
Evaluation of Winter Ticks (Dermacentor albipictus) Collected
from North American Elk (Cervus canadensis) in an Area of
Chronic Wasting Disease Endemicity for Evidence of PrPCWD

Amplification Using Real-Time Quaking-Induced Conversion
Assay

N. J. Haley,a D. M. Henderson,b K. Senior,a M. Miller,a R. Donnera

aDepartment of Microbiology and Immunology, College of Graduate Studies, Midwestern University, Glendale, Arizona, USA
bCWDEvolution LLC, San Diego, California, USA

ABSTRACT Chronic wasting disease (CWD) is a progressive and fatal spongiform
encephalopathy of deer and elk species, caused by a misfolded variant of the normal
prion protein. Horizontal transmission of the misfolded CWD prion between animals
is thought to occur through shedding in saliva and other forms of excreta. The role
of blood in CWD transmission is less clear, though infectivity has been demonstrated
in various blood fractions. Blood-feeding insects, including ticks, are known vectors
for a range of bacterial and viral infections in animals and humans, though to date,
there has been no evidence for their involvement in prion disease transmission. In
the present study, we evaluated winter ticks (Dermacentor albipictus) collected from
136 North American elk (Cervus canadensis) in an area where CWD is endemic for
evidence of CWD prion amplification using the real-time quaking-induced conversion
assay (RT-QuIC). Although 30 elk were found to be CWD positive (22%) postmortem,
amplifiable prions were found in just a single tick collected from an elk in advanced
stages of CWD infection, with some evidence for prions in ticks collected from elk in
mid-stage infection. These findings suggest that further investigation of ticks as res-
ervoirs for prion disease may be warranted.

IMPORTANCE This study reports the first finding of detectable levels of prions linked
to chronic wasting disease in a tick collected from a clinically infected elk. Using the
real-time quaking-induced conversion assay (RT-QuIC), “suspect” samples were also
identified; these suspect ticks were more likely to have been collected from CWD-
positive elk, though suspect amplification was also observed in ticks collected from
CWD-negative elk. Observed levels were at the lower end of our detection limits,
though our findings suggest that additional research evaluating ticks collected from
animals in late-stage disease may be warranted to further evaluate the role of ticks
as potential vectors of chronic wasting disease.
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Chronic wasting disease (CWD) is a progressive and ultimately fatal neurodegenera-
tive disease in cervids, including whitetail deer (Odocoileus virginianus), mule deer

(Odocoileus hemionus), and North American elk (wapiti, Cervus canadensis) (1, 2). Like
other diseases in this category—the transmissible spongiform encephalopathies or
TSEs—CWD is caused by an infectious, misfolded variant of the normal cellular prion
protein (PrPC) that is often designated PrPCWD (3, 4). First identified in captive mule
deer in northern Colorado and southern Wyoming in the late 1960s, CWD has now
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been reported in farmed and/or free-ranging cervids in 26 U.S. states, three Canadian
provinces, South Korea, Norway, Sweden, and Finland (5–9).

In vivo studies, using both deer and mouse bioassay, and in vitro amplification
assays have identified infectious prions or PrPCWD in various bodily fluids and other
forms of excreta, including saliva, blood, urine, and feces (10–19). In nature, it is
thought that saliva is an important means of direct animal-to-animal transmission,
while urine, feces, and decomposing carcasses may all play important roles in environ-
mental contamination and subsequent exposure and transmission (2, 20, 21). The role
of blood in the transmission of CWD and other prion diseases is less clear, though vari-
ous blood fractions have been found to convey prion infection both in experimental
studies in animal models and through rare natural infections in humans (11, 22–24).
Importantly, the role of blood-feeding insects, including ticks, as vectors for prion
transmission in nature has not been extensively evaluated.

Winter ticks (Dermacentor albipictus) are common external parasites found on moose,
caribou, elk, and other large herbivores and are widely distributed across North America,
Mexico, and Central America (25). They may be found in very high densities on moose,
sometimes numbering in the tens of thousands on a single animal, and have been linked
to declining moose populations across North America (26). Winter ticks are considered a
“one-host” tick, taking several blood meals from a single host while progressing through
larval and nymph stages to adulthood, though they are likely to seek a new host if dis-
lodged prematurely from their primary host (27, 28). As a single-host tick, they have only
rarely been implicated as vectors of disease, notably hemoparasites such as Anaplasma
marginale and Babesia duncani (29, 30). Paradoxically, this one-host life cycle makes
them ideal for evaluating tick species as potential reservoirs for CWD and other prions,
as every blood meal over the course of their development is putatively taken from a sin-
gle host, thus amplifying their exposure to the agent.

