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Abstract
Purpose Placental weight (PW) has been found to mediate the main effect of maternal BMI on fetal size. Still, the BMI–PW 
association is poorly understood. Therefore, we aimed to explore potential explanatory variables, including gestational weight 
gain (GWG), early- and late-pregnancy circulating levels of maternal glucose, insulin, leptin, adiponectin, triglycerides, 
LDL-C, and HDL-C, and fetal insulin.
Methods We included two studies of pregnant women from Oslo University Hospital, Norway: the prospective STORK 
(n = 263) and the cross-sectional 4-vessel method study (4-vessel; n = 165). We used multiple linear regression for data 
analyses. A non-linear BMI-PW association was observed, which leveled off from BMI25. Therefore, BMI <25 and ≥25 
were analyzed separately (n = 170/122 and 93/43 for STORK/4-vessel). Confounding variables included maternal age, par-
ity, and gestational age.
Results PW increased significantly per kg  m−2 only among BMI <25 (univariate model’s std.β[p] = 0.233 [0.002] vs. 
0.074[0.48]/0.296[0.001] vs. −0.030[0.85] for BMI <25 vs. ≥25 in STORK/4-vessel). Maternal early- but not late-pregnancy 
insulin and term fetal insulin were associated with PW. The estimated effect of early pregnancy insulin was similar between 
the BMI groups but statistically significant only among BMI <25 (std.β[p] = 0.182[0.016] vs. 0.203[0.07] for BMI <25 
vs. ≥25). Late pregnancy leptin was inversely associated with PW with a 1.3/1.7-fold greater effect among BMI ≥25 than 
BMI <25 in the STORK/4-vessel.
Conclusions The BMI–PW association was non-linear: an association was observed for BMI <25 but not for BMI ≥25. 
Leptin may be involved in the non-linear association through a placental–adipose tissue interplay. Maternal early pregnancy 
insulin and fetal insulin at term were associated with PW.
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Introduction

In utero fetal growth and development are determinants of 
short- and long-term health [1, 2]. Maternal weight status, 
such as the pregestational body mass index (I), is a pre-
dominant determinant of birthweight, a commonly used 
indicator of fetal growth [3]. The epidemic increase in 
BMI throughout the last decades has led maternal preges-
tational overweight (BMI ≥25 <30  kg   m−2) and obe-
sity (BMI ≥30 kg  m−2) to become major risk factors for 
adverse offspring health [4, 5]. However, the physiologi-
cal factors explaining the association between maternal 
weight status and fetal growth are poorly understood, and 
insight into such factors would represent a new basis for 
early prevention of adverse health outcomes both from a 
short- and long-term perspective [5].

The placenta transports maternal nutrients to the fetus 
and regulates the fetal nutritional environment [6, 7]. Fur-
thermore, the placental function is closely related to the 
placental weight (PW). First, PW is highly correlated with 
the villous surface area, which is the surface for trans-
ferring nutrients and oxygen [8]. Second, the placenta is 
an essential endocrine organ throughout pregnancy that 
secretes many hormones into the maternal blood circula-
tion. These hormones cause profound changes in maternal 
metabolism, and maternal levels of some of these placental 
hormones are closely related to PW [9–11].

In a recent study [12], we found that PW mediates over 
80% of the effect of pBMI and gestational weight gain 
(GWG) on birthweight after taking into account maternal 
glucose, insulin, leptin, and adiponectin, as well as fetal 
insulin and glucose uptake. Similarly, other previous stud-
ies have shown that adjustment for PW strongly reduces 
the estimated effect of maternal BMI on indicators of fetal 
growth [3, 13, 14]. The observed effects of PW on fetal 
growth call for studies of the determinants of placental 
growth. However, exploring potential factors in the asso-
ciation between BMI and PW is complicated because the 
placental hormones impact the same factors that poten-
tially link maternal weight and PW. This challenges the 
hypotheses of a directed causal path between BMI and PW 
and necessitates an explorative approach.

The metabolic status among overweight women 
(BMI ≥25) differs from those with a normal pBMI 
(BMI <25). The metabolic changes accompanying over-
weight in a non-pregnant state include a relative insulin 
resistance accompanied by reduced glucose tolerance, 
higher insulin and leptin levels, lower adiponectin levels, 
and altered lipid profiles, especially high plasma triglyc-
erides (TG) and low-density lipoprotein cholesterol (LDL-
C) and lower high-density lipoproteincholesterol (HDL-C) 
[15–17]. Therefore, these and other BMI-related metabolic 

entities are potential factors linking maternal BMI to birth-
weight and PW.

