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High-resolution Slide-seqV2 spatial transcriptomics
enables discovery of disease-specific
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Robert R. Stickels,8,14,15 Breanna McBean,16 Rowan M. Heneghan,1 Astrid Weins,6,13 Evan Z. Macosko,10,12

Fei Chen,7,17 and Anna Greka1,6,19,*

SUMMARY

High-resolution spatial transcriptomics enables mapping of RNA expression
directly from intact tissue sections; however, its utility for the elucidation of dis-
ease processes and therapeutically actionable pathways remains unexplored.We
applied Slide-seqV2 to mouse and human kidneys, in healthy and distinct disease
paradigms. First, we established the feasibility of Slide-seqV2 in tissue from nine
distinct human kidneys, which revealed a cell neighborhood centered around a
population of LYVE1+macrophages. Second, in amousemodel of diabetic kidney
disease, we detected changes in the cellular organization of the spatially
restricted kidney filter and blood-flow-regulating apparatus. Third, in a mouse
model of a toxic proteinopathy, we identified previously unknown, disease-spe-
cific cell neighborhoods centered around macrophages. In a spatially restricted
subpopulation of epithelial cells, we discovered perturbations in 77 genes associ-
ated with the unfolded protein response. Our studies illustrate and experimen-
tally validate the utility of Slide-seqV2 for the discovery of disease-specific cell
neighborhoods.

INTRODUCTION

Known for its structural complexity, the kidney performs vital functions that rely on spatially distinct cellular

compartments, yet an understanding of spatially resolved, cell-type-specific responses to perturbations us-

ing high-resolution technologies (Ståhl et al., 2016; Rodriques et al., 2019; Stickels et al., 2021) is lacking.

The nephron, the functional unit of the kidney, is composed of epithelial, mesenchymal, and endothelial

cells, as well as a network of immune cells that contribute to organ defense and repair from injury. Anatom-

ically, each kidney has an outer layer, the cortex, containing the glomeruli, through which blood is filtered,

and an inner layer, the medulla, where urine is concentrated. Urine flows within tubules that coalesce in the

renal pelvis, draining into the ureter and on to the bladder (Giebisch, 1972). Given its structural and func-

tional complexity, second only to the brain, there is a significant need to develop spatial transcriptomics

from intact kidney tissue both as a reference and to uncover disease-specific processes.

Several studies using single-cell (sc-) or single-nucleus (sn-) RNA sequencing of human andmouse kidney in

health and disease have been performed (Schroeder et al., 2020; Subramanian et al., 2021; Wu et al., 2017;

Park et al., 2018; Young et al., 2018; Lake et al., 2019; Ransick et al., 2019; Stewart et al., 2019; Menon et al.,

2020; Chen et al, 2021b; Chen et al., 2021a, 2021c; Kaur and Advani, 2021; Meng et al., 2021; Muto et al.,

2021; Sidhom et al., 2021; Clark et al., 2022) and have used spatial validation methods including immuno-

fluorescence microscopy, fluorescence in situ hybridization, and targeted panels of a few dozen RNA

probes or antibodies. However, these spatial methods are hampered by relatively low throughput (Choi

et al., 2018; Goltsev et al., 2018; Kishi et al., 2019; Xia et al., 2019a, 2019b; Schürch et al., 2020; Alon

et al., 2021). To date, efforts to spatially capture transcriptome-wide profiles in kidney cells in situ have

been limited in resolution (Ferreira et al., 2021; Raghubar et al., 2020; Lake et al., 2021). Given that several

cell types in spatially restricted areas are the hypothesized drivers of injury as a result of ischemia and

inflammation (Sharfuddin and Molitoris, 2011; Zhang et al., 2008; Wyatt et al., 2016; Kramann and Menzel,
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2021; Melo Ferreira et al., 2021), diabetic conditions (Subramanian et al., 2021; Hudkins et al., 2010; O’Brien

et al., 2015, 2016; Yu and Bonventre, 2018), and genetic disorders (Piret et al., 2017; Devuyst et al., 2019;

Dvela-Levitt et al., 2019; Olinger et al., 2020; Dvela-Levitt et al., 2021; Gibier et al., 2021; Shamam and

Hashmi, 2021), high-resolution spatial transcriptomics in the kidney could catalyze mechanistic and thera-

peutic insights.

We recently generated a comprehensive cross-species scRNA-seq atlas (Subramanian et al., 2021) that

identified shared broad cell classes and unique cellular states between mouse and human kidney across

three regions (cortex, medulla, and renal pelvis). Among many insights, this work revealed multiple macro-

phage subsets including C1QB + LYVE1+macrophages in human adult kidneys. A unique TREM2+ subset

was expanded with age in kidneys of diabetic and obese mice and humans (Subramanian et al., 2021), mir-

roring obesity-associated macrophages in other tissues (Jaitin et al., 2019). Based on these results, we

hypothesized that these specialized macrophage populations might be localized in disease-related micro-

environments and that we could define these cell neighborhoods using high-resolution spatial

transcriptomics.

To understand the way in which cells act in concert in the kidney, we employed Slide-seqV2, a high-reso-

lution method for unbiased spatial transcriptomics, with a feature (or bead) size of 10 mm most commonly

capturing one to two cells/feature and no more than three cells/feature (Rodriques et al., 2019; Stickels

et al., 2021). Leveraging this near-single-cell spatial resolution and single-cell atlases (Subramanian

et al., 2021), we developed Slide-SeqV2 working protocols and analysis pipelines for human andmouse kid-

ney tissue. Furthermore, we compared tissue from healthy and diseased kidneys, because the side-by-side

analysis allowed us to measure changes in the organization of cellular neighborhoods, thus taking full

advantage of the high spatial resolution.

RESULTS

We first established the applicability of Slide-seqV2 in human kidney, in samples from nine individual do-

nors. We generated libraries from four arrays per sample with two arrays applied to cortex and two arrays

applied to medulla in nephrectomy tissue (Table S1; samples were also used to build the single-cell refer-

ence (Subramanian et al., 2021). Histopathologic analysis performed by a kidney pathologist showed that

seven samples were consistent with normal age-appropriate kidney tissue, one sample had subtle signs of

early diabetic kidney disease (DKD), and one sample displayed clear evidence of injury (ischemia due to

tumor compression; for relevant clinical data, see Table S1). The arrays were positioned at different loca-

tions in each tissue cross-section to cover as much area in each 3 mm array as possible. Following library

preparation, we mapped cell types using our recently developed single-cell reference (Subramanian

et al., 2021) (STAR Methods). Cell-type classifications of Slide-seqV2 features were confirmed based on es-

tablished markers of gene expression (Figure S1). We compared 2 different cell-type assignment methods,

NMFreg (Rodriques et al., 2019) and the label transfer method from Seurat (Hafemeister and Satija, 2019;

Stuart et al., 2019). We found that Seurat was best able to map all cell types in human kidneys with expected

spatial patterns of known cell types in the cortex andmedulla, the twomain anatomical layers of the kidney.