As part of a prior study evaluating the practicality of antemortem rectal biopsy
specimen testing in managing CWD in ranched elk (31), we collected adult winter ticks
from elk in an area with a high prevalence of CWD. Of the 136 elk sampled, 30 were
found to be CWD positive either antemortem or postmortem (22%), at various stages
of disease based on the diverse appearance of PrPCWD in diagnostic tissues and appa-
rent clinical symptoms suggestive of late-stage infection. In the present study, we eval-
uated these ticks in a blind manner using the real-time quaking-induced conversion
assay (RT-QuIC), an assay used widely to amplify PrPCWD in a range of substrates, includ-
ing rectal biopsy specimens in the parent study (14–17, 31–36). We hypothesized that
amplifiable PrPCWD would be detected in ticks collected from CWD-positive elk, with
ticks from elk in more advanced stages of disease having higher rates of amplification.
We found PrPCWD amplification in a single tick collected from an elk in an advanced
stage of CWD, with evidence for amplifiable prions in ticks from elk in mid-stage CWD.
Though the biological relevance of our findings remains unknown, they suggest that
winter ticks, and potentially other tick species, could serve as low-level reservoirs for
CWD in nature.

RESULTS
Summary of source elk testing. A total of 30 of the 136 elk providing ticks for the

present study were identified as CWD positive via postmortem immunohistochemistry
of retropharyngeal lymph node (RLN) and obex tissue (22%). Based on the distribution
of PrPCWD in these tissues as well as clinical presentation, infected animals were esti-
mated to be in various stages of disease from early and preclinical to late stage and
symptomatic. A breakdown of estimated disease stages can be found in Table 1.

Optimized dilution of ticks for use in RT-QuIC. Pilot experiments found that RLN
homogenates prepared in both 1023 and 1024 dilutions of tick homogenate amplified
at rates most similar to RLN homogenates prepared in phosphate-buffered saline (PBS)
alone. Tick homogenates of the 1023 dilution were selected for primary studies based
on this similarity and to avoid sacrificing potential dilutional sensitivity in the 1024

dilution of tick homogenates. Retropharyngeal lymph node dilutions down to 1027
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amplified in a 48-h assay, representing the lower limits of detection for our study
(Fig. 1).

RT-QuIC amplification of CWD prions in ticks. In the primary experiments, results
from three amplification plates were discarded due to amplification in a single negative-
control replicate (e.g., one of nine replicates from negative-control ticks); samples from
these plates were subsequently repeated with no amplification among negative controls.
One plate was discarded due to failure of a single positive-control replicate to amplify.
Not including these discarded plates, two plates were run for the preliminary optimiza-
tion experiments, and 10 plates were run in a blind manner using tick samples.

Among the 136 ticks analyzed from elk, a single positive tick was identified based on
amplification in three of six replicates across two experiments performed in a blind man-
ner. This tick was collected from a CWD-positive elk in late-stage symptomatic disease,
and the mean amplification rate was approximately equal to a 1026.5 dilution of CWD-
positive RLN (Fig. 2). Thirteen ticks demonstrated amplification considered “suspect,”
with one or two of six replicates showing amplification, all with mean amplification rates
between 1026.9 and 1027.2 RLN dilutional equivalents (e.g., approximating or beyond the
lower range of our nonlinear regression fit). Of these suspects, six were from CWD-posi-
tive elk in middle stages of disease, while seven were from CWD-negative elk (see
Table S1 in the supplemental material). Ticks from CWD-positive elk were significantly
more likely to be considered “suspect” than CWD-negative elk using a two-tailed Fisher
exact test (6/29 versus 7/106; P = 0.0337). No evidence of amplification was observed in
ticks from 23/30 CWD-positive elk and 106/113 CWD-negative elk (Table 2).

FIG 1 Amplification rates of CWD-positive retropharyngeal lymph node (RLN) dilutions in phosphate-
buffered saline (PBS) or tick homogenate dilutions. Amplification rates were calculated as the average
inverse of the time (in seconds) to amplification threshold in six replicate wells across two
experimental plates. Standard error bars are shown. Using a two-tailed Student’s t test, a significant
reduction in amplification (*, P# 0.01) was observed in the 1024 dilution of RLN in PBS compared to
RLN diluted in 1022 tick homogenate.