GWG is independently associated with PW [14, 18]. 
However, the effect of GWG on birthweight partly depends 
on the pregestational BMI, i.e., a larger impact of GWG 
on birthweight has been observed among lean women than 
overweight women [19]. Hence, a similar moderating impact 
of the pregestational BMI could also occur for the associa-
tion between GWG and PW. Furthermore, GWG is partly 
affected by placental hormones and the maternal pregesta-
tional metabolic state, which again is affected by the preges-
tational BMI. These interrelationships challenge a directed 
causal association [19].

The maternal factors may affect PW through their influ-
ence on substances in the fetoplacental circulation [20, 21]. 
Hence, the link between BMI and PW may include fetal fac-
tors. In previous publications, fetal insulin has been reported 
to be closely related to maternal glucose levels [12, 22, 23]. 
Furthermore, fetal insulin has been shown to stimulate vil-
lous endothelial proliferation, and thus promote placental 
growth [20]. Therefore, fetal signals may adjust the placental 
properties, including weight, transport systems and metabo-
lism, to secure proper supply depending on the fetal needs. 
In particular, the fetal responses to a surplus of energy sup-
ply, as in the case of a high pregestational BMI, are still 
poorly understood.

In the current study, we aimed to explore a set of poten-
tial variables associating maternal BMI and PW on both the 
maternal and fetal sides of the placenta, including early- and 
late-pregnancy maternal circulating levels of insulin, glu-
cose, leptin, adiponectin, triglyceride, LDL-C and HDL-C, 
and term pregnancy fetal levels of insulin.

Methods

Design and study population

Two separate and previously described study samples were 
included in the current study, the STORK cohort and the 
4-vessel method study sample [3, 24]. Both studies were 
conducted at Oslo University Hospital, Rikshospitalet, and 
were approved by the Regional Committee for Medical and 
Health Research Ethics—South-East Norway (S-01191 
and 13,885, respectively). All participants signed written 
informed consent.

The STORK study was a prospective cohort study with 
a longitudinal design including individuals who gave birth 
between 2002 and 2008 [3]. The current study included a 
subsample from the STORK cohort (n = 300 of 1031), pre-
viously described in detail with a flow chart for the inclu-
sion of participants [25, 26]. This subsample of the STORK 
cohort was selected based on the detailed biochemical data 
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available. In particular, data regarding adiponectin and leptin 
levels were available only in this subsample. Participants 
with missing biochemical variables were excluded (n = 17), 
leading to a final study sample of 263 individuals. Data from 
the first (1v) and last antenatal visits (4v) were included 
(14–16 and 36–38 weeks of gestation, respectively). The 
4-vessel method study was a cross-sectional in vivo study 
of women scheduled for cesarean sections between 2012 
and 2015. The current study included a subsample (n = 165 
of 179), previously described, including flow charts for the 
inclusion of participants [12].

The STORK cohort included women of Scandinavian 
heritage with singleton pregnancies. Exclusion criteria were 
multiple pregnancies, pre-existing diabetes mellitus, fetal 
malformations discovered at routine ultrasound examina-
tion, and major maternal comorbidities. The 4-vessel method 
study included healthy, non-smoking women with uncompli-
cated singleton pregnancies. Exclusion criteria were signifi-
cant pre-existing comorbidity, medication (other than levo-
thyroxine and occasional use of antiallergics, antiemetics, 
antibiotics, and antacids), pregnancy complications, and the 
onset of labor before scheduled cesarean section.

Clinical data and blood sampling

The blood samples from the STORK cohort were col-
lected in the morning after an overnight fast. Maternal BMI 
(kg  m−2) was calculated from the weight measured at the 
first antenatal visit using a calibrated scale and the meas-
ured maternal height. GWG was calculated as the difference 
between the weight measured at the first and last antenatal 
visit. Outcomes of pregnancy were collected from hospital 
records.

