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Background. Similar to tissue stem cells, primitive tumor cells in chronic myelogenous leukemia have been observed to
undergo quiescence; that is, the cells can temporarily stop dividing. Using mathematical models, we investigate the effect of
cellular quiescence on the outcome of therapy with targeted small molecule inhibitors. Methods and Results. According to
the models, the initiation of treatment can result in different patterns of tumor cell decline: a biphasic decline, a one-phase
decline, and a reverse biphasic decline. A biphasic decline involves a fast initial phase (which roughly corresponds to the
eradication of cycling cells by the drug), followed by a second and slower phase of exponential decline (corresponding to
awakening and death of quiescent cells), which helps explain clinical data. We define the time when the switch to the second
phase occurs, and identify parameters that determine whether therapy can drive the tumor extinct in a reasonable period of
time or not. We further ask how cellular quiescence affects the evolution of drug resistance. We find that it has no effect on the
probability that resistant mutants exist before therapy if treatment occurs with a single drug, but that quiescence increases the
probability of having resistant mutants if patients are treated with a combination of two or more drugs with different targets.
Interestingly, while quiescence prolongs the time until therapy reduces the number of cells to low levels or extinction, the
therapy phase is irrelevant for the evolution of drug resistant mutants. If treatment fails as a result of resistance, the mutants
will have evolved during the tumor growth phase, before the start of therapy. Thus, prevention of resistance is not promoted
by reducing the quiescent cell population during therapy (e.g., by a combination of cell activation and drug-mediated killing).
Conclusions. The mathematical models provide insights into the effect of quiescence on the basic kinetics of the response to
targeted treatment of CML. They identify determinants of success in the absence of drug resistant mutants, and elucidate how
quiescence influences the emergence of drug resistant mutants.
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INTRODUCTION
Cellular quiescence is a central process that regulates the kinetics

of cellular proliferation and tissue homeostasis, especially in stem

cells [1–6]. If stem cells are not needed to divide and to replenish

tissue cells, they temporarily stop to progress through the cell cycle

until further divisions are required. Several cancers are thought to

be maintained by ‘‘cancer stem cells’’ in a similar manner as

healthy tissue is maintained by regular stem cells [7–10]. That is,

the primitive cells divide and give rise to cells that are

differentiated to a certain degree, at least during the earlier stages

of the disease. Cancer stem cells are thought to be an important

target for any therapy that aims to eradicate the tumor [11,12] . If

the stem cells are not eliminated, the cancer is likely to relapse

[13]. While primitive cancer cells proliferate with a higher rate

than healthy cells, data indicate that they can still undergo

quiescence, both during tumor growth and during treatment . An

example of where this has been demonstrated is chronic

myelognous leukemia (CML) [14,15]. It is even possible that in

this case, therapy induces quiescence in primitive cancer cells [16].

Quiescent cells in turn are not affected by the drug and are

therefore shielded from therapy-induced elimination [16].

Chronic myelogenous leukemia (CML) is a cancer of the

hematopoietic system which progresses in three phases: the chronic

phase, the accelerated phase, and blast crisis [17–20]. It is thought

that cell growth is brought about by the proliferation of cancerous

stem cells and progenitor cells [21]. During the chronic phase of the

disease, the fraction of immature cells is relatively low, while a sharp

increase in the fraction of immature cells is observed as the disease

progresses. It is thought that CML initiation and progression is

driven by the product of the BCR-ABL fusion gene (Philadelphia

chromosome) [17]. The BCR-ABL protein has a constitutively

activated tyrosine kinase, activating multiple signal transduction

pathways. This leads to excessive cellular proliferation, reduced

apoptosis, and decreased cellular adhesion. Imatinib mesylate

(STI571 or Gleevec) is a targeted inhibitor of the BCR-ABL fusion

protein and has given rise to impressive treatment results, especially

when treatment is started during the chroninc phase of the disease

[20,22–28]. Blood cell counts return to normal levels, and the levels

of the BCR-ABL gene can even become undetectable. While

patients tend to relapse after cessation of Imatinib treatment [29–

32], a recent study has shown that some patients did not show any

relapse as long as two years after treatment cessation, raising the

possibility that CML has been eradicated from these patients [33].

There are two major barriers to CML eradication by Imatinib.

