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Abstract

Deciphering the functional interactions of cells in tissues remains a major challenge. We describe 

DIALOGUE, a method to systematically uncover multicellular programs (MCPs) — combinations 

of coordinated cellular programs in different cell types that form higher-order functional units at 

the tissue level — from either spatial data or single-cell data obtained without spatial information. 

Tested on spatial datasets from the mouse hypothalamus, cerebellum, visual cortex, and neocortex, 

DIALOGUE identified MCPs associated with animal behavior and recovered spatial properties 

when tested on unseen data, while outperforming other methods and metrics. In spatial data 

from human lung cancer, DIALOGUE identified MCPs marking immune activation and tissue 

remodeling. Applied to scRNA-seq data across individuals or regions, DIALOGUE uncovered 

MCPs in Alzheimer’s disease, ulcerative colitis, and treatment with cancer immunotherapy. These 

programs were predictive of disease outcome and predisposition in independent cohorts and 

included risk genes from genome-wide association studies (GWAS). DIALOGUE enables the 

analysis of multicellular regulation in health and disease.

Ed sum

Coordinated gene programs spanning multiple different cell types are identified in healthy and 

diseased tissues.
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INTRODUCTION

The interplay between different cells in a tissue is crucial for maintaining homeostasis. 

While many diseases have been traditionally perceived as the result of the malfunction 

of a particular cell or cell type, mounting evidence1–5 and new therapeutic strategies3,6,7 

have demonstrated the pivotal role of multicellular action in health and diseases, opening 

new opportunities for intervention, diagnosis, disease monitoring and prevention. In parallel, 

advances in single cell RNA-seq (scRNA-seq)8,9 and spatial transcriptomics10–12 now allow 

us to systematically explore molecular profiles at single cell resolution across cell types13, 

tissues14,15, and disease states16–18, in both isolated cells and intact tissues10–12. However, 

despite these advances, deciphering multicellular regulation remains a challenge, limiting 

our ability to move from a cell- to a tissue-centric perspective.

While many computational methods have been developed to analyze single cell data, 

the vast majority map and explore single cell states13,19–24, by recovering gene-gene co-

variation structures within a cell (e.g., PAGDOA21, NMF implementations25 and extensions, 

including cNMF13, LIGER19,26). Methods developed to study cell-cell interactions are 

mostly focused on reconstructing the tissue’s spatial organization27–30, inferring putative 

physical cell-cell interactions based on known receptor-ligand pairs or known signaling 

pathways31–33, or highlighting recurring cell type compositions of cellular neighborhoods 

using spatial data34–36. While these methods revealed important properties of cell biology 

and tissue structure, we still lack methods to uncover coordinated multicellular processes.

Here, we approach this problem in a new way, by introducing the concept of multicellular 

programs (MCPs) and developing the first method to systematically uncover MCPs from 

single-cell or spatial genomics data. We define MCPs as the combinations of different 

expression programs in different cell types that are coordinated together in the tissue, thus 

forming a higher-order functional unit at the tissue-level, rather than only at the cell-level. To 

recover them, we develop DIALOGUE, a computational method for decoupling cell states 

through multicellular configuration identification, by using cross-cell-type associations 

across niches in one tissue or across samples from multiple individuals. We apply 

DIALOGUE to either spatial transcriptomic or scRNA-Seq data, where it uses, respectively, 

spatial or cross-sample variation to identify MCPs. Applied to MERFISH10, Slide-Seq11, 

and seqFISH37 (sequential fluorescence in situ hybridization), and spatially annotated 

scRNA-Seq data38 from the mouse hypothalamus, cerebellum, visual cortex, and neocortex, 

DIALOGUE successfully recovered spatial properties on unseen test data, outperformed 

other methods and metrices, and identified MCPs that mark animal behavior. Applied to a 

spatial dataset from human lung cancer39, DIALOGUE identified MCPs marking immune 

activation and tissue remodeling in the tumor boarders. Finally, applied to scRNA-seq 

data from patients DIALOGUE identified (1) an ulcerative colitis (UC) MCP that predicts 

clinical responses to therapy and includes GWAS UC risk genes; (2) an Alzheimer’s disease 

(AD) MCP that marks brain aging, and (3) an immunotherapy resistance MCP in melanoma. 

Taken together, our approach and method open a new way to study cellular crosstalk and 

link cellular and tissue biology.
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RESULTS

DIALOGUE: Decoupling cell states through multicellular configuration identification

Cells within the same microenvironment are exposed to similar cues, which may activate 

coordinated responses in different cell types at two (non-mutually exclusive) levels (Fig. 

1a). First, different cell types may simultaneously activate the same, cell-type-independent 

program40 (Fig. 1a). Second, different cell types may each activate a different, cell-type-

specific program, but in a concerted fashion, either because they directly impact each other, 

or because they each respond distinctly to the same shared cue (Fig. 1a). Both cases should 

give rise to corresponding expression programs across different cell types – where the 

expression of one set of genes in a certain cell is associated with the expression of the 

same or another set of genes in nearby cells or cells from the same sample. DIALOGUE 

is designed to find such patterns from either spatial or single cell genomics data to uncover 

multicellular configurations and their associated cellular programs.

Given single-cell profiles from different spatial locations (in spatial profiling) or from 

different samples (e.g., in scRNA-Seq), DIALOGUE treats different types of cells from 

the same micro/macroenvironment or sample as different representations of the same 

entity (Fig. 1b). It first applies penalized matrix decomposition (PMD)41 to identify sparse 

canonical variates that transform the original feature space (e.g., genes, PCs, etc.) to a new 

feature space, where the different, cell-type-specific, representations are correlated across 

the different samples/environments. It then identifies the specific genes that comprise these 

latent features by fitting multilevel (hierarchical) models; this step models the single-cell 

distributions and controls for potential confounders, such as gender, age, variation in sample 

preparation, or technical variability (Fig. 1b, Online Methods). As output, DIALOGUE 

provides MCPs, each composed of two or more co-regulated, cell-type-associated programs 

(Fig. 1b, Online Methods).

DIALOGUE can identify multiple MCPs (input parameter k < rank of the original feature 

space). In practice, the different MCPs are not correlated with one another (Online 

Methods), and the cross-cell-type correlations observed within an MCP decreases with k, 

such that the first few MCPs depict most of the multicellular co-variation. DIALOGUE 

identified which cell types participate in each MCP in an unsupervised, data-driven manner. 

Given a set of cell types as input it will attempt to identify MCPs that include all cell types 

or a subset of them, retaining only the most statistically significant programs (empirical 

P-value < 0.05; Online Methods). To avoid overfitting, especially when applied to single 

cell data or when the number of samples is often relatively small, DIALOGUE applies 

permutation tests, cross validation procedures and, whenever available, testing on external 

(independent) datasets (Online Methods).

When applied to spatial genomics data, DIALOGUE supports different spatial scales, from 

focusing on direct neighbors to cells in a macroenvironment of a given (user-defined) 

length scale. DIALOGUE uses receptor-ligand interactions post hoc to propose cell-cell 

interactions that may mediate the identified MCPs by constructing a receptor-ligand network 

(RLN) that includes all the receptor-ligand pairs, where at least one of the genes appears 

in the MCP and is connected to a specific cell type. Because receptor-ligand pairs may not 
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necessarily be spatially correlated at the RNA level, we do not require both the receptor and 

the ligand to be a member of the MCP, nor do we use receptor-ligand pairs to determine 

an MCP. Lastly, DIALOGUE can be initialized with a specific desired gene set, such as 

differentially expressed genes or genetic risk factors from relevant GWAS hits.

DIALOGUE captures spatial patterning in the mouse brain

We first applied DIALOGUE to MERFISH data, where the in situ expression of 155 genes 

was measured at the single-cell level in ~1.1 million cells from the mouse hypothalamic 

preoptic region10. We considered six broad cell types sufficiently represented in the data – 

microglia, endothelial cells, astrocytes, oligodendrocytes, excitatory and inhibitory neurons 

– and analyzed all pairwise combinations (Supplementary Table 1A).

DIALOGUE identified corresponding programs that were spatially correlated across 

different cell types (Fig. 1c–d; Extended Data Fig. 1). In contrast, single genes show only 

a moderate spatial correlation across different cell types (Fig. 1e, Extended Data Fig. 1a), 

and standard dimensionality reduction approaches, including principal component analysis 

(PCA) and Non-negative Matrix Factorization (NMF) did not reveal spatial patterns (Fig. 1e, 

Extended Data Fig. 1a).