TABLE 1 Summary of elk providing tick samples for the present study

CWD
status

Total
no. of elk

Mean age
(yr) (range)

No. of elk with the following Prnp
genotype:a

Estimated disease stageb

Early Middle Late

132MM 132ML 132LL
B or RLN
(+)

B and RLN
(+)

B and RLN (+)
and symptomatic

Positive 30 5.2 (2–14) 18 10 2 5 24 1
Negative 106 3.07 (1–13) 41 49 16
aGenotype is based on the amino acid coded for at position 132 of the elk prion gene, Prnp. Animals with a 132MM genotype are comparatively more susceptible, while
those with a 132ML or 132LL genotype are less likely to be found CWD positive in natural and experimental conditions.

bDisease stage estimates are based on immunohistochemical detection of PrPCWD in the elk’s brain (B) and/or retropharyngeal lymph node (RLN) and clinical signs consistent
with late-stage infection, including behavior abnormalities and poor body condition scores.
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DISCUSSION

With the sharp global decline in reported sheep scrapie and bovine spongiform
encephalopathy cases (37, 38), chronic wasting disease of cervids remains one of the
most important mammalian prion diseases identified thus far—occurring in both free-
ranging and farmed populations of deer and related species across North America and
now Scandinavia (39). Over the past 2 decades, much has been learned about the
mechanisms of CWD transmission, primarily through the evaluation of blood and other
body fluids in multiyear-long cervid or murine bioassay experiments (10, 11, 13, 22,
40–45). More recently, in vitro amplification assays, which typically offer results in sev-
eral days, have sought to supplant bioassay as the dominant testing modality for
PrPCWD in various forms of excreta (13–17, 46). These assays have been systematically
used to evaluate the onset, duration, and severity of PrPCWD shedding in saliva, urine,
and feces. The real-time quaking-induced conversion assay (RT-QuIC) in particular has
been shown to be sensitive, specific, and highly reproducible when evaluating biologi-
cal samples for CWD prions (31, 32, 47). In the present study, we evaluated ticks col-
lected from CWD-negative elk and elk in various stages of CWD ranging from early pre-
clinical infections to late-stage symptomatic disease to better characterize their
potential role as vectors of CWD transmission.

We began by roughly optimizing tick homogenate concentrations for use in the RT-
QuIC assay by comparing the amplification of PrPCWD from known positive RLN tissue
in various dilutions of background tick homogenate. We found that RLN diluted in a
1023 preparation of tick homogenate allowed for amplification of PrPCWD similar to RLN

FIG 2 Nonlinear regression fit of data from CWD-positive retropharyngeal lymph node (RLN)
dilutions in a 1023 tick homogenate. Amplification rates were calculated as the inverse of the average
time (in seconds) to the amplification threshold in six replicate wells across two experimental plates.
Data points shown include RLN dilutions with standard error bars as well as a single RT-QuIC-positive
sample and suspect samples both within and outside the range of RLN dilutional data. The slope of
the nonlinear regression line is indicated as x = (y 2 4.74425)/(26.425e26).

TABLE 2 Summary of RT-QuIC results from ticks collected from CWD-positive and -negative
elka

Elk CWD status
Total no.
of elk

RT-QuIC result for winter ticks

No amplification Suspect Positive
Early (B or RLN) 5 5 0 0
Middle (B and RLN) 24 18 6 0
Late (B and RLN and

symptomatic)
1 0 0 1

Negative 106 99 7 0
aDisease stage estimates were again based on immunohistochemical detection of PrPCWD in the elk’s brain (B)
and/or retropharyngeal lymph node (RLN) and clinical signs consistent with late-stage infection, including
behavior abnormalities and poor body condition scores.
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diluted in PBS alone, without potentially sacrificing diluted sensitivity. The compara-
tively poor amplification observed in the 1022 preparation may have been a result of
putative inhibitors common to some sample matrices (16, 17, 48). Though we did not
attempt various concentration methods, e.g., iron oxide beads, they may prove helpful
in reducing matrix inhibition and improving sensitivity in future experiments (16, 49).