For example, proximal convoluted tubules (PCTs) were enriched in cortex, whereas distal convoluted tu-

bules (DCTs) and collecting ducts (CDs) were more densely packed in the medulla (Figures 1B, S2–S7,

S9A, and S10A). We thus used the Seurat label transfer method for all downstream analyses. As expected,

glomeruli were found in the cortex and contained the appropriate cell types, including podocytes, endo-

thelial cells (ECs), and mesangial cells (MCs) (Figures S2–S7 and S9A). We did not detect any significant

changes in the early DKD sample (consistent with early disease lacking overt structural changes, as also pre-

viously shown (Subramanian et al., 2021). We also found no significant changes in injured cortex (where the

cell mappings showed numerous fibroblasts, in agreement with Periodic acid-Schiff [PAS] staining that

showed extensive fibrosis) (Figures S8 and S9). Therefore, in human kidney, we focused our efforts on study-

ing injured medulla in the sample that showed ischemic injury due to tumor compression.

Given that ischemic injury is associated with inflammatory changes that involve macrophage populations

(Sharfuddin andMolitoris, 2011; Melo Ferreira et al., 2021), we hypothesized that focusing onmacrophages

(Subramanian et al., 2021) might help us identify injury-specific changes. First, we identified macrophage

beads in medulla from age-matched healthy and injured human tissue arrays (Figures S10A, S10B, S10D,

and S10F; validated by quantification of C1QB + cells, a canonical macrophage cell marker (Zimmerman

et al., 2019), in hybridization chain reaction [HCR] of the entire kidney tissue section). Among these
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C1QB + macrophages, we prioritized looking for changes in macrophage subtypes that have been previ-

ously implicated in disease processes in the kidney and other tissues (Subramanian et al., 2021; Turnbull

et al., 2006; Harvey and Gordon, 2012; Lim et al., 2018; Jaitin et al., 2019; Tang et al., 2019b; Xiong et al.,

2019; Deczkowska et al., 2020; Zhu et al., 2020). We thus detected an increase in LYVE1+ macrophages

(large red beads) in medullary injured tissue (Figures 1B, S10C, S10E, and S10F; validated by HCR showing

C1QB + LYVE1+ cells). Taking advantage of the high spatial resolution, we calculated the average interac-

tion frequency in the cellular neighborhood between LYVE1+ macrophages and immediately adjacent cell

types (Figures 1A–1D). In human healthy medulla, LYVE1+ macrophage expansion led to a spatial neigh-

borhood composed of DCT epithelial cells and EC (Figure 1C). In order to determine if these interactions

were specific to LYVE1+ macrophages, the same analysis was performed with all medullary macrophages

Figure 1. Slide-seqV2 spatial transcriptomics in human kidney informs methods to identify and quantify cell-cell

interactions frequency and cell neighborhoods

(A) Schematic demonstrating the Slide-seqV2 method. A 10 mm sagittal section of kidney is placed onto a Slide-seqV2

array. The arrays bind to RNA in the tissue and result in a spatial transcriptome with cDNA containing a barcode from each

bead.

(B) Medulla arrays showing all cell mappings and spatial locations of LYVE1+ macrophages in large red circles. Images of

individual cell populations are plotted in Figures S61 and S62. Scale bars, 500 mm.

(C and D) Uniquely enabled by the spatial resolution, we identified neighboring cell types in the medulla of healthy and

injured human kidney. LYVE1+ macrophages interact with endothelial cells (ECs) and distal convoluted tubular epithelial

cells (DCTs) in healthy human medulla. These interactions are decreased in injured medulla. Dot plot shows the

interaction frequency of (C) LYVE1+macrophages and (D) all macrophages versus every other cell type in the tissue array.

The color of the dots indicates the intensity of the interaction (red, increased; blue, decreased interaction). The size of the

dots indicates the adjusted p value for cell-cell interactions, and significance is shown by a black outline around the dot

(adjusted p value < 0.05). Cell types not represented in the dot plot had no interactions with macrophages of interest.
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that, in addition to DCT and EC, also interacted significantly with principal cells (CD-PC), other immune

cells, and vascular smooth muscle cells (vSMC) (Figure 1D). Overall, LYVE1+ macrophage interactions

with DCT and EC and all macrophage interactions with other immune cells were reduced in human injured

medulla, perhaps consistent with increased fibrosis (Figures 1C, 1D, S8A, S8C, and S8E; Table S1). Most

importantly, this work established the applicability of Slide-seqV2 in human kidney, including new compu-

tational approaches (STAR Methods, section entitled macrophage–cell neighbor analysis and statistics)

that provide the blueprint for future, more detailed studies in human kidney tissue.

Because mouse tissue of the quality required for successful implementation of spatial transcriptomics is

more readily attainable than human tissue, we turned our attention to established mouse models of kidney

disease. We thus generated libraries from BTBR ob/obmice, a genetic model of DKD, where the first signs

of injury localize to the glomeruli (Hudkins et al., 2010; O’Brien et al., 2015, 2016). We chose this well-char-

acterized mouse model with an available single-cell reference (Subramanian et al., 2021) because we

wanted to take advantage of the high spatial resolution of Slide-seqV2 to detect transcriptome-wide

changes in or near glomeruli, spatially defined structures composed of rare cell types (Greka and Mundel,

2012). We were particularly interested in the juxtaglomerular apparatus (JGA), a structurally distinct,

spatially compact structure located adjacent to glomeruli, that is composed of renin (Ren1)-producing

granular cells (GCs) and rare macula densa (MD) cells, which, working in concert, regulate blood flow to

the kidney filter (Bachmann and Oberbäumer, 1998; Yao et al., 2009; Kosovic et al., 2020). In DKD, the

JGA is known to shift its cellular composition (Lin et al., 2018; Tang et al., 2019a), but, to date, the under-

lying cellular changes have not been described with high spatial, near-single-cell resolution.

Seven arrays were captured from 10 mm sagittal sections of kidney from four BTBR w/w controls and four

BTBR ob/ob mice. We used our recently developed scRNA-seq reference (Subramanian et al., 2021) for

cell-type mappings (STAR Methods; Figures S11–S13) and characterized the transcriptional effects of dis-

ease in three ways. First, we captured a significant increase in the measured area of individual glomeruli in

BTBR ob/ob mice compared with controls (Figures 2A–2E and S14A–S14D) (Hudkins et al., 2010; O’Brien

et al., 2016). Second, we examined the composition of the JGA. We identified glomeruli-adjacent beads

positive for Ren1 (Clark et al., 1997) and negative for Slc12a3 (a classic distal nephron marker (Chen

et al., 2021b; Olde Hanhof et al., 2021), and another set positive for Ptger3, Klf6, orNos1 (MDmarker genes

(Chen et al., 2021b; He et al., 2021), and labeled the corresponding cells as GC or MD, respectively. MDs

were rare (�0.6% of unfiltered TAL calls were classified as MD). However, in diabetic BTBR ob/ob tissue, we

detected a significant increase in the percentage of GCs (Figures 2F and S14E) and in the distance between

the center of each glomerulus and GCs (Figures 2G, 2H and S15A). Consistent with overall tissue hypertro-

phy, as observed in BTBR ob/obmice (Hudkins et al., 2010; O’Brien et al., 2015, 2016), we found a significant

increase in the distance between the centers of glomerular and GC structures. In contrast, the distance

measured between the edges of the glomeruli and GC structures did not show a significant increase (Fig-

ure S14G), arguing against GCs migrating away from glomeruli. This spatial expansion of the JGA in dia-

betes, reminiscent of previous work in glomeruli using labor-intensive lineage tracing studies (Tighe, 1977;

Gomez et al., 1990; Martini and Danser, 2017; Tang et al., 2019a), was readily detected by Slide-seqV2.

