NLP) has been applied widely 
in radiology, and can perform more efficiently than human 
experts with near-human accuracy [21–23]. Many clinical 
and research applications rely on automatic recognition of 
medical concepts in unstructured text, and the accuracy 
of recognition can affect the analysis of electronic health 
records. The mining of medical concepts is complicated by 
the broad use of synonyms and nonstandard terms in medical 
documents. Ontologies have been shown to improve perfor-
mance of NLP applications [24–26].

Ontologies can support radiology NLP applications by 
providing a comprehensive vocabulary of a domain, along 
with the terms’ synonyms, abbreviations, and relationships. 
Ontology’s synonyms, abbreviations, and related terms 
can help identify diagnoses and other entities in radiology 
reports. For example, RGO incorporates 2957 synonyms 
(e.g., hepatoma and HCC for hepatocellular carcinoma) that 
can improve recall of an NLP search routine and can also 
help coalesce the findings into a single unique entity. Links 
between ontologies can offer additional synonyms; for exam-
ple, the RGO term LEOPARD syndrome has DO synonyms: 
Capute-Rimoin-Konigsmark-Esterly-Richardson syndrome, 
generalized lentiginosis, Gorlin syndrome II, lentiginosis 
profusa syndrome, Moynahan syndrome, multiple lentigi-
nes syndrome, Noonan syndrome with multiple lentigines, 
and progressive cardiomyopathic lentiginosis. Hierarchically 
organized information allows one to search intelligently for 
classes of findings; for example, a search for phakomatosis 
encompasses more specific terms such as neurofibromatosis, 
NF1, and tuberous sclerosis.

Text de-identification tools often use algorithms that 
attempt to redact people’s names by identifying words that 
are capitalized. Radiology reports, however, commonly 
contain eponyms for devices, findings, and diseases that 
include capitalized proper nouns (e.g., Foley catheter, Ker-
ley B lines, Wilms tumor). Thus, de-identification tools may 
require domain-specific vocabulary [27, 28] so that these 
terms are not inappropriately redacted from the record or 
replaced by arbitrary names as in de-identification tech-
niques such as “hiding in plain sight” [29]. More than 800 
of these imaging findings (such as Rigler sign) have been 
incorporated into RadLex [30]. Connections between ontolo-
gies can identify additional similarly capitalized proper noun 
synonyms as alluded to in more detail above. Although mod-
ern neural network–based approaches have reduced the need 
for feature engineering, exposure to controlled vocabularies 
can still supplement these techniques and limit the need for 
extremely large sets of training data [31].

In addition to search-and-replace tasks and named- 
entity recognition, ontologies can supplement deep neural  
network–based techniques by creating word embeddings 
based on ontology terms. An embedding technique converts  
words into vectors, or numerical representations, based 
on neighboring and co-occurring words in a text corpus.  
SNOMED2Vec, a word embedding model that uses 
SNOMED CT to augment machine-defined relationships, 
can outperform models that are not based on ontologies 
because it strengthens complex medical relationships such as 
“breast + adenocarcinoma → invasive ductal carcinoma” [32].

The relationships in an ontology enable more robust medi-
cal reasoning. The multiple hierarchical levels of terms in an 
ontology enable connections that go beyond word-list associa-
tions (e.g., for a synonym or proper noun detection) to make an 
end model more medically relevant. Researchers have explored 
semiautomated approaches to learn ontologies from text [33]. 
NLP performance was improved on a gene/protein synonym 
detection task by adding formal ontological knowledge with-
out modifying the word embeddings; the ontology provided 
context that effectively induced term variability while reducing 
ambiguity [34]. Biomedical ontologies evolve continually to 
become more robust and to accommodate new imaging tech-
niques and findings. Ontologies can augment NLP, and NLP 
can be used to analyze free-text corpora to find gaps and to 
suggest terms to add to existing ontologies [35].

Image–Based Machine Learning

Image–based machine learning can be applied to a virtually 
infinite space of potential applications across diseases, find-
ings, and imaging modalities. Early successful image–based 
machine learning applications have focused narrowly on par-
ticular findings or diseases; a key challenge is to identify 



1339Journal of Digital Imaging (2021) 34:1331–1341	

1 3

the applications that will have the greatest impact on radi-
ologists’ performance and patient care. Ontologies can help 
guide investigators towards fruitful avenues for research. 
For example, musculoskeletal radiology alone entails 635 
differential-diagnosis listings in RGO, such as abnormal 
odontoid process and premature craniosynostosis, with their 
interlinked imaging findings and diseases. The differential-
diagnosis listing for abnormal odontoid process links to 37 
possible causes, including ankylosing spondylitis and sys-
temic lupus erythematosus. Similarly, in thoracic imaging, 
RGO includes 286 imaging findings caused by 2958 diseases 
(Table 3). Understanding these linkages can guide research-
ers to focus on findings that are intertwined with diseases to 
increase the chance of substantive clinical impact.