First, not all cells in the heterogeneous CML population are

equally susceptible to treatment. The problem lies especially with

the population of stem cells. While some have argued that stem

cells are not at all susceptible to Imatinib [30], another scenario is
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that stem cells are susceptible to treatment while in an active state,

but are not affected by the drugs while in a quiescent state

[13,16,29]. Because primitive CML cells have been observed to

undergo quiescence, and because Imatinib itself might trigger

a quiescent state in some cells, tumor eradication can be a difficult

task. Second, the tumor cells can evolve acquired resistance to

Imatinib [22,23,25,27,28,34–40]. This can be conferred by point

mutations or gene amplification events. The probability that

a resistant cell is generated in turn depends on the growth kinetics

of the cancer cell population, which are influenced by regulatory

processes such as quiescence and cell death.

This paper investigates how cellular quiescence influences the

kinetics of the treatment response, and the probability of treatment

failure as a result of acquired resistance. Initiation of therapy can

result in three patterns of tumor cell decline in the model. In one

parameter region, we first observe a fast phase of tumor cell decline

(roughly corresponding to the eradication of cycling cells by the

drug), followed by a slower phase (awakening and death of quiescent

cells), a pattern which has been observed in clinical data [29,30]. For

this case, we define mathematically the time when the switch to the

second and slower phase occurs. The other two patterns of tumor

cell decline are a one-phase decline and a reverse biphasic decline.

Eventually, the model predicts the extinction of the CML cells, and

defines the time when extinction occurs. Depending on the

parameter values, this may or may not occur in a realistic period

of time. The calculations therefore define conditions under which

imatinib therapy fails to eradicate the cancer, and when eradication

can be successful. A more elaborate model includes the ability of

tumor cells to acquire mutations that confer drug resistance. We find

that in the context of treatment with a single drug, parameters that

determine the kinetics of cellular quiescence do not affect the

probability of treatment failure as a result of drug resistant mutants.

On the other hand, if two or more drugs are used in combination to

treat the cancer, then treatment failure as a result of drug resistance is

promoted by the occurrence of cellular quiescence. Interestingly,

while cellular quiescence significantly prolongs the time until the

cancer has dropped to low numbers or has been driven extinct, the

model predicts that drug resistance does not evolve during this

treatment phase in this case. Increased cellular quiescence increases

the likelihood that resistant mutants are generated during the growth

phase of the cancer before therapy is initiated.

RESULTS

Treatment in the absence of drug resistant mutant

cells
We formulate a stochastic model that includes a population of

primitive, proliferating CML cells, and a population of quiescent

CML cells. The proliferating cells divide with a rate l and die with

a rate d. The death rate captures both the natural death rate of

cancer cells and the treatment-induced death rate. In the absence

of treatment, l.d, and the cell population grows exponentially.

Treatment increases the parameter d. If treatment is efficient, then

l,d, such that the tumor cell population declines. The cells enter

a quiescent state with a rate a, and quiescent cells re-enter the cell

cycle with a rate b. Note that quiescent cells do not divide or die

and are not susceptible to any drug activity. We first consider the

average numbers of proliferating and quiescent cells, x(t) and y(t),

as a function of time. This can be described by the following pair

of ordinary differential equations:

_xx~(l{d{a)xzby,

_yy~ax{by:

Note, that this model does not explicitly take into account

differentiated CML cells. These are not thought to contribute

significantly to malignant growth and are simply proportional to

the number of primitive CML cells.

Assume the existence of a number of primitive CML cells,

a fraction of which is quiescent. They are treated with the drug

imatinib. In this first model, we assume that all CML cells are

susceptible to the drug and that no drug resistance is generated by

mutation. In this scenario, the death rate of the CML cells is

greater than their division rate (d.l), such that the population of

cells declines. The model suggests various behaviors upon

initiation of treatment. In one parameter region, therapy results

in two distinct phases of exponential decline (Figure 1), as observed

in experimental data [29,30]. First, the population of cells declines

exponentially with a relatively fast rate, l-, as a result of the death

of proliferating cells, x. Then, a slower phase of exponential

decline at a rate l+ is observed because the quiescent cells become

dominant and are only killed when they wake up and re-enter

a cycling state. The values l6 are given by

l+~
1

2
d{lzazb+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d{lzazbð Þ2{4b(d{l)

q� �
: For small

values of a the expressions for the decay rates simplify and we have

l+ = -(d-l) and l- = 2b , that is, the first wave of decline happens at

the net decay rate of cycling cells and the second wave happens at

the rate of cell awakening.