Taking advantage of the fact that each cell in the spatial array is linked to a transcriptome comprising of

several hundred genes (STAR Methods), we developed a clustering and differential gene expression

(DGE) pipeline. Focusing on podocytes, whose injury is a hallmark of DKD (Hudkins et al., 2010), we

compared the transcriptional profiles for all podocyte beads. Specifically, we examined their clustering

in an unbiased fashion, irrespective of whether the podocyte beads came from a BTBR w/w or diabetic

BTBR ob/ob array; we let their transcriptional profiles dictate whether they were considered ‘‘healthy’’ or

‘‘diseased’’ (Figure S16; Tables S2–S5). Based on transcriptomes alone, podocyte beads from the

‘‘diseased’’ cluster that mapped to diabetic BTBR ob/ob glomeruli were found to express Ctgf, a known

podocyte injury marker gene (Table S3). Furthermore, these results were validated by HCR measuring

co-expression of Ctgf and Nphs2, a podocyte marker gene (Yokoi et al., 2008; Lipson et al., 2012)

(Figures 2I, 2J and S15B). Pathway analysis highlighted mechanisms of high relevance to podocyte patho-

biology such as lipid-mediated signaling, regulation of stress fiber assembly, and apoptosis (Table S6,

Figure S14F) (Chuang and He, 2009; May et al., 2014; Garg, 2018; Gil et al., 2021). In sum, we captured dis-

ease-specific changes in spatially restricted neighborhoods of podocytes and granular cells in a mouse

model of DKD. More generally, implementing Slide-seqV2 in mouse tissue provided a valuable foundation

for our subsequent studies of a significantly understudied toxic proteinopathy.
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Seeking to define actionable disease mechanisms, we turned to homozygous UMOD-C125R knockin (KI)

mice (Piret et al., 2017). These mice are a model of a poorly understood, monogenic disorder called

UMOD kidney disease (UKD) (Devuyst et al., 2019), caused by the toxic accumulation of mutant UMOD pro-

tein in the kidney (Piret et al., 2017). We generated libraries in five arrays from kidneys of three WT control

Figure 2. Near-single-cell spatial resolution in diabetic mouse kidney reveals an expansion of granular cells and a

disrupted blood flow regulating apparatus

(A) Arrays displaying cell types in BTBR w/w (left) and BTBR ob/ob diabetic mice (right). Images of individual cell

populations are plotted in Figure S64. Scale bars, 500 mm.

(B–F) Plots from Slide-seq arrays showing (B) average area of glomeruli (p value <0.0001), (C) percentage of beads

classified as podocytes, (D) percentage of beads classified as glomerular endothelial cells, (E) percentage of beads

classified as glomerular mesangial cells, (F) percentage of beads classified as granular cells (p value 0.0009) in BTBR w/w

and BTBR ob/ob mice.

(G) Plot from Slide-seq arrays showing the average distance between the center of glomerulus and granular cell cluster in

BTBR w/w and BTBR ob/ob mice (p value 0.0018). Data were obtained from cross-sections of four mice per genotype.

(H) HCR validation images, showing Nphs2+ podocytes, Ren1+ granular cells, Slc12a1+ TAL, and all cells in DAPI. Scale

bar, 50 mm. Disorganized Ren1+ cells are denoted with white arrows.

(I and J) HCR quantification of (p value <0.0001) and (J) HCR images of Ctgf + Nphs2+ injured podocytes (arrows). Scale

bar, 50 mm. Data obtained from entire cross sections of a kidney from four mice per genotype. All error bars represent

standard deviation of the mean.
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and five homozygous UMOD-KI six-month-old mice (Piret et al., 2017). At this age, homozygous UMOD-KI

mice have detectable kidney disease associated with inflammation and fibrosis (Piret et al., 2017). Cell types

weremapped to arrays (Subramanian et al., 2021), and a border was drawn to separate cortex frommedulla

based on the presence of PCTs in the cortex and the concentration of TAL and CDs in the medulla

(Figures S17–S19). A significant increase in fibroblast and macrophage beads was observed in the medulla

of homozygous UMOD-KI mice compared with controls (validated by HCR for Ctgf+ and Itga8+ fibroblasts

(Muhl et al., 2020) and C1qb + macrophages (Zimmerman et al., 2019); Figures 3A–3C and S20). Significant

Figure 3. Slide-seqV2 reveals disease-specific, medulla-restricted cell neighborhoods and injured epithelial cells

in a mouse model of a toxic proteinopathy due to Umod mutations

(A–C) Arrays displaying all cell types in WT (left) and UMOD-KI mice (right). Images of individual cell populations are

plotted in Figure S65. Arrays showing delineation of cortex vs medulla in WT and UMOD-KI arrays where red beads show

the spatial location and quantity of (B) fibroblasts and (C) macrophages.

(D) Based on unbiased DGE, array plots show spatial mapping of TAL (non-disease in purple; disease in red), fibroblast

(non-disease in pink; disease in blue), and macrophage beads (non-disease in green; disease in orange) in WT and

UMOD-KI tissue. Beads classified by DGE as ‘‘disease’’ map primarily onto the medulla of UMOD-KI arrays, compared

with beads classified as ‘‘nondisease’’ that map primarily onto the medulla of WT arrays (Fisher exact test p < 10^-100).

Scale bars, 500 mm.

(E) HCR images of Umod + Ctgf + double-positive injured TALs. Scale bar, 50 mm.
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Figure 4. Rare Trem2+ macrophage expansion associated with disease and localized specifically to kidney

medulla

(A) Schematic showing location, cortex versus medulla, of Trem2+ macrophages and immediately adjacent neighboring

cell types.

(B and C) Uniquely enabled by high spatial resolution, we quantified macrophage-neighbor cell interactions. Dot plots

show average cell-cell interaction frequencies (relative proportions) for all macrophages in (B) cortex and (C) medulla.

Significant interactions are displayed with a black border around colored circles. Cell types not represented in the dot

plot had no interactions with macrophages of interest.

(D) Arrays showing all cell mappings, cortex and medulla delineation, and spatial localization of Trem2+ macrophages in

large red circles. Scale bars, 500 mm.