The MCPs are distinct from programs identified using standard dimensionality reduction 

and clustering procedures10, and highlight spatial co-variation in specific cellular 

components as opposed to gross changes in tissue cell (sub)type composition (Extended 

Data Fig. 1b,c, 2a,b). The MCPs generalized, such that MCPs identified from a training set 

of MERFISH data collected from 9 animals, predict spatial patterns in an unseen test set of 

9 other animals (Pearson’s r > 0.69, P < 1*10−30; AUROC: 0.79 – 0.9, 0.82 median, Fig. 

1f, Extended Data Fig. 2c). For example, it successfully used the expression of excitatory 

neurons to predict the state of their neighboring astrocytes in the unseen data (Fig. 1f)

Next, we challenged DIALOGUE to recover such information without direct spatial 

coordinates, providing as input only samples that consisted of all the cells within a “patch” 

of a fixed radius (“macro-environments” with a radius of 220μm each, yielding on average 

500 “in silico dissociated” cells per macroenvironment, Online Methods). We applied it 

to the MERFISH dataset as before to learn programs for all pairs of cell types. Despite 

no direct cell-cell spatial adjacencies for training, DIALOGUE was able to use a cell’s 

expression to predict the expression of the relevant MCP components in its unseen neighbors 

when tested on unseen data from 9 other animals (Fig. 1f). DIALOGUE performed well in 

this task both when predicting microenvironment features (direct neighbors in a radius of 37 

μm, ~15 cells on average; AUROC: 0.73 – 0.91, median 0.82; P < 1*10−30, Mann-Whitney 

test) and macroenvironment features (radius of 220 μm, ~500 cells on average; AUROC: 

0.83 – 0.98, median 0.94; P < 1*10−30, Mann-Whitney test, Fig. 1f, Extended Data Fig. 1d, 

2c).

DIALOGUE outperforms existing methods

We next applied DIALOGUE to Slide-Seq11, seqFISH37, and spatially annotated scRNA-

Seq data38, and compared its performance in recovering spatial properties on unseen 

test data, to that of other methods, including hidden-Markov random field (HMRF37; for 
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extraction of spatial signatures), NMF, PCA, LIGER19,26, and differential gene expression 

analysis.

First, DIALOGUE outperformed HMRF37 in its ability to extract spatial signatures as 

demonstrated using the seq-FISH data37 from the mouse visual cortex, where HMRF was 

previously shown to identify spatial domains in the tissue along with cell-type specific 

signatures in each domain37. While HMRF signatures mark cells in specific domains, 

spatial signatures for different cell types did not co-vary across the tissue. For example, 

the GABAergic and glutamatergic programs in spatial domain O3 showed only modest 

correlation across the tissue when examining neighboring GABAergic and glutamatergic 

neurons (rs = 0.14, P = 1.13*10−3, Spearman correlation; Fig. 2a,b). We observed similar 

results in other cases, with low correlation between HMRF signatures (rs =−0.018 – 0.35, 

median 0.11; P < 0.05 in 6 out of 9 programs; Extended Data Fig. 3a), but strong spatial 

correlation across the different cell types in an MCP (R > 0.8, P < 1*10−100, Fig. 2a, 

Extended Data Fig. 3b), which captured different spatial patterns (Fig. 2b, Extended Data 

Fig. 4a) and did not overlap with the HMRF programs (P > 0.05 hypergeometric test).

DIALOGUE also outperformed a recent method42, where spatial expression properties are 

used to train a neural network (NN) predictor of cell location from single cell expression. 

We used DIALOGUE and the single-cell data38 to identify MCPs on a training set, trained 

a multiclass support vector machines (SVM) to predict cell location based on the compact 

MCP representation (with 5 MCP features per cell), and tested the predictions on an unseen 

test set. DIALOGUE outperformed the NN-predictor, successfully classifying 89% of the 

glutamatergic neurons onto the correct region (i.e., VISp vs. ALM) and 60% to the correct 

region and layer, compared to 65% and 37% for the NN model, respectively. While the 

NN predictor could not accurately map GABAergic neurons at all, as previously reported42, 

DIALOGUE-SVM classification success rates in this case were 68% for region and 37% for 

layer.

We also compared DIALOGUE’s ability to recover spatial information with respect to 

the spatial “smoothness” of gene expression27. Using MERFISH data10 from mouse 

hypothalamus and Slide-Seq data of mouse cerebellum11, we found that the Euclidean 

distance at the MCP-space predicts which pairs of cells are adjacent to each other and 

which are not, when testing on unseen data, outperforming predictors using distance in 

the original expression space or based on the first PCs (MERFISH: mean AUROC = 

0.70, 0.56, and 0.61; Fig. 2c; and Slide-Seq: AUROC = 0.68, 0.57, 0.52; Fig. 2d, for 

MCPs, PCs, and full expression data). Similarly, the MCP Euclidean distance also predicted 

whether they are from the same niche in scRNA-Seq data38 (AUROC of 0.76 and 0.62 

for glutamatergic and GABAergic neurons, respectively; vs. AUROC of 0.58 and 0.53, 

respectively, for full expression data; Fig. 2e). In Slide-Seq data, DIALOGUE identified 

MCPs that depict spatial organization in the cerebellum (Fig. 2f), revealing coordinated 

expression of neuronal programs with either the outer (MCP1) or inner (MCP2) layer of 

adjacent astrocytes (Supplementary Table 1).

Lastly, we examined if consensus NMF (cNMF), where cell type identity programs and 

cellular activity programs are jointly identified, could identify MCPs when applied to 
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scRNA-seq data from dozens of brain organoids43. No pair of cNMF programs showed 

significant correlation across samples when examining all possible pairwise combinations 

of cells and program (BH FDR > 0.05, Spearman correlation). In contrast, DIALOGUE 

identified strong MCPs on the same data43 (P < 1*10−7, Spearman rs > 0.89; P < 0.05, 

empirical test).

MCPs in the mouse hypothalamus mark animal behavior

Many of the programs DIALOGUE identified for pairs of cell types in the mouse 

hypothalamus were strongly associated with particular animal behaviors. This was observed 

mostly for the leading MCP (MCP1; P < 0.05 for 12 out of 15 first MCPs, mixed-effects, 

BH FDR44, Online Methods; Fig. 2g), which we focused on here (Fig. 2g,h; Extended Data 

Fig. 4b,c). Subsequent MCPs (MCP2-5) showed higher intra-animal variation, resulting 

from spatial co-variation within the tissue (Fig. 1c,d).

The MCPs (MCP1) that oligodendrocytes, excitatory and inhibitory neurons formed with 

other cell types were strongly repressed after parenting, aggression, or mating (BH 

FDR < 0.05, mixed-effects44, Fig. 2g, Extended Data Fig. 4c). All of these programs 

include Oprl1, encoding the nociceptin receptor, aligned with the key role of nociceptin 

in learning and emotional behaviors45, and show the involvement of hormonal signals 

(e.g., prolactin, estrogen, and progesterone receptors Prlr, Esr1, Pgr, respectively; Fig. 2h). 

These “hormonal” programs were equally active in female and male mice (P > 0.1, mixed-

effects) and their neuronal and microglia components were strongly co-regulated even when 

considering only male or only female animals (r > 0.63, P < 1*10−30, Pearson correlation).

In contrast to the MCPs DIALOGUE identified, “MCP-independent” components did not 

show any significant association with animal behavior. Specifically, we regressed out the 

first five MCPs DIALOGUE identified from the gene expression profiles and computed the 

PCs of the residuals (Online Methods). None of these residual components were associated 

with animal behavior, indicating that a large fraction of the biologically meaningful cell-cell 

variation in this system is captured by the MCPs identified by DIALOGUE.

Inflammatory MCPs in lung cancer

Examining DIALOGUE in non-canonical tissues, we applied it to Spatial Molecular Imager 

(SMI) data from 8 non-small cell lung cancer (NSCLC) human tumors, where 980 genes 

were profiled in situ across 800,000 single cells39. Focusing on CD4+ T cells, macrophages, 

and fibroblasts, DIALOGUE identified 3 MCPs in all 8 samples (Fig. 3, Supplementary 

Table 1).