In this model, treatment will eventually drive the tumor to

extinction, but the time it takes to achieve this goal is influenced by

the kinetics of the second, slower phase of decline, and thus by the

rate at which cells enter the quiescent state, and the rate at which

cells exit the quiescent state. The higher the rate at which cells

enter quiescence, and the slower the rate at which cells exit

quiescence, the longer it takes to reduce the CML population

towards extinction. Also, the lower the overall death rate of cells,

the longer it takes to reduce the tumor towards extinction. In the

model, the time of the switch between the two phases of decline

(Figure 1) is given proportional to
1

lz{l{j j , and the time of

extinction is proportional to
1

lzj j (see supplementary information,

Text S1 Sections 1.2 and 1.3 for the exact expressions).

Figure 1. Biphasic decline of the CML cell population as a function of
time, for parameters l = 1, d = 1.5, a = 0.01, b = 0.2, I0 = 108 and
J0 = 102. The solid line represents log10(x(t)+y(t)), and the dashed lines
are log10(g+exp{l+t}) and log10(g-exp{l-t}) (See Text S1, Section 1.1 and
1.2 for details). The time of treatment in this case is Ttreat = 72.1 and the
switching time is Tswitch = 5.1.
doi:10.1371/journal.pone.0000990.g001
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Note, however, that these dynamics are not universal in the

model. This type of biphasic decline occurs if the death rate of cells

is larger than the sum of the division and quiescence rates

(d.l+a+b). For smaller death rates, when this condition is not

fulfilled, two further patterns of decline are observed. Either the

population of cells declines in a single exponential phase during

treatment, or a first and slower phase of cell decline is followed by

a second and faster phase of cell decline (a reverse biphasic

decline). Exact mathematical conditions for these parameter

regions are given in Text S1, Section 1.1. This behavior is

observed if there is more quiescence in the population of tumor

cells. In this case, the first phase need not be the fastest anymore,

because it can be dictated by the kinetics of cell activation rather

than cell death. Once a sufficient number of cells has been

activated, cell death is the dominant factor and the rate of cell

decline speeds up.

In order to show that our equations can accurately describe

clinical data, we fitted the model to two data sets that document

a bi-phasic decline of CML cells during treatment (Figure 2).

Details of the data fitting procedures are given in Text S1, Section

1.4. The first data set is taken from Michor et al [30] and contains

median BCR-ABL transcript levels from a selected cohort (n = 68)

that excludes cases with transiently increasing BCR-ABL tran-

script levels (Figure 2a). The second data set is taken from Roeder

et al [29] and contains median BCR-ABL transcript levels from an

unselected cohort (n = 69) of CML patients (Figure 2b). In addition

to the median values, Roeder et al presented individual responses

to imatinib therapy. Figure 3 re-plots the clinical data from two

patients that do not show a bi-phasic decline. Based on our model,

it can be hypothesized that in these patients the number of CML

cells declines in a single exponential phase during treatment

(Figure 3a), or according to the reverse biphasic decline pattern

(Figure 3b). However, analysis of additional data for longer periods

of time will be necessary to test this hypothesis.

We can also investigate the dynamics of CML decline during

treatment in stochastic terms rather than considering the average

behavior of the population of CML cells. That is, assuming that we

start with I0 cycling cells and J0 quiescent cells, we examine the

probability that the population of CML cells is extinct. This

probability increases monotonically with time and tends toward

one as time goes to infinity. We can calculate the time when the

probability of CML extinction approaches one. As expected,

a higher rate at which cells enter quiescence and a lower rate at

which cells exit quiescence increases the time until the probability

of tumor extinction converges to one.

In summary, whether or not CML can be cured by imatinib

therapy in the absence of acquired resistance depends on the time

it takes for the cancer cells to be driven extinct by the treatment,

and this in turn depends on the rate constants. Eventual CML

extinction is the only theoretically possible outcome in the

presence of therapy, but it may be achieved after a period of

time that is longer than the life-span of the patient. Variations in

parameters that determine the kinetics of cellular quiescence can

determine whether relapse is observed in patients that stop

imatinib treatment after a certain period of time [33]. Note that

our notion of treatment induced ‘‘cancer extinction’’ is a mathe-

matical one, that is, in the model we analyze here, the cancer cell

population goes extinct, which corresponds to a cure. In patients,

however, other complicating factors not included in this model

may render tumor extinction a difficult goal to achieve by

treatment. Therefore, our mathematical notion of ‘‘tumor

extinction’’ should be translated into ‘‘clinical remission’’ in

a medical context.