(E) Plots from Slide-seqV2 arrays showing percentage of beads classified as Trem2+ macrophages (p value 0.003). Each

point represents an array from 3 WT to 5 UMOD-KI mice. Error bars represent SD of the mean.
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Ctgf expression was detected by HCR in medullary Umod + TAL epithelial cells (Miao et al., 2021) of ho-

mozygous UMOD-KI mice, suggesting cellular injury in Umod + TALs (Figures 3E and S20F). Unbiased clus-

tering and DGE analysis of cortex andmedulla identified disease-specific clusters for TAL, fibroblasts, mac-

rophages, vSMCs, and CD-PCs in themedulla, as well as fibroblast, glomerular EC, and CD-PC in the cortex

(Tables S7–S14; Figures S21 and S22).

Taking advantage of the spatial resolution, we wondered whether we could determine the location of med-

ullary disease-associated cell types compared with healthy cells based only on unbiased clustering, without

any prior knowledge of their localization in the tissue.We thus classified individual beads into either healthy

or disease states based on gene expression profile alone and characterized their spatial distribution across

all of the arrays fromWT and UMOD-KI mice. This analysis showed that healthy (‘‘non-disease’’) cells largely

mapped onto the medulla of WT arrays (99.8%), whereas disease-associated cell types were predominantly

localized in the medulla of homozygous UMOD-KI arrays (Figure 3D; 63.1%, Fisher exact test p < 10^-100).

This analysis, uniquely afforded by high-resolution spatial transcriptomics, suggested that fibroblasts

(blue), TAL epithelial cells (red), and macrophages (orange) in the medulla of UMOD-KI mice may form dis-

ease-specific cell neighborhoods.

To probe the question of cell neighborhoods further, we employed the spatial neighbor interaction fre-

quency method, as we previously established in human tissue (Figures 1C and 1D), to determine the iden-

tity of cell types immediately adjacent to macrophages (Figures 4A–4C; STARMethods). We thus identified

medulla-specific cell neighborhoods centered on macrophages interacting with diverse kidney cell types

(Figures 4A–4C). Of interest, specifically in the setting of disease, we observed enhanced interactions be-

tween medullary macrophages and CD-PC, collecting duct intercalated cells (CD-IC) and ECs (Figure 4C).

Focusing further on macrophage subsets, we found a significantly higher percentage of Trem2+ macro-

phages in the medulla of UMOD-KI mice (large red beads; Figures 4D and 4E). HCR confirmed a significant

expansion of double-positive C1qb + Trem2+ cells in the medulla of UMOD-KI mice (Figures 4F and 4G).

These results suggest that Trem2+macrophages in the medulla of UMOD-KI mice may expand in response

to interactions with specific-cell neighbors, a previously unknown mechanism in this disease.

To gain a deeper understanding of disease-relevant pathways, we probed our data for detectable changes

in the unfolded protein response (UPR), a cellular mechanism triggered by the accumulation of misfolded

mutant UMODprotein in UMOD-KI mouse kidneys (Piret et al., 2017; Devuyst et al., 2019). Using a validated

UPR pathway signature (Adamson et al., 2016), DGE analysis betweenWT and UMOD-KI arrays (Figures 5A

and S23) revealed changes in the UPR (Walter and Ron, 2011; Karagöz et al., 2019), specifically in medullary

TALs (Figure 5A; 77 genes). In contrast, when we aggregated all TALs (cortex and medulla), we did not

detect any significant DGE changes between WT versus KI tissue (Figure S23A). Similar analyses focusing

on cortical TALs alone or PCTs alone did not yield any significant differences in UPR gene expression either

(Figures S23B and S23C). The loss of signal when looking at the totality of TALs (or other cell subsets) sug-

gests that if we only relied on bulk RNA-Seq or even on scRNA-Seq without the high spatial resolution af-

forded by Slide-SeqV2, we would not have been able to identify this disease-associated UPR signature.

Three to fourmarkers of the UPR have been previously used to implicate this pathway in UKD (Piret et al., 2017;

Devuyst et al., 2019); however, coordinatechanges in theexpressionof 77UPRgenes inUmod-expressingmed-

ullary TALs have not been described before. Among significant genes in medullary TAL features were Slc35b1

(IRE1ɑpathway) andTrib3,Mthfd2, andSlc3a2 (PERKpathway; Figures 5B–5EandS24–S29), which showed that

the medullary TAL epithelial cells were selectively and most highly affected by two specific UPR pathways,

IRE1ɑ and PERK (Figures S27–S29). Among UPR-associated genes, Tmed9 was upregulated and selectively

localized toUmod-expressingmedullary TALs (Figure 5A, red arrow). We have previously shown that the small

molecule (BRD4780) targetsTMED9 for the treatmentofMUC1kidneydisease, a toxicproteinopathy causedby

the accumulation of mutant MUC1 protein in epithelial cells in the kidney (Dvela-Levitt et al., 2019). We

reasoned that the specific co-localization of Umod and Tmed9 in cells with detectable UPR-mediated injury

(medullary TALs) pointed to the utility of Slide-seqV2 for the detection of therapeutically relevant targets.

Figure 4. Continued

(F) Plots generated from HCR validation showing percentage of cells that are Trem2+macrophages (p value 0.0357). Each

point represents a mouse. Error bars represent SD of the mean.

(G) HCR images from two differentWT and UMOD-KI mice showing Trem2+C1qb +macrophages in themedulla (Umod).

Scale bar, 50 mm.
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DISCUSSION

Spatial transcriptomics has revolutionized the field of single-cell genomics and provided new insights into

many biological systems such as the brain, heart, liver, and testes (Lein et al., 2017; Carlberg et al., 2019;

Chen et al., 2021a, Chen et al., 2020; Navarro et al., 2020; Roth et al., 2020; Saviano et al., 2020). However,

the potential of spatial transcriptomics to identify therapeutically actionable pathways has not yet been

explored. In this study, we explored the utility of spatial transcriptomics to uncover disease-associated

cell-cell interactions and pathways, and, importantly, we performed rigorous experiments (HCR, mouse

studies) to experimentally validate these findings. Several critical conclusions can be drawn from these

studies.

First, we developed tools and methods to identify disease-specific cell neighborhoods. In human kidney,

we found a cell neighborhood centered around LYVE1+ macrophages, most notably in the medulla. In

other tissues, LYVE1+ macrophages have been shown to protect from fibrosis (Lim et al., 2018). We can

therefore speculate that LYVE1+ cell neighborhoods in human kidneys may reflect an adaptive response

Figure 5. Spatially restricted, cell-specific, and disease-associated perturbations in 77 genes associated with the

UPR in medullary TAL epithelial cells uniquely revealed by Slide-seqV2

(A–E) Heatmap showing relative expression level of 77 UPR genes averaged across arrays in WT and UMOD-KI mice from

medullary TAL beads. Tmed9 is indicated with a red arrow. Significant genes are denoted with an asterisk (Benjamani-

Hochberg-corrected p < 0.05). Violin plots showing expression level in medulla TAL (top) and all medulla TAL beads in

arrays (middle, bottom) are shown with expression level for notable genes in (B) IRE1ɑ upregulated pathway gene,

Slc35b1 and PERK upregulated pathway genes, (C) Trib3, (D) Mthfd2, and (E) Slc3a2. Scale bars, 500 mm.
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mounted to prevent or abrogate the pro-fibrotic sequelae of injury. Disease-specific cell neighborhoods

were also identified in a mouse with diabetic kidney disease. In line with prior studies (Tighe, 1977; Gomez

et al., 1990; Martini and Danser, 2017; Tang et al., 2019a), we characterized a disordered kidney filter and

blood-flow-regulating apparatus (JGA) associated with an expanding population of rare GCs in diabetic

kidneys. These findings illustrated how the high spatial resolution of Slide-seqV2 empowered us to detect

changes within and between spatially restricted structures.