In the 4-vessel method study, the maternal characteris-
tics were collected at enrollment, and pregnancy outcomes 
were obtained from hospital records. Maternal height and 
pregestational weight (n = 153, 93%) or first-trimester weight 
(n = 7) were obtained from antenatal health cards and were 
mainly self-reported. The risk of bias in self-reported data 
was considered. However, self-reported data obtained from 
antenatal health cards are regarded as acceptable as weight 
references [27]. Furthermore, analyses from the STORK 
study have indicated a very strong correlation between self-
reported pregestational weight and the weight measured in 
v1 (R2 = 0.9) [28]. Therefore, we considered the data from 
the antenatal health cards to be reasonably reliable. On the 
day of delivery, the women were weighed on an impedance 
scale (Tanita Body Composition Analyzer, Tokyo, Japan). 
GWG was calculated as the difference between pre-preg-
nancy and term weight.

The 4-vessel sampling method is a unique and special-
ized blood sampling method previously described and illus-
trated [12]. Briefly, blood samples were collected during a 

planned cesarean section procedure, and the women were in 
a fasting state (>8 h). No glucose infusion was administered 
during the procedure. We collected blood samples from the 
maternal radial artery and uterine vein, and fetal umbili-
cal vein and artery, representing blood vessels supplying 
and draining the placenta from both the maternal and fetal 
compartments. Cesarean section was performed under spinal 
anesthesia.

In both studies, gestational age at birth was based on 
ultrasound assessment of fetal biometric measures made at 
weeks 17–19. We dichotomized participants into nulliparous 
women for women who gave birth for the first time and mul-
tiparous for one or more previous births. The placentas were 
weighed untrimmed immediately after delivery.

Biochemical parameters

Biochemical parameters were analyzed in venous serum for 
the STORK study. For the 4-vessel method study, arterial 
plasma was analyzed as it represents the blood to which 
the uteroplacental unit is exposed and, therefore, may 
be regarded as the most relevant for studying placental 
physiology. For both studies, glucose was analyzed at the 
accredited laboratory at Oslo University Hospital using the 
hexokinase method with reagents from Roche [24, 29, 30]. 
Insulin was assayed in duplicate (RIA, DPC, Los Angeles, 
CA, USA) in the STORK study [29] and at the accredited 
laboratory at the Department for Medical Biochemistry 
using the electrochemiluminescence immunoassay (Roche 
Diagnostics, Elecsys Insulin, 12,017,547 122) in the 4-ves-
sel method study [24]. In both studies, lipids were analyzed 
at the accredited laboratory at the Department for Medical 
Biochemistry, Oslo University Hospital [31, 32]. However, 
in the STORK study, LDL-C was calculated using Friede-
wald's formula (LDL-C = total cholesterol−HDL-C−[tri-
glyceride  5–1]), which correlates well with beta quantifica-
tion of LDL-C (r = 0.937) [33]. Total adiponectin and leptin 
were measured in duplicate using commercially available 
reagents by enzyme immunoassay (EIA; R&D Systems, 
Minneapolis, MN) as described in a previous publication 
from STORK [34]. In the 4-vessel method study, the high 
molecular weight (HMW) adiponectin and leptin were ana-
lyzed in duplicates using a commercially available enzyme-
linked immunoassay (ELISA) (HMW and total Adiponectin 
ELISA, ALPCO, Salem, NH, USA, 47-ADPHU-E01 and 
Quantikine ® ELISA, R&D systems ®, DLP00) as previ-
ously described [12].

Statistics

Statistical analyses were conducted using SPSS (Version 
27.0) [35].



2108 Journal of Endocrinological Investigation (2022) 45:2105–2121

1 3

Data are presented as median (25th and 75th percentiles, 
and min and max). Comparisons between women with 
BMI <25 and ≥25 were done using t-tests for Gaussian 
data. We used the F-test for comparing two variances to 
decide if the t-test that assumes equal variances (p > 0.05) 
or the test allowing unequal variances (p < 0.05) was used. 
Mann–Whitney-U tests were used for non-Gaussian data 
and Fisher’s Exact test for categorical data. The normality 
of the data was evaluated using graphical distribution plots 
(histograms and boxplots).

Missing data from the 4-vessel method study, including 
pregestational weight or first-trimester weight (n = 5), term 
weight (n = 3), PW (n = 1), and fetal insulin levels (n = 2), 
was handled by imputation using the R (version 3.6.3) pack-
age Multivariate Imputations by Chained Equations (MICE) 
(version 3.9) by predictive mean matching with n = 20 mul-
tiple imputations [36].