Quiescence and the generation of drug resistant

mutants
In the next, more complete model, CML cells can mutate to give

rise to acquired drug resistance. In particular, we assume that

during cell division, a resistant mutant is generated with

a probability u. We further assume that CML cells grow

exponentially to a defined size N, after which the disease is

Figure 2. The relative amount of CML cells as a fuction of time, in patients treated with Imatinib. The circles represent experimental data replotted
from (a) Michor et al [30] and (b) from Roeder et al [29]; they show the median values of BCR-ABL transcripts (relative to BCR transcripts in (a) and ABL
transcripts in (b)). The vertical bars are the quartiles. The solid lines represent the fitted theoretical curves, formula (7) of Text S1, obtained by a mean-
square procedure. The estimated parameter values are: (a) d-l = 0.0502 days21, b = 0.0065 days21, a = 1025 days21, J0 = 0.47; (b) d-l = 0.0278 days21,
b = 0.0067 days21, a = 0.0004 days21, J0 = 0.50. Here J0 denotes the initial percentage of quiescent CML cells.
doi:10.1371/journal.pone.0000990.g002
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detected and imatinib therapy is started. We calculate the

probability that the cancer is driven extinct by therapy, i.e. the

probability that no resistant mutants spread before the CML cells

have gone extinct. We examine how this probability depends on

the parameters that determine cellular growth, mutations,

quiescence and death. When talking about tumor extinction in

the model, we always imply extinction brought about by drug

therapy. As noted before, this should be thought of as ‘‘clinical

remission’’ in medical rather than mathematical terms.

A previous model studied the probability of treatment failure as

a result of drug resistance, but did not take into account cellular

quiescence [41]. There, the result was obtained that the treatment

phase is largely irrelevant for the generation of resistance. That is,

if treatment does fail because of drug resistant mutants, these

mutants were generated in the growth phase before the start of

therapy. Quiescence can significantly slow down the rate with

which the tumor cell population declines during treatment, thus

prolonging this phase. The argument has been made that the

tumor might acquire resistance during this phase and that this

could lead to a relapse of the tumor after a certain time, despite

continued therapy. We have performed a similar analysis with the

current model, and found that even in the presence of quiescence,

the treatment phase is not relevant for the generation of drug

resistant mutants, no matter how long treatment takes. Thus, if at

the start of therapy no resistant mutants exist, treatment is likely to

result in the extinction of the tumor, given enough time (see Text

S1 Section 2.2 for calculations).

With this in mind, we calculate the probability of treatment

success depending on the rate at which cells enter quiescence, a,

and the rate at which cells exit the quiescent state, b. Several

scenarios are considered. First we study resistance against a single

drug (i.e. imatinib in CML treatment). We then also take into

account resistance against 2 or more drugs used in combination.

This is relevant because in addition to imatinib, further drugs are

being developed that could be used in combination with imatinib

to treat CML [23,42]. In the main body of the paper we only

present intuitive arguments. The rigorous calculations are given in

Text S1 Section 2. Throughout the next few paragraphs we make

the simplifying assumption that the cell death rate in the pre-

treatment phase is zero. Also, the theoretical explanations will

concentrate on one of the quiescence parameters, a, which is the

rate of entering the state of quiescence. The rate of cell awakening,

b, can be treated similarly (see e.g. Text S1, Section 3.4). Figure 4

illustrates the a- and b- dependence of the probability of no

resistance. It was created by numerical solutions of ordinary

differential equations for the characteristics, see the theory of Text

S1, Section 2.3. The calculations give rise to the following findings.

Probability of one-drug treatment failure (due to

resistance) is independent of quiescence The probability

to observe treatment failure as a result of resistance in the context of

a single drug is not affected by quiescence parameters (Figure 4a). To

put this in quantitative terms, the probability to have at least one

resistant mutant at size N is independent of a and b.

This is demonstrated by the following argument (see also Text

S1, Sections 3.2 and 3.3) . Let us assume for simplicity that there is

no cell death in the colony (all the arguments can be extended to

nonzero death rates). In the model, mutants are generated during

cell division. The probability of resistance is the same as the

probability to generate mutants, which is defined by the number of

cell divisions (and the constant mutation rate). It is easy to see that

the total number of cell divisions until the tumor reaches size N

does not depend on the quiescence parameters a and b. For

instance, if there is no cell death, then the number of cell divisions

to expand from one cell to N cells is exactly N-1, no matter what the

quiescence rates are, see Figure 5. It is of course the case that the

higher the rate at which cells enter quiescence, and the lower the rate

at which cells exit quiescence, the longer it takes the tumor to grow to

size N. However, the actual number of cell divisions to reach size N is

unchanged by quiescence. Therefore, the probability to produce

resistant mutants is independent of quiescence rates.