Second, drawing from the blueprint established in these initial studies in human and mouse, we made a

new discovery in mice with a toxic proteinopathy (UKD). Specifically, we identified a disease-specific, me-

dulla-restricted cell neighborhood composed of Trem2+ macrophages (Subramanian et al., 2021) and

specific epithelial (TAL) and fibroblast cell populations. Because resident macrophage Trem2 acts as an

immunomodulatory receptor on resident macrophages that senses tissue damage and negatively regu-

lates inflammation (Turnbull et al., 2006; Jaitin et al., 2019; Tang et al., 2019b; Xiong et al., 2019; Deczkow-

ska et al., 2020; Zhu et al., 2020), our results suggest that medullary Trem2+ macrophages may expand in

response to neighboring cell injury. More generally, resident macrophage-epithelial cell neighbor interac-

tions may underlie several kidney diseases (Subramanian et al., 2021) associated with inflammation and

fibrosis (Kuppe et al., 2021).

Lastly, a critical aspect of this study was the development of new analytical methods and pipelines to map

cell states and interactions onto spatial arrays frommouse and human kidney, relying exclusively on spatial

near single-cell transcriptome-wide profiles. Taken together, our experiments illustrate how we can

harness the power of Slide-seqV2, and spatial transcriptomics more broadly, to gain biological insights

by a ‘‘one-and-done’’ approach that simultaneously monitors cell-cell interactions and numerous genes

and pathways in an unbiased fashion. Similar to RNA-Seq supplanting the need for RT-PCR, we speculate

that this technology may mature to the point that it may minimize or even replace ‘‘one-by-one’’ molecule

detection by labor intensive in situ and immunolocalization methods.

In sum, our work provides a foundational framework for near-single-cell spatial transcriptomics in the kid-

ney, a functionally complex tissue with intricate architecture. Building on the paradigm that many diseases,

from cancer to neurodegeneration, depend on dynamic cell-cell interactions in spatially restricted micro-

environments (Song and Colonna, 2018; Elia and Haigis, 2021), our studies illustrate the utility of high-res-

olution spatial transcriptomics, to uncover disease-specific cell neighborhoods and pathways.

Limitations of study

We acknowledge that our results have several limitations. First, compared with canonical scRNA-seq data,

Slide-seqV2 data have limited power for the detection of genes with low expression levels at near-single-

cell resolution. We discuss potential methods to deconvolve genes/beads with low expression levels in

(Noel et al., 2022) and expect more methods to be developed in the future. In addition, future spatial tran-

scriptomics technologies will likely overcome this problem by using smaller beads. Second, Slide-seqV2

data may have limited power for the identification and spatial localization of rare cell types due to stringent

clustering and filtering processes. Future advances in computational methods are likely to improve data

analysis pipelines.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Human Nephrectomy Biopsies Astrid Weins, BWH 11, 16, 17, A, 20, 21, 22, 12, 19

Chemicals, peptides, and recombinant proteins

6xSSC Life Technologies, Inc. Cat#15557044

RNAase inhibitor Takara Bio Cat#2313B

Maxima RT Life Technologies, Inc. Cat# EP0753

10mM dNTP Life Technologies, Inc. Cat#4303443

Terra PCR mix Takara Bio Cat#639284

Critical commercial assays

Human HCR Molecular Instruments LRP2, CTGF, UMOD, EHD3, NPHS2, C1QB,

LYVE1

Mouse HCR Molecular Instruments Nphs2, Ren1, Slc12a1, Ehd3, Ctgf, Trem2,

Umod, C1qb

Deposited data

Mouse raw and annotated spatial

transcriptomics data

This paper. GEO: GSE190094

Deidentified human raw spatial transcriptomics

data

This paper. DUOS: DUOS-000138

Deidentified annotated human spatial

transcriptomics data

This paper. https://cellxgene.cziscience.com/collections/

8e880741-bf9a-4c8e-9227-934204631d2a.

Visualization of mouse and human spatial

trascriptomics data

This paper. https://cellxgene.cziscience.com/collections/

8e880741-bf9a-4c8e-9227-934204631d2a.

Experimental models: Organisms/strains

BTBR wt/wt, mus musculus Jackson Laboratory 004824

BTBR ob/ob, mus musculus Jackson Laboratory 004824

UMOD-WT, mus musculus Rajesh Thakker, University of Oxford n/a

UMOD-KI, mus musculus Rajesh Thakker, University of Oxford n/a

Oligonucleotides

Template Switch Oligo (TSO) IDT AAGCAGTGGTATCAACGCAGAGTG

AATrG+GrG

dnSMRT oligo IDT AAGCAGTGGTATCAACGCAGAGTG

ANNNGGNNNB

Truseq PCR primer IDT CTACGACGCTCTTCCGATCT

SMART PCR primer IDT AAGCAGTGGTATCAACGCAGAGT

Truseq-P5 hybrid constant oligo IDT AATGATACGGCGACCACCGAGA

TCTACACTCTTTCCCTACACGAC

GCTCTTCCGATCT

Software and algorithms

https://github.com/marshalljamie/Kidney-

Slide-seq

This paper. https://doi.org/10.5281/zenodo.6338100

Other

ImageJ2 NIH 1.53c

CellProfiler Broad Institute version 3.1.5

ll
OPEN ACCESS

iScience 25, 104097, April 15, 2022 15

iScience
Article

https://cellxgene.cziscience.com/collections/8e880741-bf9a-4c8e-9227-934204631d2a
https://cellxgene.cziscience.com/collections/8e880741-bf9a-4c8e-9227-934204631d2a
https://cellxgene.cziscience.com/collections/8e880741-bf9a-4c8e-9227-934204631d2a
https://cellxgene.cziscience.com/collections/8e880741-bf9a-4c8e-9227-934204631d2a
https://doi.org/10.5281/zenodo.6338100


RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

lead contact, Anna Greka (agreka@broadinstitute.org).

Materials availability

This study did not generate any unique reagents.

Data and code availability

All code can be found on github: https://github.com/marshalljamie/Kidney-Slide-seq, https://doi.org/10.

5281/zenodo.6338100.