Using scatterplots, we observed a non-linear association 
between BMI and PW, i.e., the association between BMI 
and PW differed for women with BMI <25 and BMI ≥25. 
Therefore, the samples were stratified into corresponding 
BMI groups, and all analyses were conducted for the whole 
study sample, the BMI <25 and BMI ≥25-group, to evaluate 
differential effects between the groups. The assumptions for 
performing linear regression analyses were checked.

Multiple linear regression models with PW as the depend-
ent variable were analyzed. A more detailed description of 
the regression analyses, including the different models, is 
supplied in the supplemental manuscript. Briefly, there were 
three final adjusted models (Adjusted models). Adjusted 
model 1, representing the effect of early pregnancy meta-
bolic status, was based on data from the STORK study and 
included BMI, confounding variables (i.e., maternal age, 
gestational age at birth, and parity), and maternal early 
pregnancy levels (v1) of glucose, insulin, adipokines, and 
lipids. Adjusted model 2 represented late-pregnancy meta-
bolic status and was also based on data from the STORK 
study and included BMI, confounding variables (as Adjusted 
model 1), GWG, and maternal late-pregnancy levels (v4) 
of glucose, insulin, adipokines, and lipids. Adjusted model 
3 represented the late-pregnancy metabolic state and was 
based on data from the 4-vessel method study and included 
BMI, confounding variables (as Adjusted model 1), GWG 
and maternal term levels of glucose, insulin, adipokines, and 
lipids, and fetal levels of insulin.

Results

The study samples’ characteristics

The characteristics of the STORK and 4-vessel 
method samples are presented in Tables  1–4. PW was 

statistically significantly (p < 0.05) higher in the BMI ≥25 
than BMI <25-groups in both studies (mean∆ [95% 
CI] = 48.7 g [1.9, 95.6] for the 4-vessel method study and 
60.1 g [20.6, 99.7] for the STORK cohort). The two BMI 
groups differed significantly in most metabolic parameters, 
except maternal levels of LDL-C and fetal levels of insu-
lin (Tables 3and 4). Compared to the BMI <25-group, the 
BMI ≥25-group of the STORK study early pregnancy (v1), 
late pregnancy (v4) and 4-vessel method study, respectively, 
had increased levels of glucose (mean∆ +4.3%, +6.0% 
and +4.9%), insulin (median∆ +68.2%, +103.2% 
and +45.1%),  leptin (median∆ +97.1%, +67.1% 
and +52.4%), and triglycerides (median∆ +19.4%, +12.6%, 
and +21.0%). A lower level, on the other hand, was observed 
for adiponectin (median∆ −19.2%, −9.9% and −24.7%) and 
HDL-C (median∆ −11.6%, −10.5% and −14.1%).

The association between maternal BMI and PW

We observed a positive association between BMI and PW 
that leveled off at approximately BMI25 in both studies 
(Fig. 1 and Supplementary Fig. 1). In the stratified univari-
ate linear regression analyses, the estimated standardized 
effect (standardized [std.] β) of BMI on PW was larger and 
only statistically significant in the BMI <25-groups (Sup-
plementary table [Sup.Tab.] 1 and 2).

The normal‑weight group (BMI < 25 kg  m−2)

Compared to the univariate models, relatively small changes 
were observed for the estimated standardized effects of 
BMI on PW in the Adjusted models (described in Statis-
tics), and they remained statistically significant (p < 0.05) 
(Tables 5–7). GWG also had a statistically significant impact 
on PW in the adjusted models representing late pregnancy, 
and the estimated effect size (std. β) was similar to that of 
BMI (Tables 6and 7).

Maternal early pregnancy insulin was the only early preg-
nancy metabolic variable that had a statistically significant 
impact on PW, and the standardized effect size was similar to 
BMI (Table 5). In contrast, the estimated standardized effect 
of late-pregnancy maternal insulin on PW was small and not 
statistically significant (Sup. Tab. 1 and 2, and Tables 6and 
7). However, at term, fetal insulin statistically significantly 
affected PW in the BMI <25-group, and the estimated stand-
ardized effect size was similar to that of BMI (Table 7).

In a univariate model, maternal glucose levels in late 
pregnancy had a statistically significant estimated effect 
on PW in the STORK’s BMI <25-group, and the estimated 
standardized effect size was similar to that of BMI (Sup. Tab 
1). However, the std. β was majorly reduced (46.8%) and 
only borderline significant (p = 0.08) in the adjusted model 
(Table 6). In the 4-vessel method study’s BMI <25-group, 
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maternal glucose did not affect PW (Sup. Tab. 2 and 
Table 7).