MCP1 identified a cross T cell, macrophage and fibroblasts interferon response and antigen 

cross presentation program located at the interface with the tumor malignant boundary 

(Fig. 3). Among its top genes, IDO1 is up regulated in T cells. IDO1 is a suppressor of 

immunity and promoter of tolerance that catabolizes the amino acid tryptophan and other 

indole compounds46. The IDO1 locus contains IFN response elements and is induced by 

type I (IFN-I) and type II (IFN-II) interferons produced at sites of inflammation or by 

activated immune cells46. Consistently, IFN-I and II response genes are induced in MCP1 

in all three cell types (e.g., CCL2, CXCL10, IFITM3, present in all three cell types, STAT1 
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in fibroblasts, IFIH1 in CD4 T cells, etc.), and antigen presentation genes are inducued 

in fibroblasts, whereas the immune checkpoint CTLA4 and complement and antigen cross-

presentation genes are repressed in CD4 T cells and macrophages, respectively. VEGFA up-

regulation in fibroblasts may indicate that MCP1 is also linked to stimulation of endothelial 

cell invasion and vessel formation. IL1 signaling may play a role in coordinating this 

multicellular program, given the coordinated induction of IL1B in macrophages, its receptor 

IL1R1 in fibroblasts and its agonist IL1RN in macrophages. Spatially, MCP1 marks certain 

boundaries of the tumor, where T cells, fibroblasts, and macrophages have direct contact 

with malignant cells (Fig. 3), suggesting that it might be activated by malignant-driven 

stimulation or tissue remodeling.

Ulcerative colitis MCPs recovered from patients scRNA-seq

Next, we applied DIALOGUE to scRNA-Seq data from dissociated tissue specimens, 

without cell-level spatial coordinates, treating each sample as one “niche”. The dataset16 

consisted of 366,650 scRNA-Seq profiles from 68 colonoscopic biopsies (each ~2.4 mm2) 

from 12 healthy individuals and 18 UC patients. At least two biopsies were obtained from 

each individual, such that in UC patients, one samples is from inflamed or ulcerated tissue 

(“inflamed”) and one is from adjacent histologically non-inflamed tissue (“non-inflamed”). 

In addition, each sample was further separated to the epithelial (EPI) and lamina propria 

(LP) tissue fractions prior to cell dissociation and profiling, resulting in 115 spatially distinct 

samples across 30 individuals. We provided as input five well-represented cell subsets – 

macrophages, transit amplifying (TA) intestinal epithelial cells (TA1 and TA2), CD8+ T 

cells and CD4+ T cells. DIALOGUE identified five-way MCPs that span all five cell types 

(Supplementary Table 2, Online Methods).

We first tested if DIALOGUE identifies “intentionally mis-localized cells” based on the 

assumption that such cells will not fit the state predicted by their macroenvironment, as 

reflected by the MCPs. We trained DIALOGUE with an “in silico contaminated” dataset, 

where we added to each sample ~50 cells (10 per cell type; 0.02–0.06% of the cell type 

population) from an “adjacent sample” from the same individual. While these contaminating 

cells were always from the same patient, they were obtained from the same or different 

layer (LP/EPI) and from a sample that had the same or a different clinical status (both 

healthy, or inflamed and uninflamed). Based on the MCPs in the “contaminated training 

set”, DIALOGUE then computed an environment-score, which denotes for each cell to what 

extent its real state agrees with the one predicted by its neighbors (some of which may be 

contaminating; Online Methods).

DIALOGUE identified the mis-localized cells with high accuracy (Fig. 4a), as their 

environment-scores were significantly lower than those of the other cells (P < 1*10−10, 

t-test). We further evaluated this when considering different types of contamination and 

found that DIALOGUE was most accurate in spotting contamination from a different and 

distinct spatial location (i.e., LP vs. EPI) and most successful for CD8 and CD4 T cells, 

and least so for macrophages (Extended Data Fig. 5a). These findings demonstrate that 

DIALOGUE captures niche information, is robust to data contamination and could be 

potentially used to identify “infiltrators” to an established environment.
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Applying to the real (non-contaminated) data, DIALOGUE identified five MCPs, each with 

five cell type components. The different cell-type components of each MCP were strongly 

co-expressed across the samples (Fig. 4b; P < 1*10−3, mixed-effect model that accounts 

for gender, spatial compartment (EPI/LP), and cell subtypes, Online Methods), even when 

considering only samples from UC patients or from healthy individuals (P < 1*10−3, mixed-

effects). Most MCP genes were assigned only to one cell type (55–74%), although some 

were shared between the components of two or more cell types (Fig. 4c, Supplementary 

Table 2), potentially representing the context-dependent and -independent impact that the 

environment has on different cells, respectively.

Ulcerative colitis MCP marks genetic risk loci and prognosis

MCP1 identified in the colonoscopic biopsies was substantially higher in UC samples 

compared to samples from healthy individuals (P < 1*10−7, mixed-effects; Fig. 4d,e). This 

was observed also when considering only the inflamed or non-inflamed UC samples (P 

< 1*10−10, mixed-effects), only specific cell types, as well as finer T cell subsets (Fig. 

4d,e; Extended Data Fig. 5b). MCP1, which we termed the UC program, was enriched for 

genes located in genetic risk loci for IBD and UC16 (P = 4.15*10−4; Online Methods), 

particularly in its up-regulated set, including CCL2047 (TA1 and TA2), PRKCB (CD8 

and macrophages), and IRF148 (macrophages and CD4). Most of the UC program genes, 

including 19 from risk loci (Supplementary Table 2), are cell-type specific in the program, 

although they are expressed in various cell types. Such information can be important when 

pursuing therapeutic hypotheses or combinatorial therapies.

The up-regulated components of the UC program showed hallmarks of a pro-inflammatory 

tissue microenvironment (Fig. 4e). The macrophage compartment was enriched for up-

regulation of genes involved in positive regulation of immune response, leukocytes and 

lymphocytes activation in macrophages (P < 1*10−6, hypergeometric test); the CD4 and 

CD8 T cell compartments were enriched with up-regulation of chromatin organization and 

effector T cell genes, respectively (P < 1*10−7, hypergeometric test); and the TA1 and 

TA2 compartments were enriched for leukocyte migration (P = 5.76*10−6, e.g., CCL20, 

CD44) and VEGFR1 pathway genes (P = 4.66*10−6; e.g., CTNNB1 and VEGFA). The 

down-regulated components of the program were enriched for oxidative phosphorylation 

and fatty acid metabolism in TA1 and TA2 cells (P < 1*10−6, hypergeometric test), and 

exhaustion and T regulatory (Treg) marker genes in CD8 and CD4 T cells, respectively (P < 

1*10−8, hypergeometric test).

Based on ligand-receptor binding, gene encoding 61 receptors have ligands expressed in the 

UC program, but are not members of the program itself, including ITGA4, a top UC risk 

gene49,50. As receptor activation cannot be gauged at the mRNA level, this analysis provides 

a new way to highlight candidate receptors that may mediate the expression cell states in the 

MCP.

The UC program was associated with UC status also in an independent bulk RNA-Seq 

dataset of colon tissue samples obtained from 24 UC patients before and 4–6 weeks 

after their first treatment with a TNF-inhibitor (infliximab infusion) and of 6 control 

patients51. The program was substantially higher in the UC patients compared to controls 
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(P < 1*10−4, linear regression; AUROC = 0.95; Fig. 4f), lower in responders compared to 

non-responders (P < 1*10−5, linear regression) and predictive of responses (AUROC = 0.85, 

when considering only the pre-treatment samples, Fig. 4g). Thus, DIALOGUE can identify 

MCPs that characterize pathological cellular ecosystems and are predictive of subsequent 

clinical responses to interventions.

Although the UC-program marks the disease state, it is distinct from genes identified as 

differentially expressed between healthy and UC cells using differential gene expression 

analysis16 (Jaccard index: 0 – 0.14, median of 0.01) or using LIGER19 (Jaccard index: 

0.05 – 0.26, median 0.12). Moreover, 72% of differentially expressed genes (DEGs) and 

70% of the LIGER-DEGs are not significant associated across cell types when testing for 

multicellular co-regulation (mixed-effects test, BH FDR < 0.1; Online Methods).

MCPs of Alzheimer’s disease mark the aging brain

Applied to 80,660 single-nucleus RNA-seq (snRNA-seq) profiles from the prefrontal cortex 

of 48 individuals with varying degrees of Alzheimer’s disease (AD)17 (Online Methods), 

DIALOGUE identified two MCPs that were substantially higher in AD patients (P < 

1*10−3, mixed-effects, controlling for patient age and gender, Fig. 5a–d, Supplementary 

Table 3). MCP1 spans inhibitory and excitatory neurons, oligodendrocytes, oligodendrocyte-

precursor-cell (OPCs), and astrocytes, while MCP2 spans oligodendrocytes, OPCs, 

astrocytes, and microglia. In both MCPs, the different cell type compartments are largely 

distinct (Fig. 5c; > 93% of the MCP genes are in a single cell type component). Further 

supporting MCP1 and MCP2 connection’s to AD, their different components were induced 

in AD also in a bulk RNA-Seq profiles from 350 brain autopsies52,53 (AUROC = 0.66, 

P < 1*10−6, regression model, accounting for individual age and gender, Fig. 5e, Online 

Methods).