The mouse data (raw and processed) discussed in this publication have been deposited in NCBI’s Gene

Expression Omnibus (Edgar et al., 2002) and are accessible through GEO Series accession number

GEO: GSE190094 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190094). All data discussed

in this publication have been deposited and can be visualized here: https://cellxgene.cziscience.com/

collections/8e880741-bf9a-4c8e-9227-934204631d2a. Deidentified raw data files for human data can be

found here: DUOS dataset ID is DUOS-000138, and is accessible via https://duos.broadinstitute.org/

dataset_catalog.

Microscopy data reported in this paper will be shared by the lead contact upon request. Any additional

information required to reanalyze the data reported in this paper is available from the lead contact

upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

BTBRwt/wt and BTBR ob/obmice were purchased from JAX labs (strain 004824) (Hudkins et al., 2010). Male

mice were aged to 13 weeks in the Broad Institute vivarium with alpha dry bedding and acidified water.

UMOD-KI mice were transferred to the Broad Institute from the Thakker lab at the University of Oxford

(Piret et al., 2017). UMOD-KI heterozygous mice were mated to produce 6 month old WT and UMOD-KI

homozygous male progeny used in these studies. All animals were subjected to intracardiac perfusion

of PBS to remove blood. Tissues were dissected, mounted in OCT, and flash frozen in liquid nitrogen

cooled isopentane for 1 min. Samples were then placed on dry ice until long-term storage in the -80 �C.
All procedures performed are IACUC approved on Broad Institute animal protocol # 0061-07-15-1.

Human tissue

All human tissues were obtained from healthy regions of tumor nephrectomy samples on Partners IRB pro-

tocol # 2011P002692 atMass General Brigham (AW). Cortex andmedulla samples were collected from each

patient and samples were flash frozen in liquid nitrogen prior to storage in the -80 �C.

METHOD DETAILS

Slide-seqV2

Bead synthesis

Bead barcodes were synthesized either by the ChemGenes Corporation or in house on an Akta Oligopilot

10 on one of two polystyrene supports, Agilent PLRP-S-1000A 10mm particles or 10mm custom polystyrene

from AMBiotech. Oligonucleotide synthesis was performed as described below. Beads were used with one

of the two following sequences: ChemGenes Corporation beads (50-TTTTTTTTCTACACGACGCTCTTCC

GATCTJJJJJ JJJTCTTCAGCGTTCCCGAGAJJJJJJJNNNNNNNNT30-30) and custom synthesis beads

(50-TTT_PC_GCCGGTAATACGACTCACTATAGGGCTACACGACGCTCTTCCGATCTJJJJJJJJTCTTCAG

CGTTCCCGAGAJJJJJJJTCNNNNNNNNT25-30 (pawpuck3); PC, a photocleavable linker; J, bases gener-

ated by split-pool barcoding, such that every oligonucleotide on a given bead has the same J bases; N,

bases generated by standard basemixing of a 1:1:1:1 ratio of A, C, T and G, such that every oligonucleotide

on a given bead has different N bases; TX, a sequence of X thymidines; V, an A, C or G but not T. Bead

synthesis. PLRP-S resin (�10-mm mean particle diameter; Agilent) was functionalized with a non-cleavable

linker by ChemGenes. The functionalized beads were then used as a solid support for reverse-direction
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phosphoramidite synthesis (50 to 30) on an Akta OligoPilot 10 using a standard solid-phase DNA synthesis

protocol. 50-CE (b-cyanoethyl) phosphoramidites were purchased from Glen Research and were dissolved

in anhydrous acetonitrile to obtain a concentration of 0.1M. Successive phosphoramidites were coupled for

5min using 5-benzylmercaptotetrazole (0.30M in acetonitrile) as an activator. Oxidation of the phosphite

backbone to a phosphate backbone was achieved using iodine. Failure sequences were capped using ace-

tic anhydride. Dichloroacetic acid was used as a detritylation reagent. For split-pool synthesis cycles, beads

were suspended in acetonitrile and divided into four equal portions. These bead aliquots were then placed

in four separate synthesis columns and reacted with dG, dC, dT or dA phosphoramidites. After each cycle,

beads were pooled, suspended in acetonitrile and aliquoted into four equal portions. The split-pool pro-

cedure was repeated 15 times in total (two blocks of eight and seven cycles) to obtain 415 (�109 ) unique

barcode sequences. After synthesis completion, the protecting groups from the nucleobases and phos-

phate backbone were removed by treating beads with 30% ammonium hydroxide containing 10% diethyl-

amine for 40h at room temperature. The beads were centrifuged, and the supernatant was discarded.

Beads were then washed three times with 1% acetone in acetonitrile, three times with water and three times

with a buffer consisting of 10mM Tris and 1mM EDTA pH 8.

Puck preparation

Puck preparation was performed as described previously (Stickels et al., 2021). Briefly, beads were pelleted

and resuspended in water with 10% DMSO at a concentration between 20,000 and 50,000 beads per ml.

Then, 10ml of the resulting solution was pipetted into each position on the gasket. The coverslip gasket

filled with beads was centrifuged at 850g for at least 30min at 40�C until the surface was dry.

Puck sequencing

Puck sequencing was performed in a Bioptechs FCS2 flow cell using an RP-1 peristaltic pump (Rainin) and a

modular valve positioner (Hamilton MVP). Flow rates between 1ml min–1 and 3ml min–1 were used during

sequencing. Imaging was performed using a Nikon Eclipse Ti microscope with a Yokogawa CSU-W1 confocal

scanner unit and an Andor Zyla 4.2 Plus camera. Images were acquired using a Nikon Plan Apo310, 0.45-NA

objective. After each ligation, imageswere acquired in the following channels: 488-nmexcitationwith a 525/36-

nm emission filter (MVI, 77074803), 561-nm excitation with a 582/15-nm emission filter (MVI, FF01-582/15-25),

561-nm excitation with a 624/40-nm emission filter (MVI, FF01-624/40-25) and 647-nm excitation with a 705/

720-nm emission filter (MVI, 77074329). The final stitched images varied in size depending on the size of the

Slide-seq array. For the arrays presented in this work the final stitched images were 6,030 pixels by 6,030 pixels.

Pucks were sequenced using a sequencing-by-ligation approach with a SOLiD dibase-encoding and with a

monobase-encoding strategy previously described (Rodriques et al., 2019; Stickels et al., 2021).

This protocol was used for all slide-seq version 2 arrays https://doi.org/10.17504/protocols.io.bpgzmjx6

(Stickels et al., 2021). Briefly, 10mm sections (Leica, CM1950) were overlaid and melted onto spatial arrays.

Seven arrays were collected from four BTBRwt/wt and four BTBR ob/obmice, one kidney per mouse. Seven

arrays were necessary to cover the entire cortex and collect enough glomeruli for analysis. Five arrays were

collected for three WT and five UMOD-KI mice, one kidney per mouse. Five arrays ensured coverage of the

entire medulla. Two arrays were collected from each human tissue sample, which resulted in two cortex and

two medulla arrays per individual.