These hierarchical relationships and mappings can then 
help translate findings that are detected using image-based 
techniques to diseases or other entities [36] which may 
strengthen an image–based machine learning model and help 
with one key area of machine learning, explainable or inter-
pretable AI [37, 38]. Image-based models may use saliency 
maps (“heat maps”) or activation maps to explain which 
image features contributed most strongly to certain findings 
in an exam. Ontologies and their relationships can then help 
synthesize these findings to propose causal relationships or 
subsequent diseases and outcomes and can show the map-
pings that led to these conclusions. For example, an image-
based AI model may detect cirrhosis; ontological knowledge 
can suggest what might have caused the finding (alcohol 
abuse, viral hepatitis, etc.) and possible consequences (portal 
hypertension, hepatocellular carcinoma, etc.).

One of the most challenging and time-consuming parts of 
developing image–based machine learning tools is labeling 
data. Early approaches typically required cumbersome manual 
labeling by domain experts, but automated or semiautomated 
techniques that generate large corpora of slightly imperfect 
training data can approach and nearly match the performance 
from carefully manually curated labels, although weakly labeled 
datasets generally require significantly more labels to approach 
the same level of performance [39], Ontologies can support the 
development of datasets to train or test image-based AI models 
by identifying mentions of conditions or imaging findings in 
radiology reports.

High-quality NLP models can facilitate important 
image–based machine learning applications and their evaluation. 
Marrying an image-based model that detects certain findings or 
entities with an NLP model that can accurately identify those 
findings in the report could be used to automate peer review at a 
scale far greater than what is feasible with current manual meth-
ods. Machine learning tools used by a practice should be continu-
ally monitored for performance and for safety events; parsing 
report data for the findings suggested by the image-based model 
can help quantify the performance and potential errors of both 
AI systems and humans.

Radiomics

Radiomics can link the characteristics of radiological 
images with a patient’s genotype, gene expression 
profile, and prognosis [40, 41]. The use of ontologies can 
help identify the scope of diseases or imaging findings 
related to a particular radiology exam and guide the 
integration of radiomics features with specific diseases. 
The Image Biomarker Standardization Initiative (IBSI) 
has defined uniform, reproducible approaches to 
compute 174 quantitative features from medical images 
[42]. The IBSI radiomics features have been integrated 
with segmentation algorithms and imaging filters into 
the Radiomics Ontology, which is published through 
NCBO BioPortal [43]. An ontology-guided radiomics 
analysis workf low has been developed to capture 
features from imaging data to facilitate research and 
clinical translation of radiomics [44]. As radiomics 
methods become more commonplace and sophisticated, 
one can imagine that particular computational features 
will become associated with various conditions, and 
such information could be incorporated into a diagnostic 
ontology.

Radiation Therapy Planning

Ontologies can aid in planning, which is the task of identify-
ing optimal sequences of actions to achieve a specified goal. 
An example of planning is found in mapping applications 
that can identify the fastest route to a given destination. In 
diagnostic radiology, a planning task might be to identify the 
most cost-effective imaging procedures to answer a clinical 
question. A common planning task in radiation oncology is 
to select optimal radiation ports to treat target lesions while 
sparing nontarget organs.

Two ontologies have been developed in radiation oncol-
ogy. The Radiation Oncology Ontology (ROO) represents 
clinical data in the radiation oncology domain; it incorpo-
rates 1183 classes and 211 properties between classes [45]. 
The authors used the ontology to query information from 
various data structures without a priori knowledge of the 
schemas of the underlying relational databases. The Radia-
tion Oncology Structures (ROS) ontology comprises 417 
anatomic and treatment planning classes that describe com-
monly contoured structures for radiation treatment planning 
[46]. The ontology was derived from more than 22,000 
structure labels used in one radiation oncology department; 
international guidelines were used for lymph node deline-
ation. ROS was created to standardize radiation oncology 
data for integration of into clinical data warehouses for mul-
ticenter studies.
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Conclusion

Many of the recent advances of AI in medical imaging 
have focused on the use of machine learning, and in 
particular, the technique of deep neural networks or 
deep learning. These systems can learn to recognize 
features and patterns in radiological images and textual 
reports to aid in detection and diagnosis. Although 
researchers have achieved a number of notable 
early successes, the AI models typically address a 
small number of conditions. The large number of 
radiologically relevant conditions and imaging findings 
for each combination of imaging modality and body 
part (chest CT, for example) suggests that there is an 
opportunity to explore the development of “industrial-
scale” approaches in which computer-based knowledge 
serves to relate imaging findings to corresponding 
diseases. The knowledge represented in ontologies can 
be used to help provide the “semantics” or meaning 
that may allow deep learning models to explain their 
reasoning. For analysis of radiology reports and other 
textual information in the electronic health record, 
ontologies provide a rich source of synonyms, and 
allow one to capture relevant features at various levels 
of generalization. Ontologies promote integration 
and interoperability among clinical, imaging, and 
“omics” data, and support deep learning algorithms, 
bioinformatics pipelines, big data analyses, and quality 
assurance and safety initiatives [47, 48]. Knowledge 
resources such as biomedical ontologies are poised to 
help guide large-scale foundational and translational 
research endeavors in radiology AI [49, 50].
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