MCP1 includes repression of synaptic signaling genes in excitatory and inhibitory neurons 

(P < 1*10−7, hypergeometric test), up-regulation of long-term synaptic potentiation (LTP) 

in excitatory neurons, and up-regulation of genes involved in cellular response to stress 

in oligodendrocytes and astrocytes (e.g., ATF4, HSP90B1, and MSH4, P < 9.44*10−3, 

hypergeometric test). MCP2 is enriched in metal and zinc ion binding genes (e.g., ZDHHC4, 
ZFHX3, ZMYM2, ZMYM5, ZMYND11, ZNF207, ZNF331, ZNF420) in its up-regulated 

(AD-associated; Fig. 5a) compartment (spanning multiple cell types; P < 1*10−5), and in 

interferon response genes, particularly in the microglia down-regulated compartment. The 

AD MCPs are distinct from genes identified using differential gene expression analysis 

(Jaccard index ranging from 0 to 0.12, median of 0.075), 80% of which do not pass the 

statistical significance cutoff when examining cross-cell-type associations (mixed-effects 

test, BH FDR < 0.1).

As one of the greatest risk factors for AD is increasing age, we explored the possibility 

that the AD-program might become more prominent with age. Indeed, the up- and down-

regulated parts of the program were also respectively enriched with genes that have been 

previously found to be over- or under-expressed in the aging cortex (P < 6.08*10−4, 

hypergeometric test). Moreover, the AD-programs were strongly associated with age in bulk 

gene expression data from both the frontal cortex (n = 455) and cerebellum (n = 456) of 
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neurologically normal subjects across different ages54 (P < 1*10−10, regression model; Fig. 

5f).

APOE repression and T cell dysfunction in a melanoma MCP

To further examine whether DIALOGUE can identify MCPs predictive of clinical response 

to treatment, we applied it to scRNA-Seq data from melanoma tumors55 collected before 

and after treatment with immune checkpoint blockade (ICB), analyzing macrophages, B 

cells, CD8 and CD4 T cell profiles, as those cell types were adequately represented in 

the majority of samples, with a total of 12,373 cells across 48 samples from 32 patients. 

DIALOGUE identified 3 MCPs (Fig. 6, Extended Data Fig. 5c), and they generalized 

to an independent scRNA-seq melanoma study18 (Pearson r = 0.89, 0.77, and 0.70, P < 

1*10−4, when considering MCPs 1, 2, and 3, respectively, in CD4 and CD8 T cells; Online 

Methods).

MCP2 (Fig. 6) was significantly higher in ICB-resistant lesions both pre- and post-treatment 

(P < 1*10−10, mixed-effects,; Fig. 6a,b,d) and included APOE repression in macrophage, 

and induction of M2 polarization and T cell dysfunction genes (Fig. 6a; Supplementary 

Table 4). Indeed, ApoE is known to selectively deplete MDSCs, which in turn promotes T 

cell effector functions56, LXR/ApoE agonists promote anti-tumor immunity in pre-clinical 

models, and germline variation in APOE has been linked to ICB response in melanoma 

patients57. Interestingly, the program also includes one of the ApoE receptors, SORL1, as 

repressed in CD8 T cells, suggesting that ApoE may impact CD8 T cells directly as well.

MCP2 further includes up-regulation of CXCR6 in CD8 T cells (Fig. 6a; Supplementary 

Table 4), consistent with our recent findings that CXCR6 is a pan-cancer marker of 

dysfunctional CD8 T cells58,59, which facilitates critical interactions with myeloid cells 

in the tumor microenvironment58–60. Interestingly, TCF7 is repressed in the CD8 MCP2 

compartment. TCF7 encodes for TCF1, a key regulators of T cell differentiation, which can 

bind to the CXCR6 locus based on ChIP-seq data58,61 in a chromatin region that is open 

in naïve T cells based on ATAC-seq data58,62. As the ligand of CXCR6 (CXCL16) is not 

part of MCP2, these findings supporting the notion that CXCR6 is intrinsically regulated 

by TCF7 in chronically activated CD8 T cells to promote their chemotaxis to CXCL16 rich 

niches.

DISCUSSION

In this study, we define the concept of MCPs and introduce it as a framework for studying 

tissue biology. We develop, benchmark, and deploy DIALOGUE, a method to recover 

MCPs and apply it to either spatial or single cell expression profiles. Using MCPs, 

DIALOGUE can accurately identify mis-localized cells and predict the cell’s environment 

solely based on its expression state. It can decouple cell states to their niche/sample-

dependent and independent programs, reveal MCPs associated with specific phenotypes, 

and further decompose the niche/sample-dependent programs into generic (shared) and 

cell-type-specific components (Fig. 1a,b).
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DIALOGUE does not rely on strong underlying assumptions and is distinct from previous 

supervised and unsupervised methods. It is distinct from differential gene expression 

analyses as it is more regularized (requiring cross-cell-type associations across samples/

niches), without enforcing a particular structure (e.g., pre-defining which samples represent 

a disease state), retaining flexibility to identify different MCPs underlying seemingly 

identical phenotypes. DIALOGUE is also distinct from previous unsupervised single cell 

analysis and dimensionality reduction tools, as it uses gene-gene correlations both within 

and across cells.

DIALOGUE is also different from methods that extract spatial signatures from spatial 

transcriptomes. First, it does not impose a notion of discrete regions in a tissue, and 

instead uncovers continuous cross-cell-type patterns from spatial data. Second, DIALOGUE 

can uncover spatial patterns from dissociated tissues with no available spatial genomics 

data. Third, DIALOGUE identifies MCPs that are not necessarily associated with spatial 

distributions, but with variation across individuals, conditions, timepoints, etc., leveraging 

inter-sample variation. Such MCPs can depict biologically meaningful co-variation across 

individuals or conditions resulting from other shared molecular mechanisms operating on 

different cell types in concert (e.g., due to aging, treatment, stimulus, or genetics).

The MCPs that DIALOGUE identifies may arise due to shared (latent) factors in the cells’ 

micro- or macro-environment, due to shared (latent) (epi)genetic features, which impact 

different cell types in different ways, or due to a combination of genetic and environmental 

factors. The interpretation of the MCPs and their underlying causes remains a challenge, 

particularly because mRNA levels do not directly represent protein activation and binding, 

and expression responses to stimuli are context dependent.

In the future, DIALOGUE can be extended to integrate MCPs with transcriptional regulation 

models63 or intercellular signaling31 to further explore their molecular basis. Integrating 

DIALOGUE with Perturb-Seq64 data, especially when applied in vivo65 (and measured in 
situ66,67), or with human genetic data in larger cohorts, could provide a powerful approach 

to uncover the impact of perturbations on the cell and its neighbors and set the stage for 

causal inference of gene function in a tissue context, going from genetic causes, to single 

cells to tissue and phenotypes68.

While we focus here on expression profiles, DIALOGUE can be applied to any type 

of single cell data, from dissociated cells or in situ, including other molecular profiles 

or cell morphological features. Given multimodal data, it can identify both intracellular 

associations across different cellular modalities along with MCPs and help decouple the 

intracellular and multicellular processes that dictate different cellular properties (e.g., cell 

shape, transcriptome, proteome, etc.).

One of DIALOGUE’s current limitations is that it depends not only on the number of 

cells profiled, but also on the number of samples or spatial locations. As the number, size, 

and diversity of single-cell studies grows rapidly, and spatial transcriptomic technologies 

become more widely adopted, DIALOGUE should help analyze future single cell and 

spatial datasets, potentially in conjunction. More generally, the concepts, methodology, and 
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problems formulated here should also prompt additional method development and provide a 

basis to comprehensively map the vocabulary of MCPs underlying tissue function in health 

and disease.

ONLINE METHODS

DIALOGUE. Overview.

Given spatial or multi-sample single-cell data, DIALOGUE identifies latent multicellular 

programs (MCPs), each composed of co-regulated gene sets that span multiple cell types, in 

two steps. In the first step, it uses PMD41 to identify sparse canonical variates that transform 

the original feature space (e.g., genes, PC, etc.) to a new feature space, where the different 

cell-type-specific representations are correlated across the different samples/environments. 

In the second step, given the new representation, DIALOGUE uses multilevel hierarchical 

modeling to identify the genes that comprise the latent features, while accounting for 

single-cell distributions and controlling for potential confounders.