As we will see in the following paragraphs, the situation is

different when considering resistance against two or more drugs.

For treatment with multiple drugs, the probability of treatment

failure as a result of resistance depends on the quiescence

parameters (Figure 4b–d). The higher the rate of entry into the

quiescent state (larger a) and the lower the rate of exit from the

Figure 3. Data that document the decline of CML cells during imatinib treatment in two patients, taken from Roeder et al [29].
doi:10.1371/journal.pone.0000990.g003
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quiescent state (lower b), the higher the probability of treatment

failure. In order to explain this, we will consider generating

resistance to two drugs; higher numbers of drugs can be treated

similarly. We build our arguments as follows.

The number of cycling 1-hit mutants is independent of the

quiescence parameters Cycling mutants are produced by

cycling wild-type cells and they grow according to the same law as

the cells producing them. When a increases (or b decreases), the

mutant clones grow more slowly because of quiescence, but at the

same time they have more time to grow, see Figure 6. In other

words, the changes in the mutant growth are completely

compensated by the change in the time of growth. Therefore,

we conclude that the number of cycling 1-hit mutants in a colony

of a given size is also independent of quiescence.

The more quiescence there is in the colony, the larger is

the total number of quiescent wild-type cells This result is

actually a consequence of a more general statement, that for each

cell type (that is, cells resistant to 0, 1, 2 etc drugs), the number of

quiescent cells divided by the number of cycling cells is given by a/

(l2a) (see Text S1, Section 3.2). The particular fact that we will

need is that, up to a small correction, the number of quiescent

wild-type cells in a colony of size N is given by aN/l, whereas the

number of cycling wild-type cells is given by (1-a/l)N (here we

assume that the mutation rate is small compared to 1, which is

a safe bet).

The probability of two-drug treatment failure (due to

resistance) increases with the quiescence rate Our

calculations show that the probability of treatment failure,

caused by resistant mutants, rises with the level of quiescence in

the context of therapy with two separate drugs (Figure 4b–d). This

is a direct consequence of the previous two sections. Let us

consider a colony consisting of wild-type and 1-hit mutant cells.

Let us ‘‘watch’’ the colony grow by tracking each of N-1 cell

divisions, see Figure 7. Whenever a cell division happens, it may be

a division of a cycling wild-type cell, or a division of a cycling 1-hit

mutant cell. It is only the latter process which in principle may lead

to the generation of two-drug resistance. The probability to create

a double mutant at each division is proportional to the probability

that a 1-hit mutant (and not a wild-type) cell divides. The number

of cycling wild-type cells in a colony of a given size is a decreasing

function of a , whereas the number of cycling 1-hit mutants is

independent of a (see the two previous paragraphs). Therefore, as

Figure 4. The probability of having no fully-resistant mutants at size N for different quiescence parameters. The numerical simulations are
performed according to the theory described in Text S1, Section 2.3. Each figure (a)–(d) shows the probability of no resistant mutants as a function of
b (the rate of cell awakening), for 10 different values of a (the rate at which cells become quiescent), a = 0.1, 0.2, … and 1.0. (a) Treatment with m = 1
drugs; all the curves corresponding to different values of a are the same. The parameters are N0 = 107 and u = 1027. (b) Treatment with m = 2 drugs,
N = 1011, u = 1027. (c) m = 3 drugs, N = 1013, u = 1026. (d) m = 4 drugs, N = 1013, u = 1025. In all plots, we took M0 = 103, l = 1, d = 0. The reason we used
different values of N and u for different values of m is because we chose the parameter regime corresponding to intermediate values of the
probability of treatment success. When this probability is nearly 100% or nearly 0, then the dependence on a and b is less apparent and less
meaningful.
doi:10.1371/journal.pone.0000990.g004
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a increases, the relative abundance of cycling 1-hit mutants

increases. In other words, among all cycling cells, the percentage

of mutants increases with a, and so does the probability to create

2-hit mutants. Thus, the probability of resistance generation

against 2 drugs increases with quiescence parameters.

Generalizations These results can be generalized. First of all,

we can show by similar methods that the probability of mutant

generation increases with quiescence for 3- and higher-degree

mutants (Figure 4). In fact, the dependence becomes stronger for

larger numbers of drugs. However, we need to keep in mind that

the actual probability of resistance becomes lower the more drugs

we use, because it takes more mutation events to generate mutants

simultaneously resistant to several drugs. Finally, all the results

derived here apply for systems with a nonzero death rate, and

a nonzero rate of cell ‘‘awakening’’, b, see Text S1, Section 3.4.