All reagents were diluted in ultrapure water (Life Technologies, Inc., 10977023). Arrays covered in tissue were

then transferred to tubes with 6xSSC (Life Technologies, Inc., 15557044) containing RNAase inhibitor (Takara

Bio, 2313B) and incubated for 15min. Arrays were then dipped in 1xRT buffer (Life Technologies, Inc.,

EP0753) and transferred to RT tubes (Maxima RT: Life Technologies, Inc., EP0753; 10mM dNTP Life Technolo-

gies, Inc., 4303443; RNAase inhibitor: Takara Bio, 2313B; 50mM Template Switch Oligo: IDT, AAGCAG

TGGTATCAACGCAGAGTGAATrG+GrG) for a 30min roomtemperature incubation. RT tubeswere then trans-

ferred to 52 �C for a 90min incubation. Proteinase K and tissue clearing solution (Tris-HCl, pH 7.5: Life Technol-

ogies, Inc., 15567027; NaCl: American Bioanalytical, AB01915-01000; SDS (w/v): Life Technologies, Inc.,

15553027; EDTA: Life Technologies, Inc., 15575020; Proteinase K: New England BioLabs, Inc., P8107S) is

then added to the RT tube and the array is incubated at 37�C for 30min. Beads are removed from glass and

resuspended in TE-TW (TE buffer: Sigma-Aldrich, Inc., 8910-1L; Tween-20: VWR International, LLC, 100216-

360) and subjected to 2 TE-TW washes followed by centrifugation for 2 min at 3000rcf. Beads are then resus-

pended in Exonuclease I mix (New England Biolabs, Inc., M0293L) and incubate at 37�C for 50min. This is fol-

lowed by 2 washes in TE-TW, 5min room temperature incubation in 0.1N NaOH (Sigma-Aldrich, Inc.,
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SX0607N-6), another TE-TWwash, and incubation in the second strand synthesis buffer (Maxima RT: Life Tech-

nologies, Inc., EP0753; 10mM dNTP Life Technologies, Inc., 4303443; dnSMRT oligo: IDT, AAGCAGTGGTAT

CAACGCAGAGTGANNNGGNNNB; Klenow: New England BioLabs, Inc., M0212L) for 1 hour at 37�C. Beads
are then subjected to three TE-TWwashes and loaded intoWTA PCR (100 mMTruseq PCR primer: IDT, CTAC

GACGCTCTTCCGATCT; 100 mM SMART PCR primer: IDT, AAGCAGTGGTATCAACGCAGAGT; Terra PCR

mix: Takara Bio, 639284) with cycling conditions 98�C for 2min; 4 cycles of 98�C for 20sec, 65�C for 45sec,

72�C for 3min; 7 cycles of 98�C for 20sec, 67�C for 20sec, 72�C for 3min; and 72�C for 5min. PCR clean up

was performed twice with 0.6x SPRI (AmPureXP: Beckman Coulter, Inc., A63881) on cDNA libraries. Final and

cDNA libraries were then QCed on a bioanalyzer (Bioanalyzer High Sensitivity DNA kit: Agilent Technologies,

Inc., 5067-4626) and qubit (dsDNA high sensitivity kit: Life Technologies, Inc., Q32854) following manufacturer

protocols. Tagmentation of 600pg of cDNA is performed according to Nextera DNA sample preparation

manufacturer instructions (Illumina, Inc., FC-131-1096) using a Truseq-P5 hybrid constant oligo (IDT, AATG

ATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT) and Nextera N7XX in-

dexing primer (Illumina, Inc., FC-131-1001). Final libraries (4nM) were sequenced on a NovaSeq S2 or S4 with

100-200 million reads per sample at the Genomics Platform at the Broad Institute using read structure Read

1 42bp, Index 1 8bp, Read 2 41-60bp, and Index 2 0bp.

Hybridization chain reaction (HCR)

All HCR v3 reagents (probes, hairpins, and buffers) were purchased from Molecular Technologies (Choi

et al., 2018). Thin sections of tissue (10mm) weremounted in 24-well glass bottom plates (VWR International,

LLC, 82050-898) coated with a 1:50 dilution of APTES (Sigma-Aldrich, Inc., 440140). The following solutions

were added to the tissue: 10% formalin (VWR International, LLC, 100503-120) for 15min, 2 washes of 1x PBS

(ThermoFisher Scientific, AM9625), ice cold 70% EtOH at -20 2 hours to overnight (VWR International, LLC,

76212-358), 3 washes 5x SSCT (ThermoFisher Scientific 15557044, with 0.2% Tween-20), Hybridization buffer

(Molecular Technologies) for 10min, probes in Hybridization buffer overnight, 4 15min washes in Wash

buffer (Molecular Technologies), 3 washes 5x SSCT, Amplification buffer (Molecular Technologies) for

10min, heat denatured hairpins in Amplification buffer overnight, 3 15min washes in 5x SSCT (DAPI,

VWR International, LLC, TCA2412-5MG, 1:10,000, in the second wash), and storage/imaging in 5x SSCT.

Imaging was performed on a spinning disk confocal (Yokogawa W1 on Nikon Eclipse Ti) operating NIS-el-

ements AR software. All images acquired were imaged using a Nikon Plan Apo 340 1.15-NA water immer-

sion objective. Image analysis and processing was performed on ImageJ Fiji.

Periodic acid schiff (PAS) staining

10mmcryosections of flash frozen tissue weremounted onto superfrost plusmicro slides (VWR, 48311-703). Tis-

sue was fixed in 10% formalin (VWR International, LLC, 100503-120) for 15min. Slides were then transferred to

the Brigham andWomens Pathology Department for PAS staining, which briefly summarized starts with tissue

oxidized in 0.5%Periodic Acid solution for 5min, and rinsed3 timeswith distilledwater. Slideswere thenplaced

in Schiff’s reagent for 15min and washed with tap water for 5min. Slides were counterstained in Mayer’s hema-

toxylin for 1 min andwashed with tap water for 5min and then rinsedwith distilled water. Slides were finally de-

hydrated and mounted using Xylene based mounting media. Imaging was performed on a Zeiss Observer.Z1

microscope using the Zeiss Zen software. Scale bars were added using Fiji ImageJ version 2.1.0/1.53c.

QUANTIFICATION AND STATISTICAL ANALYSIS

Image analysis

Images were first processed using ImageJ2 (National Institutes of Health). Raw ND2 files were background

subtracted using the Rolling Ball method (rolling=50 sliding stack). Max intensities of the Z-stack images

were then projected, and image channels were split and saved separately. CellProfiler (version 3.1.5, Broad

Institute) was then used for cell segmentation based on the fluorescence intensity of DAPI channel and for

measuring integrated fluorescence intensity in the rest of the channels (CellProfiler pipeline provided in

https://github.com/marshalljamie/Kidney-Slide-seq).

Slide-seqV2 cell percentage and HCR validation plots were generated using Graphpad Prism version 9.1.1.