We went on to evaluate ticks collected from 136 elk in a blind manner in triplicate
and in two independent experiments. We identified a single tick as RT-QuIC positive
based on amplification in three of six replicates; this tick had been collected from an
elk in terminal stages of CWD based on clinical and pathological findings. Several ticks
from both CWD-negative and CWD-positive elk were found to be RT-QuIC “suspects,”
based on amplification in one or two of six replicates. Ticks from CWD-positive elk, spe-
cifically those in mid-stage CWD, were significantly more likely to be considered RT-
QuIC suspects than those from CWD-negative elk. The rates of amplification observed
in suspect cases were at the lower limits of detection for the assay, and the biological
relevance of true PrPCWD amplified from RT-QuIC suspect and positive ticks is not
known. Importantly, we cannot completely rule out dermal or environmental contami-
nation of the ticks, from dust or excreta for example. We likewise cannot rule out the
possibility that ticks from CWD-negative elk which showed amplification had not
recently relocated from a CWD-positive elk, though this seems unlikely. We must there-
fore be cautious not to weigh these findings too heavily, and instead reinforce the im-
portance of adequate negative controls and proper experimental blinding in future
prion amplification studies (50).

Admittedly, additional experiments on D. albipictus and other tick species from
wapiti, especially those in later stages of CWD, are necessary to further explore the role
of ticks as prion reservoirs. Because of suspected differences in CWD pathogenesis
between deer species and North American elk, it would also be important to analyze
ticks collected from both whitetail and mule deer (51, 52). A recent study in a hamster
model of CWD found that the Rocky Mountain wood tick, Dermacentor andersoni, is
unlikely to transmit biologically relevant levels of prions to a naive host after consum-
ing a blood meal (53). It is important to highlight that, unlike D. andersoni, the winter
ticks evaluated in the present study are one-host ticks (25). These single-host ticks rep-
resent ideal targets to assess PrPCWD accumulation, as they had consumed several
blood meals prior to collection, yet they are arguably unlikely to transmit infectious
agents between hosts in nature. Though they have only rarely been suspected as dis-
ease vectors, winter ticks are thought to seek new hosts when feeding is interrupted,
for example when removed through grooming or, understandably, following the de-
mise of the host due to, e.g., CWD (25, 26, 29, 54). Vertical transmission of adult D.
andersoni ticks to neonatal moose calves has also been reported (28). For those rea-
sons, a better understanding of the biological relevance of any detectable PrPCWD in
this and other species of ticks is warranted.

In summary, we report that RT-QuIC may serve as a useful tool for evaluating the
role of ticks and other insects as reservoirs of PrPCWD. Amplifiable levels of PrPCWD in
the present study were low, and likely limited to ticks collected from animals in later
stages of disease. Additional studies focusing on insect vectors feeding on terminally
infected cervids and the biological relevance of any detectable CWD prions in these
vectors are warranted to more fully characterize the role of external parasites in prion
transmission.

MATERIALS ANDMETHODS
Ethics statement. The animals from which ticks were collected in this study were handled humanely

in accordance with Midwestern University’s Animal Care and Use Committee, approval 2814.
Elk study population. The elk involved in the study were part of a private, closed herd living on

3,500 acres of fenced-in land in northwestern Colorado. A thorough description of the study population
and area may be found elsewhere (32). Winter ticks were collected from 136 bull and cow elk ranging in
age from calves to 14 years. A mixture of 132M/L genotypes were represented among the elk sampled.
Postmortem tissues including both retropharyngeal lymph node (RLN) and brain stem at the level of the
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obex were evaluated for evidence of CWD infection using immunohistochemistry as described previ-
ously (31).

Tick collection and processing. Adult winter ticks were collected in a clean manner, using single-
use gloves, from the pinnae of elk and stored at 280°C for approximately 2 years until processing. At
that time, a single tick was recovered from storage, weighed, homogenized in phosphate-buffered saline
(PBS) at 1% (wt/vol) using a bead homogenizer and frozen prior to analysis. After thawing, homogenates
were further diluted for experimental evaluation as described in the following section. Ticks collected
from three elk calves with the 132LL genotype were identified to serve as putative negative controls
throughout the study.