Cell death and mutant generation–a comparison
In a previous paper, we examined the effect of cell death on the

probability of treatment failure as a result of acquired drug

resistance [41]. We found a very similar pattern. The probability

of treatment failure was independent of the death rate of tumor

cells in the context of therapy with a single drug, which was also

found in earlier studies by [43]. However, when treatment was

assumed to occur with two or more drugs, the probability of

treatment success depended on the death rate of tumor cells. The

higher the death rate of tumor cells relative to their division rate,

the higher the probability that mutant cells that are resistant

against all drugs induce failure of therapy. While this result is

identical to that observed for cellular quiescence, the reason for it

is different. It is explained in the remaining part of this section.

The probability of pre-existence of one-hit resistant

mutants is independent of the death rate The probability

of creating resistance before the start of treatment is defined by the

probability to have at least one 1-hit mutant at a given colony size,

which is given by (probability to create a mutant) x (probability for a mutant

clone to survive).The probability to create a mutant clone is

proportional to the number of cell divisions. In turn, the

number of cell divisions is a changing function of the death rate.

With a zero death rate it takes exactly N-1 cell divisions to go from

1 cell to N cells. As the death rate increases, it can take a lot more

cell divisions to expand, because cell divisions are (partially)

countered by cell deaths. Therefore, there are more cell divisions

for a larger death rate, and as a consequence, more 1-hit mutants

are produced. However, the probability for a mutant to survive is

a decreasing function of the death rate, which exactly compensates

the gain in the number of clones produced. Therefore, the

Figure 6. The expected number of one-hit mutants does not depend
on the presence of quiescence. (a) represents a colony with no
quiescence, and there is quiescence in (b). The white triangles depict
growing colonies of cells (cells with quiescence grow slower). The end
size is the same in both cases. Dark triangles represent growing mutant
clones inside the colonies. The total number of mutant colonies is the
same in both cases (the same number of cell divisions). The mutant
colonies in (b) have a longer time to grow, but at the same time they
grow slower. Therefore the resulting frequency of mutants is the same
in (a) and (b).
doi:10.1371/journal.pone.0000990.g006

Figure 7. A schematic illustrating the argument stating that the
probability to produce 2-hit mutants increases with quiescence. Each
rectangle represents a colony of cells. There are three moments of time
shown, first we have N = 24, then N = 48 and finally N = 72. Circles
represent wild-type cells, and stars–one-hit mutants. Gray shading
denotes the state of quiescence for wild-type and mutant cells. In (a) we
assume no quiescence (a= 0), whereas in (b) there is a probability to
become quiescent (with a = 1/3). The number of cycling 1-hit mutants
(empty stars) is the same in (a) and (b ) for the same values of N. The
number of quiescent wild-type cells is given by the fraction a of all wild-
type cells (e.g. 1/3 in (b)). At each moment of time, one of the cycling
cells is picked for reproduction. We can see that the probability to pick
a 1-hit mutant is always higher in (b) than in (a), because the fraction of
cycling one-hit mutants increases as the tumor grows. Therefore, the
probability to create a 2-hit mutant is higher in (b).
doi:10.1371/journal.pone.0000990.g007

Figure 5. A schematic demonstrating the number of cell divisions
that is needed for a colony of cells to expand from 1 cell to N cells (in
the figure, N = 6). Empty circles represent cycling cells, and gray circles
represent quiescent cells. Columns depict states of the colony in
consecutive moments of time. The changes are marked by arrows. Two
arrows stemming from one cell represent a cell division. A single arrow
represents either a cell becoming quiescent or a quiescent cell waking
up. (a) A colony without quiescence. (b) A colony with quiescence. In
both cases we can see that it takes exactly N-1 = 5 cell divisions to
expand to size N; however the process in (b) contains more ‘‘events’’.
doi:10.1371/journal.pone.0000990.g005
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probability to create resistance against 1 drug is independent of the

death rate.

It is interesting to note that the number of one-hit mutants is

a growing function of both the death rate and the senescence rate,

but for different reasons. If we increase the death rate, the total

number of cell divisions to reach size N will increase, and so will

the number of mutants (but the average size of a clone size will

remain the same). If we increase a, the total number of divisions

will not change but the average clone size will grow, again leading

to an increase in the total mutant number.