In the BMI <25-groups, maternal leptin in late pregnancy 
had a statistically significant (p < 0.05) inverse impact on 
PW, with an estimated standardized effect size which was 
±40% that of BMI (+37.4% in the STORK and −36.8% in 
the 4-vessel method study) (Tables 6 and 7). Including leptin 
in the final Adjusted model (Tables 6and 7) increased the 
standardized effect of BMI by 44% for the STORK and 19% 
for the 4-vessel method study (std. β [p] before including 
leptin was 0.170 [0.018] and 0.194 [0.015] for STORK and 
4-vessel method study, respectively). Similarly, the standard-
ized effect of GWG increased 3.44-fold for STORK and 7% 
for the 4-vessel method study (std. β [p] before including 
leptin was 0.068 [0.90] and 0.364 [p < 0.001], for STORK 
and 4-vessel method study, respectively). In other words, 
including leptin in the model amplified the estimated stand-
ardized effect of both BMI and GWG on PW, with a more 
pronounced impact in the STORK compared to the 4-ves-
sel method study. Adiponectin was not associated with PW 
(Sup. Tab 1 and 2 and Tables 6and 7).

The estimated effect of HDL-C from late pregnancy on 
PW was statistically significant inverse in univariate mod-
els (Sup. Tab.1 and 2) and baseline models, including BMI 
and confounders (from STORK: β [95% CI] = −58.7 g per 
mmol  L−1 [−102.9, −14.5], std. β = −0.186, p = 0.009; 
and from 4-vessel method study: β [95% CI] =  −57.4 g 
per mmol  L−1 [−108.9, −5.9], std. β = −0.191, p = 0.029). 
However, upon adjusting for the other metabolically relevant 
variables, the standardized effect was reduced (38.7% for 
the STORK and 83.8% for the 4-vessel method study) and 
no longer statistically significant (Tables 6and 7). The esti-
mated effect of maternal TG on PW in the BMI <25-group 
differed between the studies. In the STORK cohort, TG had 
no impact on PW (Table 6), whereas, in the 4-vessel method 
study, a statistically significant positive impact was observed 
(std. β [p] = 0.286 [0.001]) (Table 7).

The overweight group (BMI ≥25 kg  m−2)

Even though PW was statistically significantly higher in the 
BMI ≥25-groups compared to BMI <25 (Tables 1and 2), no 
additional increase in PW per kg  m−2 was observed in the 
BMI ≥25-groups (Sup. Tab.1 and 2). The standardized effect 
of BMI in the model representing late-pregnancy metabolic 
state (Adjusted models 2 and 3) was increased compared 
to univariate models (Δstd. β = 0.138 for the STORK and 
0.191 for the 4-vessel method study) but still not statistically 
significant (Tables 6and 7). The increased estimated effect 
was observed upon adjusting for leptin, as discussed below. 
Similar to the BMI <25-groups, GWG in the BMI ≥25-group 
had an impact on PW in the STORK (std. β [p] = 0.382 
[0.002]) (Table 6), but not in the 4-vessel method study 

(std. β [p] = 0.201 [0.32]) (Table 5). Similarly, the GWG in 
the BMI ≥25-group of the STORK was comparable to the 
BMI <25-group, while in the 4-vessel method study, it was 
borderline lower in the BMI ≥25-group than the BMI <25-
group. The estimated effect of GWG was also increased by 
leptin, as discussed below.

The impact of maternal insulin from early pregnancy on 
PW at term in the BMI ≥25-group was borderline significant 
(p = 0.07) (Table 5). Nevertheless, the estimated effect was 
not clearly different from the BMI <25-group. The stand-
ardized effect was similar to that of the BMI <25-group 
(Table 5). However, similar to the BMI <25-group, none of 
the other metabolic variables reflecting the early pregnancy 
metabolic state were associated with PW.

Similar to the BMI <25-group, maternal insulin in late 
pregnancy was not associated with PW in the BMI ≥25-
group (Tables 6and 7). However, fetal insulin had a statisti-
cally significant impact (p = 0.032) on PW in the Adjusted 
model 3, and the standardized effect was 1.6-fold higher than 
in the BMI <25-group (Table 7).