DIALOGUE. Input.

DIALOGUE takes as input single-cell profiles with either known spatial coordinates or with 

sample membership. While we show applications for RNA profiles, other measurement type 

(e.g., protein levels, cell shape image-based features, etc.) can be used instead or in addition. 

In non-spatial data, it is recommended to provide a compact representation of the data 

using the first 20–30 Principal Components (PCs), or similar meta-features derived using 

other dimensionality reduction methods on each cell type separately. DIALOGUE prunes 

the input to includes only features that show greater variation across samples than within a 

sample based on ANOVA tests (BH FDR < 0.05).

DIALOGUE. PMD step.

If the data is from dissociated tissue samples or biofluids, DIALOGUE first constructs for 

each cell type z a matrix Xz, where (Xz)ij denotes the average value of feature j (e.g., the 

expression of gene j or the value of PC j) in cell type z in sample i, following centering and 

scaling. This is defined as

Xz ij = ∑
c ∈ Si ∩ Cz

Ec, j
Si ∩ Cz

where Si denotes all the cells in sample i, Cz denotes all the cells of type z, and Ec,j denotes 

the value of feature j in cell c.

If the data includes a cell’s spatial coordinates, a spatial niche is defined as a patch of a 

given number of cells, such that (Xz)ij, denotes the average value of feature j in cells of type 

z in the spatial niche i. If the spatial data includes multiple samples, each column in Xz will 

denote a specific location in a specific sample. Data hierarchy will be accounted for in the 

multilevel models.
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The number of features in each Xz can vary and does not have to be the same across the 

different cell types.

Given matrices X1,...,XN representing N cell types, DIALOGUE applies PMD41 to find 

sparse canonical variates w1,...,wN by solving the following optimization problem

maximize ∑
i < j

wiTXiTXjwj, subject to wi ≤ 1, pi wi ≤ ci

where pi wi  represent the LASSO penalties, and the tuning parameters ci
control the degree of sparsity. For each pair of cell types i and j, 

argmaxwi, wjwiTXi
TXjwj = argmaxwi, wjcor Xiwi, Xjwj , and therefore the resulting canonical 

variates identify a latent space where the new feature of cell type i (i.e., Xiwi) are highly 

correlated with the new features of all the other cell types. The additional constrains ensure 

regularization and sparsity.

To select the tuning parameters, we defined γc1, …, cN as the optimal value of the 

optimization function described above, when using a particular set of tuning parameters 

c1,...,cN. We defined γc1, …, cN*  as the optimal value of the same optimization function and 

tuning parameters when using X1*, . . , XN*  instead of the original dataset, where Xi* is the 

original data matrix Xi after permutation. For each set of candidate tuning parameters, the 

data is permuted multiple times and an empirical p-value is computed based on the number 

of times that γc1, …, cN* > γc1, …, cN. The tuning parameters that obtain the smallest p-value are 

selected.

In an iterative process termed multi-factor PMD41, DIALOGUE identifies K latent features 

for each cell type, w1, k, …, wN, k k = 1
K . In practice, the new features of each cell type are 

orthogonal, minimizing redundancies, such that the greatest cross-cell-type correlations are 

observed at k = 1, gradually decreasing with increased k.

The new feature space is then defined at the single-cell level

Yz = XzW z

where Xz nz x pz) is the original feature space of cell type z (e.g., normalized gene 

expression), and Wz(pz x K) is the matrix of the sparse canonical variates identified for 

cell type z. While the user can use different K values as input, DIALOGUE will always 

output the same kth program for any K ≥ k.

DIALOGUE. Data-driven identification of the cell types participating in each MCP.

Following the PMD step, DIALOGUE uses the correlation coefficients and permutation tests 

to determine which cell types take part in each MCP and applies the multilevel test only 

on those cell types. Second, given a set of cell types, DIALOGUE performs the first PMD 
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step both in a multi-way manner and in a pairwise manner. If it identifies programs that are 

unique to the pairwise version it includes them in the multilevel modeling step and final 

output.

DIALOGUE’s ability to identify the relevant cell types participating in each MCP was 

assessed using the melanoma scRNA-seq data55 of macrophages, B cells, CD4 and CD8 T 

cells. Each time, the expression matrix of one of the cell types was randomly shuffled and 

provided to DIALOGUE together with the real (unshuffled) matrices of the other three cell 

types. All the MCPs identified involved only the real cell types and were identical to those 

identified when providing only the unshuffled data of the three cell types.

DIALOGUE. Multilevel modeling step.

After DIALOGUE defined a new feature space, it identifies a gene signature for each 

sparse canonical variate, by interrogating the single-cell distributions, while accounting for 

potential confounding factors at different levels (e.g., patient age, gender, sample type, cell 

sequencing quality, etc.).

For each of the K latent feature sets, DIALOGUE defines a set of N signatures (one per cell 

type), denoted as s1, k, …, sN, k k = 1
K .

A gene g is in sr,k if its expression in cell type r is correlated with Xrwr, k, the pertaining 

latent feature of cell type r, and with Xzwz, k, z ≠ r,  the pertaining latent features of the 

other cell types. The former is evaluated using partial Spearman correlation (BH FDR < 

0.05; with at most 250 up or down regulated genes per cell type), when controlling for cell 

quality, using the log-transformed number of reads detected in each cell. The latter is tested 

using the following multilevel model

yij N(αj + ∑
f

βfxij, f, σ1
2)

where yij is the value of the latent feature in cell i in sample j, xij,f is a cell-level covariate 

that controls for potential confounding factors (e.g., log-transformed number of reads), and 

αj is the sample j intercept, defined as

αj N(γ0 + γ(Xz)jg + ∑
t

γtutj, σ2
2)

where utj are sample-level covariates of sample j (e.g., patient age, gender), and (Xz)jg is the 

average expression of gene g in cell type z in sample j.

The multilevel modeling p-values are used to rank the genes in each program. The 

model parameters and the pertaining p-values are computed using the lme469 (https://cran.r-

project.org/web/packages/lme4/index.html) and lmerTest R packages70.
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Assessing DIALOGUE’s ability to recover MCPs involving rare cell states.

scRNA-Seq data from melanoma was down-sampled to such that less than 2% of B cells 

were classified as plasma cells and less than 4% of the CD8 T cells were classified as 

cycling CD8 T cells. To simulate the co-occurrence of rare populations, rare cell states were 

retained only in 6 out of 32 samples. Applying DIALOGUE to this dataset, one of the MCPs 

depicts the co-expression of cell cycle genes in CD8 T cells and the plasma cell program 

in B cells (P = 1*10−10, hypergeometric test; P < 1*10−16, ranksum test), despite their low 

frequency in the dataset.

Generalizability and mitigating overfitting.

For further regularization, DIALOGUE: (1) computes empirical p-values for each MCP, by 

comparing to a null model derived from shuffling the data, re-running the MCP detection 

procedures above, and quantifying the statistical significance of the MCPs identified with 

the real data; and (2) splits the original data to train and test sets or, if provided as input, 

uses unseen external datasets to examine the MCPs generalizability. If MCPs fail to show 

sufficient statistical significance or fail to generalize, it is recommended to use a smaller 

number of features as input or tune the regularization parameter to have more sparsity in the 

PMD solution.

Considerations in application of DIALOGUE to spatial data.

When applied to spatial data, the data is partitioned into spatial niches of a predefined size 

dmax (e.g., dmax = 100 μm) or, in the pairwise setting, to direct neighbors (i.e., the closest 

neighboring cell with a distance <= dmax). Not all niches will include all cell types. In the 

applications to spatial data presented here, DIALOGUE accounted only for niches where 

all the cell types of interest were present. To support applications for MCPs with a larger 

number of cell types, DIALOGUE also include a user defined parameter Nmin, allowing the 

user to choose to account for all the niches that include at least Nmin of the cell types of 

interest. Nmin can be as small as 2. If Nmin is less than the full number of cell types of 

interest, in the PMD step, where (Xz)ij denotes the average value of feature j in cells of type 

z in the spatial niche i, DIALOGUE will now also include niches where cell type z is not 

present and fill those in as zeros (i.e., the entire row i in Xz will be zeros). This will not 

impact the part of the optimization that involves cell type z, as the PMD step solves the 

following optimization problem

maximize ∑
i < j

wiTXiTXjwj, subject to‖wi‖ ≤ 1, pi(wi) ≤ ci

where matrices X1,...,XN represent N cell types, and w1,...,wN denote sparse canonical 

variates.