The probability of pre-existence of two-hit resistant

mutants increases with the death rate While the

probability to have 1-hit mutants is independent of the death

rate, the average number of 1-hit mutants that are produced and

survive by the time the tumor size reaches size N is an increasing

function of the death rate. The reason is as follows. The mutants

are produced more often at higher death rates (because of the

increased total number of cell divisions). Thus, more mutants are

seeded to undergo clonal expansion. However, the size of the

mutant clones is independent of the death rate (in the same

manner as it was independent of the quiescence parameters, see

Fig. 4). Therefore, the total amount of 1-hit mutants present at size

N is an increasing function of the death rate. As a direct

consequence of this, the probability to have 2-hit mutants at size N

is also an increasing function of the death rate. This explains why

the likelihood of 2-drug resistance is a growing function of cell

death. This result can be extended to a larger number of drugs.

DISCUSSION
In this paper, we have examined the effect of cellular quiescence in

CML cells on the kinetics of the treatment response, and on the

chances that treatment fails because of the generation of drug

resistant mutants. This was done in the context of targeted therapy

using small molecule inhibitors. In accordance with experimental

data [29,30], we found a parameter region in which initiation of

treatment results first in a fast rate of CML cell decline, followed

by a second phase that is characterized by a slower rate of CML

cell decline. This is simply the consequence of the quiescence

dynamics. Note however, that this behavior is not expected to be

universal, since the model predicts alternative patterns of cell

decline in other parameter regions. The decline could occur in

a single phase with a single exponential rate of decline, or the first

phase of decline can be slower, followed by a faster phase (a

reverse biphasic decline). Whether these patterns can be observed

in experimental data requires the accumulation of more data sets

that document CML dynamics during drug therapy. In the

context of the biphasic decline that is also observed in data,

parameter combinations determine when the switch occurs to the

second and slower phase of treatment, and the expected time it

takes to drive the tumor cells extinct. If it takes too long to drive

the tumor cells extinct, the practical implication is that drug

treatment fails to eliminate the tumor. Variations in quiescence

parameters could determine whether CML relapses after pro-

longed treatment with imatinib, as observed in many cases [29–

32], or whether relapse does not occur, as observed in a small

subset of patients [33].

These notions add to previous theoretical work that examines

the decline of CML cells during therapy [29,30]. The paper by

Michor et al [29,30] explains the bi-phasic decline of CML cells by

a hypothesized differential susceptibility of CML cell subpopula-

tions to the drug imatinib. It is argued that differentiated cells are

readily attacked by the drug, while cancer stem cells are not

affected by treatment. The study by Roeder et al [29,30] also uses

mathematical arguments to address the bi-phasic decline of CML

cells during treatment. Their models included elements of

competition of cells in stem cell niches, and also invoked the

concept of cellular quiescence to account for the bi-phasic pattern

of cell decline. While the study by Roeder et al [29,30] also

includes the concept of cellular quiescence, our model is different

in nature, examines different questions, and is therefore com-

plentary. For example, our explanation of the two phases of CML

decline (one mainly driven by the eradication of cycling cells, and

the second one the awakening and death of quiescent cells) is very

different from the explanation proposed by Roeder et al [29,30].

Also, our paper examines the role of quiescence in drug resistance

generation in cancer, which is not discussed in the papers by

Roeder et al [29,30].

Overall, the mathematical models that take into account cellular

quiescence in tumor growth are based on earlier mathematical work.

In a series of papers [44–46], Gyllenberg and Webb examined the

role of cellular quiescence on the pattern of tumor growth. Using

ordinary differential equation models, they suggested that basic

Gompertzian tumor growth can be explained by a non-linear

phenomenon that arises from an increased probability for cells to

enter quiescence at larger tumor sizes [45]. These dynamics of tumor

growth have also been studied in the context of more complex age

and size structured population models [44,46] that revealed more

biologically interesting properties.

The second half of our paper investigates the effect of cellular

quiescence on the evolutionary dynamics of mutants that are

resistant against targeted drug therapies. In this respect, we found

that in the context of treatment with a single drug, quiescence

parameters do not influence the probability that drug resistant

mutants contribute to treatment failure. On the other hand, if the

cancer is treated with a combination of two or more drugs with

different targets, then increased quiescence promotes treatment

failure as a result of drug resistant mutants. However, while

cellular quiescence increases the time until the cancer cells are

reduced to low numbers or driven extinct, we find that this

prolonged treatment phase is irrelevant for the generation of drug

resistant mutants. Instead, if treatment fails because of the

presence of drug resistant mutants, then they will have evolved

during the tumor growth phase before treatment was initiated.