The late-pregnancy glucose from the STORK’s 
BMI ≥ 25-group had a statistically significant impact on 
PW in the univariate models (p = 0.007) (Sup. Tab. 1). The 
standardized effect was 1.2-fold larger than in the BMI <25-
group. The estimated effect was also statistically significant 
upon including BMI, confounders, GWG, insulin, and adi-
pokines in the model (β[95% CI] = 80.9 g per mmol  L−1 
[8.1, 153.7], std. β = 0.216, p = 0.030). In the latter model, 
the standardized effect was 1.8-fold larger than that in the 
BMI < 25-group. However, including the maternal lipids in 
the model caused a small reduction in the estimated effect 
(Δstd. β = −12.5%), leaving it borderline significant in the 
Adjusted model 2 (p = 0.06) (Table 6). Still, the standard-
ized effect was 1.5-fold larger than that of the BMI <25-
group. In the 4-vessel method study, the estimated effect of 
glucose in the BMI ≥25-group was borderline significant in 
a model including BMI, confounders, GWG, glucose, and 
insulin (β [95% CI] = 104.9 g per mmol  L−1 [−8.5, 218.2], 
std. β = 0.365, p = 0.069). However, upon adjusting for fetal 
insulin, the beta-value was reduced by nearly 50% (β [95% 
CI] = 57.0 g per mmol  L−1 [−68.0, 182.1], std.β = 0.199, 
p = 0.360).

As in the BMI <25-group, late-pregnancy leptin had a sta-
tistically significant negative impact on PW in the STORK’s 
BMI ≥ 25-group (p = 0.002) (Table 6). The standardized 
effect was 1.3-fold larger than in the BMI <25-group. In the 
4-vessel method study, the estimated effect was not statisti-
cally significant (p = 0.13); nevertheless, the standardized 
effect value was 1.7-fold larger than in the BMI < 25-group 
(Table 7). Additionally, the estimated effect of BMI in 
the STORK increased from no effect (std. β [p] = −0.006 
[0.95]) to borderline significant (std. β [p] = 0.212 [0.083]). 
An increased standardized effect was also observed in the 
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4-vessel method study, although less pronounced (std. β [p] 
changed from 0.097 [0.62] to 0.161 [0.41]). Similarly, the 
standardized effect of GWG was increased 1.92-fold in the 
STORK and 2.01-fold in the 4-vessel method study (std. 
β [p] before including leptin was 0.199 [0.07] and 0.100 
[0.61] in the STORK and 4-vessel method study, respec-
tively). Due to power limitations, these observed moderating 
effects could not be statistically confirmed. Nevertheless, 
post hoc analyses further showed a statistically significantly 
lower increase in leptin from early to late pregnancy among 
overweight relative to normal-weight women (mean differ-
ence [95% CI] = 7.44 [1.97, 12.9], p = 0.008). Moreover, 
in both BMI groups, the increase in leptin from early to 
late pregnancy was statistically significantly lower among 
women with placentas that were ≥700 g than <700 g (mean 
difference [95% CI] = 14.5 µg  L−1 [8.4, 20.5], p < 0.001 for 
BMI <25, and 12.6 µg  L−1 [2.1, 23.1], p = 0.02 for BMI ≥25). 
A placenta of 700 g corresponds to the 50th percentile from 
Thompson et al. 2007 [37]. Similar to the BMI <25-group, 
maternal adiponectin from late pregnancy and term were not 
associated with PW in the BMI ≥25-group (Sup. Tab. 1 and 
2, Tables 6and 7).

In the BMI ≥25-groups, none of the early or late lipid 
values were statistically significantly associated with PW 
except for LDL-C from late pregnancy in the STORK cohort 
(Table 6).

Discussion

The association between maternal BMI and PW

In line with previous studies [12, 14, 18, 38, 39], we found 
a positive association between BMI and PW, and PW was 
significantly higher in the overweight (BMI ≥25) relative to 
the normal-weight groups (BMI <25). However, PW only 
increased per BMI-unit among the normal-weight women, 
suggesting that BMI-related factors promoting placental 
growth do not act in a consistent dose–response manner 
across the whole BMI range. However, as opposed to our 
hypothesis, only a relatively small reduction of the estimated 
effect was observed upon including maternal metabolic vari-
ables, GWG, or fetal insulin, and it remained statistically 
significant in most of the models tested. This indicates that 
none of the included variables were significant mediators of 
the effect of BMI on PW. Still, in late pregnancy, fetal insu-
lin and maternal leptin were associated with PW independ-
ent of BMI, and potential moderating effects were observed 
for late-pregnancy leptin.
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The effects of the metabolic variables 
among overweight versus the normal‑weight 
women

Insulin

The overweight women had increased maternal levels of 
insulin, glucose, triglycerides, and leptin and lower levels 
of HDL-C and adiponectin compared to the normal-weight 
women, suggesting reduced insulin sensitivity in line with 
previous reports [15–17].