Optimization of the real-time quaking-induced conversion assay (RT-QuIC) for tick substrate.
To find a roughly optimal tick starting dilution without sacrificing dilutional sensitivity, a pilot experi-
ment was conducted to assess the amplification ability of PrPCWD from a known CWD-positive RLN in
three dilutions of tick substrate, 1%, 0.1%, and 0.01% (1022-4) tick homogenates prepared in PBS, com-
pared to RLN homogenized in PBS alone. First, RLN from a known CWD-positive whitetail deer was ho-
mogenized in PBS at a 10% (1021) (wt/vol) dilution. Aliquots of this RLN preparation were then diluted
serially 10-fold from 1024 to 1027 in either PBS or 1022, 1023, or 1024 homogenates of ticks collected
from 132LL genotype elk calves. Amplification was performed using a truncated form of recombinant
Syrian hamster PrP (SHrPrP, residues 90 to 231) as a conversion substrate. The recombinant SHrPrP was
prepared off-site, frozen at 280°C, and thawed slowly just prior to use in each experiment. Two microli-
ters of each of the preparations was added to 98ml of RT-QuIC master mix (50mM NaPO4, 350mM NaCl,
1.0mM EDTA, 10mM thioflavin T [ThT], and 0.1mg/ml SHrPrP). Individual sample dilutions were
repeated in triplicate, in two separate experiments, in a 96-well, optical-bottom plate, sealed, and incu-
bated in a BMG Labtech Polarstar fluorimeter at 42°C for 48 h (192 cycles, 15 min each) with intermittent
shaking. Cycle parameters included 1-min shakes (700 rpm, double orbital pattern) interrupted by 1-min
rest periods, with ThT fluorescence measurements (450-nm excitation and 480-nm emission) taken every
15 min with the gain set at 1,800. The relative fluorescence units (RFU) for each triplicate sample were
progressively monitored against time with orbital averaging and 20 flashes/well at the 4-mm setting.
Time to amplification was determined based on individual replicates crossing an experimental threshold
calculated as 10 standard deviations above the mean fluorescence of all sample wells across amplifica-
tion cycles 2 to 8, as described in previous studies (31, 32, 47).

RT-QuIC evaluation of ticks collected from elk. After identifying appropriate dilution levels for tick
homogenates and RLN positive controls, study ticks were individually homogenized and evaluated by
RT-QuIC using parameters described above. Study plates included (i) positive RLN controls repeated in
triplicate, consisting of a 1025 dilution of RLN in a 1023 tick homogenate in PBS, which typically ampli-
fied between cycle number 80 to 100; (ii) individual tick samples prepared at a 1023 dilution evaluated
in triplicate; (iii) three unique negative controls, each prepared in triplicate (nine total replicates), consist-
ing of tick homogenates from three elk calves with 132LL genotypes, also prepared at a 1023 dilution;
and (iv) unspiked SHrPrP, also in triplicate. Tick homogenates were analyzed in a blind manner, without
information on source animal CWD status during tick processing, amplification, and data analysis stages,
with CWD status revealed only upon completion of the analysis. All samples were repeated in triplicate
in two separate experiments for a total of six replicates.

Criteria for identification of positive samples was determined a priori and was consistent with previ-
ous studies in our laboratories (31, 32, 47). A replicate well was considered positive when the relative flu-
orescence crossed a predefined threshold as described above. Suspect samples were those which
crossed the threshold in fewer than or equal to one-third of all replicates (e.g., one or two replicates out
of six). Positive samples were those which crossed the threshold in $3 out of 6 replicates. Plates were
disqualified if any of the positive-control replicates failed to amplify, or if amplification was observed in
any of the various negative-control replicates.

Amplification rates of positive and suspect samples, including both amplifying and nonamplifying
replicates, were subsequently compared to a standard curve generated in the preliminary experiment,
using RLN serially diluted into a 1023 dilution of tick homogenate.

Statistical analysis. In our preliminary experiment, differences between amplification rates assess-
ing RLN dilutions in various tick backgrounds were compared using two-tailed Student’s t tests.
Approximate RLN dilutional equivalents of RT-QuIC-positive and RT-QuIC suspect ticks were calculated
by comparing the mean amplification rate of the six replicates (e.g., both amplifying and nonreactive
wells) to a nonlinear fit of data from RLN diluted in 1023 tick homogenate in preliminary tick dilution
experiments, developed using GraphPad Prism 8.4.1 software. Comparison of the likelihood of “suspect”
amplification occurring in ticks collected from CWD-negative and CWD-positive elk was performed using
a two-tailed Fisher exact test.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
TABLE S1, DOCX file, 0.01 MB.
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