Thus, strategies aimed at shortening the treatment phase, for

example by activating quiescent cells, will not reduce the chances

that treatment fails as a result of drug resistance. Similarly, if the

tumor responds well to a given treatment regime, prolonged

therapy to prevent relapse will not increase the chances of

treatment failure as a result of drug resistance.

Our theoretical framework should be further validated in the

context of clinical studies. We have already shown that our model

can describe the observed bi-phasic decline of CML cells upon

therapy. The data plotted in Figure 3 hint that apart from the bi-

phasic decline, other patterns of CML dynamics during treatment

may be observed in clinical data, as suggested by our model. This

requires further investigation. Finally, it will be important to address

our result that quiescence contributes to the evolution of drug

resistance if patients are treated with two or more drugs in

combination. Apart from imatinib other targeted drugs are

becoming available for the treatment of CML [23,24,35]. According

to our model, variation in the outcome of treatment could be

explained by differences in the number of quiescent cells that have

been generated during tumor growth. This could be addressed by

examining the degree of cellular quiescence that is found in a tumor

before the start of treatment. Perhaps an experimentally simpler

strategy would be to perform in vitro experiments, in which a tumor

cell population is allowed to grow towards a certain size, after which

it is treated with a combination of two or more drugs. This could
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determine the fraction of experiments in which the tumor evolves

resistance, and correlate this with the amount of cellular quiescence

found in the cell culture.

MATERIALS AND METHODS
Here, we describe our general modeling approaches. Further

mathematical details and calculations are found in the Supple-

mentary Information ( Text S1).

Stochastic modeling
In order to study the dynamics of a cell population with quiescence,

we use a stochastic modeling approach. Namely, we formulate

a continuous time, discrete state-space birth-death process (with or

without mutations), where the rates of cell divisions and cell death

are l and d respectively, and where cells enter the state of quiescence

with a rate a and wake up from quiescence with a rate b. The

resulting linear 2-dimensional Markov process corresponds to the

exponential distribution of the timing of various elementary events

(such as cell divisions, death etc).

Combinatorial mutation network
We model the generation of resistance as mutation events. In

order to acquire resistance to one drug, a cell must gain one

mutational hit. Cells resistant to two drugs are double-hit mutants,

etc. We assume that there is no cross-resistance in the system, such

that each mutation event gives rise to resistance to one drug, and

not to the other drugs. All the (partially and fully) resistant types

can be placed on a combinatorial mutation network. The structure

of the couplings between the equations is read off from such

a network.

Pre-treatment and treatment regimes
We assume that before treatment starts, all cells satisfy l.d, that is,

the division rate is larger than their death rate. For our

calculations, we also assume that all the mutants are neutral

before the beginning of therapy. This assumption is not a necessity

and the general model allows for positively- and negatively-

selected mutants. We model the treatment phase by assuming that

susceptible and partially-resistant mutants are killed by the drugs,

such that their death rate is larger than their division rate. The

opposite is true for the fully-resistant phenotype. By using standard

methods, we write down the Kolmogorov forward equation for the

probabilities. The coefficients in this equations (the rate constants

of all the processes) are different depending on whether we

consider the pre-treatment phase or the treatment phase. From

this point, we proceed in two different ways, described in the

following two sections.

Equations for the averages
We formulate ordinary differential equations (ODEs) for the first

moments (the expected numbers of cycling and quiescent cells) and

study their behavior. This is done both in the absence of mutations

(to study cancer development and treatment without resistance)

and in the presence of mutations (to study cancer development and

treatment in the face of emerging resistant mutants). The ODEs

are linear with constant coefficients, and exact analytical solutions

are possible. These solutions are not always transparent, especially

in the case of multiple drug treatments. To understand the

behavior, we find approximations for various modes of growth and

decay, and study relevant limiting cases.

Probability generating function
We also derive a partial differential equation (PDE) for the

probability generating function. Probability generating function is

used to study the probability of colony extinction, probability of

treatment success, and the probability of having resistant mutants

at a given colony size. All these quantities are obtained by solving

the PDE by using the method of characteristics, because the PDE

is of a transport type. The solutions are calculated numerically, for

a subset of parameters values. Their behavior is also studied

analytically by looking at the ODEs for the characteristics, and

analyzing various limits of the exact solution, as well as their fixed

points.

SUPPORTING INFORMATION

Text S1

Found at: doi:10.1371/journal.pone.0000990.s001 (0.15 MB

PDF)
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