Regarding early pregnancy metabolic state, maternal 
insulin was the only included variable that was associated 
with PW. The estimated effect was statistically significant 
among the normal-weight and borderline significant among 
the overweight women. Although we observed a difference 
in the statistical significance of the estimated effect of insu-
lin and found evidence of lower insulin sensitivity among the 
overweight relative to the normal-weight women, the esti-
mated effect of insulin was similar between the BMI groups. 
Unlike the early pregnancy maternal insulin, the late-preg-
nancy maternal insulin had no estimated effect on PW.

The circulating fetal insulin levels at term in the over-
weight group were not significantly different from the nor-
mal-weight group despite the evidence of lower maternal 
insulin sensitivity and significantly higher maternal glu-
cose levels, closely related to fetal insulin levels [12]. Nev-
ertheless, the estimated effect of fetal insulin on PW was 

increased in the overweight group relative to the normal-
weight (1.6-fold larger).

Taken together, we observed that maternal insulin from 
early—but not late—pregnancy and the fetal insulin at term 
was associated with PW. These findings are in line with pre-
vious studies reporting that maternal early pregnancy insulin 
impacts PW at term [40] and a shift in the placental insulin 
sensitivity from the maternal to the fetal side with advancing 
gestation [41, 42]. The latter may be caused by a change in 
the placental insulin receptor’s localization, levels, and func-
tion throughout pregnancy [41, 42]. Neither the estimated 
effect of maternal early pregnancy insulin nor fetal insulin at 
term appeared to be potential contributors to the non-linear 
association between BMI and PW.

Leptin

The early pregnancy leptin levels were not associated with 
PW at term in either BMI group, despite that leptin is 
regarded as an essential hormonal signal during the early 
stages of pregnancy [43–49]. However, in line with the pre-
vious reports [50, 51], we observed an inverse association 
between late-pregnancy leptin and PW in both BMI groups. 
The estimated effect of leptin was 1.3- and 1.7-fold larger 
among the overweight than the normal-weight in the STORK 
and 4-vessel cohort, respectively. Furthermore, including 
late-pregnancy leptin in the adjusted models had an impact 
on the estimated effect of BMI on PW, which was largest 
(evaluated as the percentage change) in the overweight 

Fig. 1  Scatterplot illustrating the association between BMI and PW for the STORK cohort. The figure was made using SPSS [35]
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group. Therefore, the effect of leptin could contribute to the 
non-linear association between BMI and PW. Moreover, in 
line with a previous report [17], post hoc analyses showed 
that overweight women had a significantly lower increase in 
leptin from early to late pregnancy. In the current study, we 
additionally found that, in both BMI groups, women with 
larger placentas (≥700 g) had a significantly lower increase 
in leptin throughout pregnancy relative to those with smaller 
placentas (<700 g). Our observations suggest that the rise 
in maternal leptin throughout pregnancy may be protective 
against placental overgrowth. Alternatively, the magnitude 
of the rise in leptin throughout pregnancy may be a biologi-
cal marker predicting the risk of placental overgrowth.

Conclusions regarding the underlying mechanisms for the 
inverse association between maternal leptin and PW can-
not be made based on the current study or previous studies. 
We suggest that there are at least two possible explanations. 
First, leptin could impact the nutrient supply to the feto-
placental unit, similarly to its weight-regulating function in 
non-pregnant individuals. This could occur via combined 
effects on the vascular system and maternal metabolism 
[46–48, 52, 53]. The effects of leptin could differentiate 
depending on the adipose tissue size and distribution, similar 
to insulin sensitivity [10, 17, 43, 54–57]. Alternatively, the 
association could reflect the effects of placental hormones 
[9–11], which facilitate maternal adipose tissue mobiliza-
tion towards the term [10, 58] and thereby impact maternal 
leptin levels [59]. Beyond this, the placenta itself is a source 
of leptin; however, the placental contribution to the maternal 
circulation is estimated to be only 14% of the overall mater-
nal leptin production [60]. Furthermore, previous publica-
tions have suggested no association between maternal and 
placental leptin [61, 62]. Therefore, it appears unlikely that 
placental leptin production causes the inverse association 
between maternal leptin and PW.