The multilevel step is based on pairwise analyses of cell types and thus can account for 

different niches when analyzing each pair without the need for the “missing” zero value 

addition described above.
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Testing DIALOGUE as a cell location predictor.

To test if DIALOGUE can predict cell location based on the MCPs it identifies, each 

spatial genomics data was split randomly to training and test sets, using half of the samples 

for training and the other half for testing. The expression of the MCPs identified in the 

training set was then computed for the cells in the test set. For each pair of cell types 

the Euclidean distance between them in this k dimensional space was computed. ROC 

curved were then obtained to examine if this distance measure distinguishes between the 

adjacent and non-adjacent pair from the same sample, with a smaller distance increasing 

the likelihood that the two cells will be adjacent. The same procedure was performed when 

considering the Euclidean distance based on the original gene expression data and based on 

the first 20 PCs obtained when processing all the cells together.

DIALOGUE-SVM.

scRNA-Seq data from spatially defined regions of the mouse neocortex38 were provided 

to DIALOGUE as a training set to identify MCPs. Next, for each cell type, a multiclass 

Support vector machine (SVM) was trained on a subset of training data with the different 

spatial regions provided as target labels and the MCPs provided as features. The SVM model 

was then tested on the unseen test set. SVM was applied using the e1071 R package with 

default parameters.

Comparing MCPs to annotated gene sets.

MCPs were compared to annotated gene sets using hypergeometric enrichment tests. 

Multilevel mixed-effects models were used to test whether the Overall Expression (OE) 

of MCPs and pre-defined gene set were correlated across cells of a specific cell type. In this 

setting, the OE of one program is a dependent variable and that of the other is provided as 

a covariate. The other covariates used are the log-transformed number of reads detected per 

cell (scaled to a range of 0–1), sample identity, and donor/patient/animal sex.

DIALOGUE. Environment-score metric.

The environment-score (Es) is defined based on the difference between the expected and 

observed cell state, given the identified MCPs.

Es(i, j) = ∑
k = 1

K
yij, k
z

observed
− ∑z′ ≠ z

∑ryrj, k
z′

nz′j
expected

−1

where yij, k
z  is the value of feature k (e.g., program k) in cell i of cell type z in sample j, and 

nz′j is the number of cells of cell type z’ in sample j.

To test if this measure can identify mis-localized cells, we used the colon/IBD data16. We 

performed an in silico contamination of the data by adding to each sample ~50 cells (10 per 

cell type) from an “adjacent” sample obtained from the same individual. These “adjacent 

samples” could be from the same or different layer (LP/EPI) and have the same or a different 
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clinical status (both healthy, or inflamed and uninflamed). Applied to this “contaminated” 

data, DIALOGUE identified MCPs spanning TA1, TA2, macrophages, CD8 and CD4 T 

cells, and computed the environment-scores as described above.

The predictions were tested per cell type (Fig. 4a, Extended Data Fig. 5a), when considering 

all cells, only control patients, only IBD patients, or only specific types of mis-localization, 

namely, erroneous tissue compartment (LP vs. EPI), same tissue type but different clinical 

status (considering only IBD samples, where inflamed and non-inflamed samples were 

collected for the same patient), and adjacent sample of the same tissue type (considering 

only control samples where similar samples were obtained from the same individual).

DIALOGUE application to spatial transcriptomic data from the mouse hypothalamus.

MERFISH data10 was retrieved from DRYAD (https://datadryad.org/stash/dataset/

doi:10.5061/dryad.8t8s248), where expression values for the 135 genes measured in the 

combinatorial smFISH run were determined as the total counts per cell divided by the 

cell volume and scaled by 1,000. Expression values for the 21 genes measured in non-

combinatorial, sequential FISH rounds were arbitrary fluorescence units per μm3, such that 

the same scale was used for all cells. The expression values were then centered and scaled 

for all genes. The gene Fos was not included in the analyses, as it was not measured in all 

cells, resulting in 155 genes. “Cell class” annotations and the “neuron cluster_ID” were used 

to assign cells to cell types and subtype.

The scaled and centered gene expression matrix was used as the “original features space” 

(Fig. 1b, “input”). Niches were defined based on the two-dimensional coordinates of the 

cells’ centroid positions as patches of fixed diameter of 75 μm or 440 μm, such that 

they respectively include, on average, 15 or 500 adjacent cells, denoted as micro- and 

macro-environments. In the pairwise version, each cell is paired with its closest neighbor, 

and cells that do not have a close enough neighbor (< 50μm apart) are not considered.

DIALOGUE application to colon scRNA-Seq data.

Processed scRNA-seq of 68 colonoscopic biopsies (each ~2.4 mm2) from 12 

healthy individuals and 18 UC patients16. was downloaded from the single cell 

portal (https://singlecell.broadinstitute.org/single_cell/study/SCP259/intra-and-inter-cellular-

rewiring-of-the-human-colon-during-ulcerative-colitis#study-download). Genes that were 

identified in the original study16 as having been contaminants from putative ambient 

RNA were removed. The “original feature space” was the top 30 PCs, where PCs were 

computed based on the gene expression of the top 2,000 most variable genes, defined 

using the Seurat package FindVariableFeatures function. In this procedure, local polynomial 

regression (LOWESS) is used to estimate the expected variance given the average gene 

expression values across the cells, on a log-log scale. Deviation from the expected value is 

then used to identify overdispersed genes.

DIALOGUE application to AD snRNA-seq.

DIALOGUE was applied to snRNA-seq data from the prefrontal cortex of 48 individuals 

with varying degrees of AD pathology17. The data was previously generated as a part of 
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the Religious Orders Study (ROS) or the Rush Memory and Aging Project (MAP) study 

(ROS/MAP). Data was downloaded from the AMP-AD Knowledge Portal (Synapse IDs: 

syn18686381, syn18686382, syn18686372) through controlled access, subject to the use 

conditions set by human privacy regulations.

To capture disease-related variation, which in this case was subtler and potentially masked 

by other sources of cell-cell variations, PCs were first computed based on genes that showed 

at least moderate association with the disease state (t-test p-value < 0.1, without correction 

for multiple hypotheses). The top 30 PCs were used as the original feature space (Fig. 1b, 

“input”).

Bulk RNA-Seq data from the ROS/MAP study was used to examine the AD program 

in a larger cohort of 638 cortex autopsies52,53. Data was downloaded from AMP-AD 

Knowledge Portal (Synapse IDs: syn3505720) through controlled access, subject to the use 

conditions set by human privacy regulations. For each sample the OE of the AD program 

was computed, using a scheme that filters technical variation and highlights biologically 

meaningful patterns, as described previously18,71. Samples from patients with non-definitive 

diagnosis (CERAD score of 2 or 3) were discarded, and the association of the AD program 

OE with disease status (AD or non-AD, defined as CERAD scores of 1 and 4, respectively) 

was examined using a linear regression model that accounts for the individuals’ age and 

gender.

DIALOGUE multilevel model in specific applications.

The multilevel models used in the applications to UC colon, prefrontal cortex in AD and 

melanoma data was formulated as follows

yij N αj + βxij, σ1
2 ; αj N γ0 + γ Xz jg + γ2u1j + γ2u2j + γ2u3j, σ2

2

Where, xij denotes the number of genes detected in cell i in sample j; (Xz)jg denotes the 

expression of MCP g in cell type z of sample j; u1j denotes the sequencing depth of sample 

j (the average number of genes detected per cell on average, when considering the cells 

of cell type z), u2j and u3j are binary covariates that denote the sex and the disease status 

of the donor/patient, respectively. The disease covariate was used only in the colon and 

cortex datasets, as those also included data from healthy donors. All covariates were scaled 

to be within a similar range for statistical purposes. The statistical multilevel model was 

constructed with sample-specific intercepts to account for the inter-dependencies within 

each sample.

Examining differentially expressed genes as MCPs.

Differentially expressed gene sets were retrieved from the IBD16 and AD17 studies. The 

same analysis preformed in the multilevel DIALOGUE step was performed on these sets, 

only that instead of providing the MCPs identified in the PMD step, the DEGs (identified 

for the different cell types) were provided. The fraction of genes that show a cross-cell-type 

association (BH FDR < 0.1, mixed-effects test) was computed. DEGs were also defined 

here via LIGER19, splitting each dataset based on the disease status to identify shared 
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and context-specific programs, with the recommended default parameters, using the code 

provided at: https://github.com/welch-lab/liger. The same process described above was 

implemented to examine the resulting LIGER-DEGs as MCPs.

Putative cell-cell interactions mediated by ligand-receptor binding.

DIALOGUE starts from a graph of cognate ligand-receptor pairs72. Given an MCP, each 

cell type is added to this ligand-receptor graph as another node, which is connected with 

edges to all of the genes in its compartment. “Protein nodes” (i.e., representing ligands and 

receptors) are retained only if they are connected to a cell type directly or through another 

protein node, and are removed otherwise. The number of unique paths from a given protein 

node to all cell nodes can be used to identify potential mediators of the MCPs latent when 

considering only RNA levels.

Code availability.

DIALOGUE is implemented as an R package and can be installed using the 

devtools::install(“DIALOGUE”) command. Further documentation and tutorials are 

provided in the package help pages (e.g., ?DIALOGUE). We also provide DIALOGUE 

via GitHub (https://github.com/livnatje/DIALOGUE) and KCO repository10, along with 

additional guidelines and specifications.
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Extended Data

Extended Data Figure 1. DIALOGUE identified MCPs in the mouse hypothalamus that are not 
recovered with other dimensionality reduction and clustering approaches.
(a)* Pearson correlation coefficient between genes, PCs, NMF, and DIALOGUE MCPs 

from either the training or the test set (x axis) across different pairs of cell types (panels) 

in spatial niches in the mouse hypothalamus. (b) Pearson correlation coefficient (red/

blue, color bar) between the Overall Expression of the relevant MCP component when 

considering only defined subsets of the pertaining cell types (rows, columns), as previously 

identified by clustering10. White: missing values (cell subtypes that cannot be compared). (c) 
MCPs are not merely driven by cell subtype composition in a niche. Fraction of cells from 

different clusters (as previously defined10, y axis) among cells of a given type (label on top) 

that over- or under-express the relevant component of each pair-wise MCP1 (top or bottom 

25%, respectively, x axis) involving that cell type. (d)* Similarity (y axis, Spearman’s r) 
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between the gene loadings of MCPs identified in the microenvironment setting (x axis) 

and the gene loadings of matching MCPs identified in the micro-environment setting, when 

computed for different pairs of cell types using MERFISH data. *In both (a) and (d) middle 

line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points that do not 

exceed ±IQR*1.5; further outliers are marked individually.

Extended Data Figure 2. DIALOGUE captures spatial patterns.
(a) Average Overall Expression in a niche (dot, 15 cells on average) of the first MCP 

(MCP1) in the first (x axis) and second (y axis) cell type in that MCP. In red is the locally 

weighted polynomial (LOWESS) regression line. (b) As in (a), but depicting the Overall 

Expression residuals after regressing out impact of cell clusters, as previously defined10. 

(a-b) Spearman correlation coefficient (R) and significance (P, one-sided). (c) Performance 

(AUROC, y axis) when predicting the expression of the corresponding DIALOGUE 

component in the neighboring cells located in the same macro-environment (dark blue, 

~500 cells) or micro-environment (purple, and light blue, ~15 cells), when testing on unseen 
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test set; the training data includes either spatial coordinates and single-cell profiles (light 

blue, “spatial data”) or only single cell profiles from ~500 cell aggregates, without spatial 

information (“dissociated”, Online Methods).

Extended Data Figure 3. MCPs mark spatial patterns and phenotypes.
(a) Overall Expression of HMRF37 domain-specific programs in neighboring pairs of 

glutamatergic (y axis) and GABAergic (x axis) neurons from different regions (colors). (b) 
Overall Expression of the relevant components of MCPs 1–5 in glutamatergic (y axis) and 

their adjacent GABAergic (x axis) neurons from different regions (colors). (a-b) Spearman 

correlation coefficient (R) and significance (P, one-sided).
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Extended Data Figure 4. MCPs mark spatial patterns and phenotypes.
(a) Spatial distribution of MCPs and HNRF programs. Overall Expression of MCPs 

identified by DIALOGUE and the HMRF37 domain programs in glutamatergic (circles) 

and GABAergic (dots) neurons in the mouse visual cortex. As shown, while many of the 

patterns follow either a more layered or salt and pepper pattern, MCP2 distinguished a more 

discrete region. While such boundaries sometimes reflect measurement artifacts, we did not 

find an association with number of genes/reads (typical quality measures) nor with simple 

alignment with Fields of View (FOV). (b,c) Shared and cell type specific components in 

DIALOGUE MCP1s in the mouse hypothalamus. (b) Fraction of genes (y axis) that are 

shared (yellow) or specific to one (A, dark blue) or another (B, light blue) of the cell types in 

each of the hypothalamus MCPs (x axis). (c) The two cell programs in each of the MCPs in 

(b) and their specific and shared (intersection) genes. P-values denote association with naïve 

animal behavior (multilevel mixed-effects models, two-sided test).
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Extended Data Figure 5. DIALOGUE identifies mis-localized cells and disease MCPs in single-
cell data.
(a) ROC curves showing the true positive (y axis) and false positive (x axis) rate 

when predicting mis-localized cells of each major subset (panels) with different types of 

“contamination” with cells that are either from the same layer (LP/EPI) within control 

(black, from replicate biopsy) or UC (blue; from adjacent biopsy with a different clinical 

status: inflamed or non-inflamed); or from a different layer but same clinical status, when 

considering either all samples (green) or only samples from control (yellow) or UC patients 

(red). (b) UC multicellular program genes. Average expression (Z score residuals after 

regressing out the associations with the LP/EPI location, red/blue color bar) of top genes 

(columns) from the UC multicellular program, sorted by their pertaining cell type (top 

color bar), across samples (rows), sorted by Overall Expression (right, Online Methods), 

and labeled by clinical status, location and patient ID (left color bar). (c) Melanoma 
MCP1. Average expression (Z score, red/blue color bar) of top genes (columns) from MCP1 

identified in four different cell types (top color bar), across melanoma tumor samples (rows), 

sorted by Overall Expression of MCP1 (right, Online Methods), and labeled by treatment 

status and ICB response (left color bar).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. DIALOGUE: a method for MCP identification.
(a) Multicellular programs (MCPs). Upper panel: MCPs can arise due to either shared 

cues (upper row) or direct cell-cell interactions (bottom row) and comprise both cell type 

specific (left column) or shared (right column) programs. Lower panel: MCPs can be 

observed also in dissociated tissues based on co-variation across samples. (b) DIALOGUE 

method. In Step I (left), DIALOGUE takes as input (left) mean gene/feature expression 

(columns) matrices for each cell type, across samples or physical niches (rows) and infers 

“sparse latent variates” across those samples/niches (middle matrices) and their activity 

(right matrices) for each cell type, such that the programs of each cell type are highly 

correlated with the corresponding programs of all the other cell types (in this case shown 

only for two). In Step II (right), it identifies a gene signature for each sparse canonical 

variate, by interrogating single-cell distributions, while accounting for confounding factors 

at different levels. This results in MCPs, each with a set of up- and down-regulated genes in 

each of its cell type compartments (right). Ligand-receptor interactions can then be used to 

identify potential mediators. (c-d) Spatial distribution of MCPs. Expression (color code) of 

MCP2 and MCP4 components in single cells (dots) identified for excitatory and inhibitory 

neurons (c) and astrocytes and inhibitory neurons (d); “high”: expression above the 80th 

percentile; “moderate/low” otherwise. (e) Pearson correlation coefficient between genes, 

PCs, NMF, or DIALOGUE MCPs from either the training or the test set (x axis) across 
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different pairs of cell types in spatial niches in the mouse hypothalamus (see Extended 

Data Fig. 1a for all other pairwise combinations). Middle line: median; box edges: 25th 

and 75th percentiles, whiskers: most extreme points that do not exceed ±IQR*1.5; further 

outliers are marked individually. (f) Receiver-Operator Curves (ROCs) for predictions of 

the expression of each MCP in unseen cells based on the expression profiles of their 

neighbors in the “micro-“ (radius of 37 μm, ~15 cells) or “macro-“ (radius of 220 μm, ~500 

cells) environment, using spatial coordinates in the training data (black and purple) or only 

single-cell RNA profiles grouped to samples (red/blue, green/orange).
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Figure 2. DIALOGUE MCPs recover spatial information from different mouse brain regions and 
spatial genomics data types.
(a-b) DIALOGUE outperformed HMRF37 in extracting spatial signatures from Seq-FISH 

data37 from the mouse visual cortex. (a) Overall Expression of the HMRF37 O3 domain 

programs (left) and corresponding MCP1 components (right) in neighboring pairs of 

glutamatergic (y axis) and GABAergic (x axis) neurons from different regions (colors). 