Glucose

The estimated effect of maternal glucose in late pregnancy 
on PW was increased among overweight relative to the 
normal-weight women. It was reduced upon adjusting for 
other metabolic variables and was not statistically signifi-
cant in the Adjusted models. Notably, a reduction of nearly 
50% was observed in the estimated effect of glucose on PW 
upon adjustment for fetal insulin in the BMI ≥25-group. 
Combined with the previously observed close associa-
tion between maternal glucose and fetal insulin [12], these 
observations support the glucose steal hypothesis [63]. Fetal 
insulin is well recognized to promote fetal growth [12, 22]. 
However, our observations support the hypothesis that fetal 
insulin may also promote placental growth [20, 64].

GWG 

We observed a positive association between GWG and PW, 
in line with previous reports [12, 14, 18]. In the STORK 
cohort, GWG was associated with PW in both BMI groups, 
while in the 4-vessel cohort, GWG was only associated with 
PW in the BMI <25-group. The discrepancy between the 
two cohorts may partly be explained by the observation 
that the GWG in the STORK was comparable between the 
overweight and normal-weight women, while in the 4-ves-
sel cohort, the GWG was borderline significantly lower 
among the overweight women. Furthermore, it cannot be 
excluded that other discrepancies in characteristics between 
the cohorts could also have moderating effects, including 
variations in the proportions of nulliparous women.

However, late-pregnancy maternal leptin also appeared to 
potentially play a role in this discrepancy between the stud-
ies due to its impact on the estimated effect of GWG on PW. 
The estimated effect was increased in the overweight group 
in both studies, and the percentage increase was similar in 
both cohorts. However, the estimated impact before adjust-
ing for leptin was larger in the STORK.

Lipids

Overall maternal lipids, including  TG, LDL-C and HDL-C, 
did not have any clear impact on PW, and they had little or 
no impact on the estimated effect of maternal BMI on PW. 
The latter indicates that maternal lipids were not important 
mediators in the association between maternal pBMI and 
PW.

Strength and limitations

This study included two separate and independent human 
cohorts that allowed a longitudinal perspective and a 
detailed study of the maternal and fetal side of the placenta 
on the association between maternal weight status and PW.

The longitudinal STORK gives the opportunity to study 
the impact of factors from both early and late pregnancy. 
Pregestational weight was not available. It is possible that 
the weight gain in the first trimester is of importance for 
placental growth and function and may explain some of the 
discrepancies between the cohorts [65]. Furthermore, longi-
tudinal assessments of placental growth were not available.

The 4-vessel cohort is an invasive human in vivo study, 
which allows detailed studies of both maternal and fetal vari-
ables [32, 66]. However, the cross-sectional design on term 
pregnant women precludes its validity for other stages of 
pregnancy. The pregestational weight in the antenatal health 
cards was mainly self-reported; therefore, there is a risk of 
reporting bias. However, self-reported weight data from 



2119Journal of Endocrinological Investigation (2022) 45:2105–2121 

1 3

antenatal health cards are regarded as acceptable as weight 
references [27].

Sample sizes were carefully taken into account when 
planning the analyses by the selection of variables and by 
restricting the complexity of the analyses. Nevertheless, we 
acknowledge that the number of variables is large relative 
to group size and that this affects the precision of the effect 
estimates. Therefore, we considered the coefficient of deter-
mination (R2) when analyzing the data because it is robust, 
e.g., against issues of multi-collinearity. In addition to the β 
[95% CI] and p-value, we also report the standardized effects 
(std. β) to allow a comparison of the relative effects between 
different variables.

Conclusions

The association between BMI and PW was non-linear: an 
association was observed for BMI <25, but no additional 
increase in PW for BMI ≥25. Our analyses suggest that lep-
tin may be involved in the non-linear association through a 
placental–adipose tissue interplay. Maternal early pregnancy 
insulin and fetal insulin at term were associated with PW, 
in line with a shift in placental insulin sensitivity from the 
maternal to the fetal side of the placenta.
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