Spearman correlation coefficient (R) and two-sided p-values (P) are shown. (b) HMRF-

domain assignments (left) and Overall Expression of (middle) MCP1, and MCP2 (right) in 

glutamatergic (circles) and GABAergic (dots) neurons in their spatial context. (c-e) MCPs 

predict adjacent cells’s states on unseen test data. (c) Predictive accuracy (Area Under the 

Receiver Operator Curve, AUROC, y axis) for neighboring cells for different pairs of cell 

types (x axis), when using the Euclidean distance based on MCPs learned on training data 

(red), Principal Components from PCA (blue), or the original gene expression data (green). 

(d,e) True positive (y axis) and false positive (x axis) rates for predicting neighboring 

cells based on MCPs (red), PCs (blue) or gene expression (green) in mouse cerebellum 

Slide-Seq data11 (d) or scRNA-seq from spatially distinct regions in the mouse neocortex38 
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(e). AUROC values are shown in parentheses. (f) MCPs in the cerebellum distinguish 

coordinated expression between neurons and astrocytes in the inner and outer layers. Overall 

Expression (two left panels) in neurons and astrocytes and discretized expression (two 

right panels; (“high”: expression above the 80th percentile; “moderate/low” otherwise)) of 

MCPs identified in the mouse cerebellum based on Slide-Seq data. (g) Overall Expression 

(y axis, Online Methods) of the excitatory-inhibitory MCP in male (left) or female (right) 

mice exhibiting different behaviors (legend). Middle line: median; box edges: 25th and 75th 

percentiles, whiskers: most extreme points that do not exceed ±IQR*1.5; further outliers are 

marked individually. (h) The two cell programs in each of two MCP1s and their specific 

and shared (intersection) genes. P-values denote association with naïve animal behavior 

(multilevel mixed-effects models, two-sided test).
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Figure 3. MCPs in NSCLC identify coordinated interferon responses in immune and stroma cells 
at the tumor edge.
Cell type assignments and MCPs in representative NSCLC tumors profiled by SMI 

data. (a) MCP2 in NSCLC tumor #13. Discretized expression (left, “High” > 80th 

percentile; “moderate/low” otherwise), its inverse (middle, highlighting cells with low 

MCP expression), and Overall Expression (right) of MCP2 of cells (dots) in the tumor 

spatial context. (b) MCP1 in NSCLC tumor #13. Discretized expression (left) and Overall 

Expression (middle) of MCP1, and cell type annotations (right) of cells (dots) in the tumor 

spatial context. (c) MCP1 in in NSCLC tumor #9. Discretized (left) and Overall Expression 

(middle) of MCP1 and cell type annotations (right) of cells (dots) in the tumor spatial 

context.
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Figure 4. MCPs associated with ulcerative colitis and predictive of clinical outcomes.
(a) Deviation from multicellular patterns identifies mis-localized cells. ROC curves show 

the true positive (y axis) and false positive (x axis) rate when predicting mis-localized cells 

of each cell subset (color legend). (b) MCP1 in the human colon. Off diagonal panels: 

Comparison of Overall Expression scores (y and x axes) for each cell component of MCP1 

(rows and columns, labels on diagonal) across the samples (dots, black: control, blue: non-

inflamed IBD, red: inflamed IBD); the lines correspond to the linear fit. Pearson correlation 

(r) and significance (***P < 1*10−3, one-sided) are shown in the panels above the diagonal. 

Diagonal panels: Distribution of Overall Expression scores for each cell type component, 

along with the kernel density estimates. (c) Most genes in five colon MCPs are specific to 

one cell component. Number of genes (y axis) in the up (left bars) and down (right bars) of 

each of five colon MCPs (x axis) that appear only in one cell type component or in multiple 

ones (color legend). (d) MCP1 is induced in UC samples. Distribution of Overall Expression 

scores (x axis) of MCP1 (“UC program”) across the different cell subtypes (y axis) for 

cells from UC patients (grey) and healthy individuals (light blue); black line denotes the 
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mean of the distribution. P: One-sided p-values, mixed-effects models. (e) UC multicellular 

program genes. Average expression (Z score, red/blue color bar) of top genes (columns) 

from the UC multicellular program, sorted by their pertaining cell type (top color bar), 

across samples (rows), sorted by Overall Expression (right, Online Methods), and labeled 

by clinical status, location and patient ID (left color bar). (f,g) UC multicellular program 

predicts response to anti-TNF therapy. (f) Overall Expression (y axis) of the UC-program 

in bulk RNA-seq of colon biopsies from 24 UC patients pre- and post-infliximab infusion, 

stratified to responders (blue) and non-responders (grey) and in normal mucosa from 6 

control patients51 (red). Middle line: median; box edges: 25th and 75th percentiles, whiskers: 

most extreme points that do not exceed ±IQR*1.5; further outliers are marked individually. 

P-value: linear regression model (Online Methods). (g) ROC curve obtained when using the 

UC multicellular program score in pre-treatment samples51 to predict the subsequent clinical 

responses to infliximab infusion in UC patients.
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Figure 5. MCP in the prefrontal cortex associated with AD pathology and aging.
(a) AD MCPs. Average expression (Z score, red/blue color bar) of top genes (columns) 

from the AD multicellular program, sorted by their pertaining cell type (top color bar), 

across samples (rows), sorted by Overall Expression (right, Online Methods), and labeled 

by clinical status (left color bar). (b) AD programs components across cell types. Off 

diagonal panels: Comparison of Overall Expression scores (y and x axes) for each cell 

component of MCP1 (rows and columns, labels on diagonal) across the samples (dots, 

black: control; red: AD); the lines correspond to the linear fit. Pearson correlation coefficient 

(r) and significance (***P < 1*10−3, one-sided) are shown in the upper triangle. Diagonal 

panels: Distribution of Overall Expression scores for each cell type component, along 

with the kernel density estimates. In: inhibitory neurons; Ex: excitatory neurons, Oli: 

oligodendrocytes, Opc: oligodendrocyte-precursor cells, Ast: astrocytes, Mic: microglia. 

(c) Most genes in the AD MCPs are specific to one cell component. Number of genes 

(y axis) in the up-regulated (left bar) and down-regulated (right bar) compartment of 

the AD MCPs (x axis) that belong to one cell type component or multiple ones (color 

legend). (d) AD MCPs components are induced across cell types in AD. Distribution of 

Overall Expression scores (y axis) of AD multicellular program component across the 

different cell subtypes (y axis) for cells from AD patients (grey) and neurologically normal 

subjects (light blue); black line denotes the mean of the distribution. P: One-sided p-values, 
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mixed-effects models. (e) The overall expression of AD MCPs in brain autopsies of AD 

(red) and non-AD (grey) individuals. (f) AD MCPs increase with age in the frontal cortex 

and cerebellum of neurologically normal subjects. Overall Expression (y axis) of the AD 

MCPs in bulk RNA-seq of the frontal cortex (left) and cerebellum (right) of neurologically 

normal subjects54 stratified by age (x axis). Middle line: median; box edges: 25th and 75th 

percentiles, whiskers: most extreme points that do not exceed ±IQR*1.5; further outliers are 

marked individually. (e-f) P: linear regression, one-sided p-value.
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Figure 6. An immunotherapy resistance MCP in melanoma tumors, linking T cell dysfunction to 
APOE repression in macrophages.
(a) Melanoma multicellular ICB resistance program (MCP2). Average expression (Z score, 

red/blue color bar) of top genes (columns) from the ICB resistance program, sorted by their 

pertaining cell type (top color bar), across samples (rows), with samples sorted by Overall 

Expression (right, Online Methods), and labeled by treatment status and ICB response (left 

color bar). (b) ICB program components across cell types. Off diagonal panels: Comparison 

of Overall Expression scores (y and x axes) for each cell component of MCP2 (rows 

and columns, labels on diagonal) across the samples (dots, black: responding samples, 

red: non-responding samples); the lines correspond to the linear fit. Pearson correlation 

coefficient (r) and significance (***P < 1*10−3, one-sided) are shown in the upper triangle. 

Diagonal panels: Distribution of Overall Expression scores for each cell type component, 

along with the kernel density estimates. (c) Most genes in the ICB program are specific 

to one cell component. Number of genes (y axis) in the up (left bar) and down (right bar) 

compartment of the ICB program (x axis) that belong to one cell type component or multiple 

ones (color legend). (d) ICB multicellular program components are induced across cell types 

in ICB-resistant lesions. Distribution of Overall Expression scores (y axis) of ICB program 

components across the different cell types (y axis) for cells from non-responding (grey) and 

responding (light blue) lesions. P: One-sided p-values, mixed-effects models.
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