Mean and standard deviation are shown and significance was determined by p<0.05 using aMann-Whitney

U-test. Each dot represents an individual mouse or human sample, except in glomerular plots where each

dot represents an individual glomerulus collected from 4 BTBRwt/wt or 4 BTBR ob/obmice or an individual

human in healthy, DKD, or injured samples.
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Cell type classification

In order to assign a cell type identity to each Slide-seq bead, we used twomethods: (1) NMFreg (Non-nega-

tive matrix factorization regression) (Rodriques et al., 2019), and (2) the label transfer method from the R

package Seurat (v. 3.0.1) (Stuart et al., 2019). In the former, a reduced gene space of "metagene" markers

for each cell type was identified by non-negativematrix factorization of a single cell reference data set (Sub-

ramanian et al., 2021), in which cell types were previously annotated. The reduced gene space for mice and

humans was comprised of 40 metagenes and 70 metagenes, respectively, from a single cell reference (Sub-

ramanian et al., 2021). Every gene expression profile in the Slide-seq query data set was decomposed into a

weighted combination of these metagenes by non-negative least squares regression. Each data point in

the query was assigned the cell type corresponding to the metagene of maximum weight. Lastly, cell

type annotations were eliminated based on the confidence thresholding protocol defined by the NMFreg

developers.

With regards to the Seurat V3 label transfer method, we assigned cell type annotations from the same sin-

gle cell reference data set (Subramanian et al., 2021) to each of our Slide-seq query data sets. Mappings

between highly similar gene expression profiles of the single cell reference (Subramanian et al., 2021)

and Slide-seq query data points were established using the FindTransferAnchors() function on SCT-normal-

ized data, with 50 PCs derived from the reference data. Cell type annotations of the query data were ac-

quired from TransferData(), using PCA-derived dimensionality reduction on the reference. This function

provided vectors with cell type prediction scores for every bead in our Slide-seq arrays. We defined the

cell type identity of every bead to be the cell type class corresponding to the maximum prediction loading.

Upon running both methods on our data and generating scatterplots of the resulting cell type loadings, we

found that while podocyte identification was comparable between the two methods, Seurat performed

better in confidently identifying all other cell types. We concluded that Seurat cell type calls reliably formed

structures across 2-D tissue space that we would expect to find in true kidney biology.

Pronounced tubular structures with fewer scattered points were more consistently characteristic of Seurat’s

PCT, DCT, CD-IC, and CD-PC calls than of NMFreg’s calls. Additionally, we consistently found a clear delin-

eation of cortex and medulla regions from Seurat’s TAL calls, which was less often true of NMFreg’s TAL

calls (Figures S2–S7, S11, S12, S17, and S18).

Consequently, we used podocyte classifications defined by NMFreg and classifications output from Seurat

for all other cell types.

Segmentation of medulla and cortex regions

While most Slide-seq arrays from human kidney sections spanned either the cortex or medulla, several hu-

man arrays and all mouse arrays contained both regions. In order to refine our characterization of the cell

type and genetic composition of our tissue to these distinct regions of the kidney, we utilized a segmen-

tation algorithm to separate beads in the cortex from beads in the medulla. We first plotted the coordi-

nates of all beads in an array, colored by their cell type class. Visually, we were able to approximate the

boundary separating the cortex from medulla because the former contains exclusively PCTs and podo-

cytes, while the latter contains a higher density of DCT, CD-IC, CD-PC, and TAL cell types. Using the meth-

odology adapted from the Python lasso selector widget (https://matplotlib.org/3.1.0/gallery/widgets/

lasso_selector_demo_sgskip.html), we were able to hand-draw on these plots our proposed boundary,

and in response, the program returned the bead coordinates both within and outside this border.

Cell type curation

While many of the cell types formed dense structural patterns that aligned with the known histology of

structures found in kidney tissue, we found relatively isolated instances of cell type calls. We sought to re-

move these uncertain cell type calls from our analysis. Here, we used a custom method utilizing K-nearest

neighbors (KNN). First, we isolatedmarker beads for each structure, whether that be beads having a certain

cell type label or expression of a marker gene, labeling these 1, and labeled all other beads 0. Next, from

the Python package scikit-learn (v. 0.23.1) (Garreta andMoncecchi, 2013), we generated the KNN adjacency

matrix based on the coordinates of all beads with the function NearestNeighbors(), using the ball tree al-

gorithm and user-specified k. We then filtered all marker beads with fewer than a threshold number of

1-labeled neighbors. Lastly, we added back in any nearest neighbors of our isolated beads having a label
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of 1. The motivation here was that marker beads occurring along the edge of structures may be filtered out

because their composition of surrounding 0-labeled neighbors is too high.

The number of k-nearest neighbors we allowed the algorithm to search for, and the threshold number of

neighbors used to filter out points were chosen by trial and error in order to maintain a clean boundary

around the known biological structures of each cell type.

Glomerulus, GC, and MD detection

Because podocytes are known to be solely contained within glomeruli, and glomeruli have a circular shape

in 2-D tissue space, we used our KNN-filtration method on podocyte-annotated beads. We chose param-

eters that maintained these circular structures, while throwing out spurious, isolated points (Figure S53).

We then assigned other glomerulus-specific cell types, including mesangial cells and endothelial cells, to

these regions containing podocytes. To do so, we computed the circular area of each glomerulus defined

by its approximate center and radius. The centers were defined as the cluster centers of curated podocyte

coordinates output by cluster.KMeans() from the Python package scikit-learn. Here, K was determined by

the number of podocyte clusters visualized in a scatter plot of podocyte coordinates. We approximated

the radius of each glomerulus to be the maximum of the distances between all podocytes in a cluster and

its cluster center.We then assigned instances of endothelial andmesangial-annotated beads to a podocyte

cluster if their coordinates occurred within the circle defined by its radius and center (Figure S60).

GC clusters were identified by running KNN-filtration on all beads expressing Ren1, or REN, with param-

eters chosen to isolate elliptical, dense groupings of these points. Although we know that GC cluster

near glomeruli, our curated granular cell regions disagreed with this assumption. Therefore, we hand-

selected GC clusters that occurred within 250 pixels to a curated glomerulus (Figure S54). Approximately

39% of GC clusters met this criterion.

In order to identify MD structures, we iterated through several filtration steps. First, we ran our KNN-filtra-

tion method on TAL, glomerulus, and granular cell-annotated beads, aiming to hone in on any TAL-anno-

tated beads that occur near clusters of glomerulus-specific cells or GC, whether they themselves occur in a

dense cluster or not. We then eliminated any of our filtered TAL-annotated beads that expressed the gene

Slc12a3 - a gene characteristic of TAL, but not MD structures. Lastly, in mice we hand-filtered the remaining

beads based on the expression of Ptger3/PTGER3, Klf6/KLF6, and Nos1/NOS1, or vicinity to either a

glomerulus or granular cell structure (within 250 pixels) (Figure S55). Ultimately, we selected approximately

22% of the MD structures curated with KNN.

Lastly, we assigned unique cell type labels to the beads having more than one label, with the following

criteria. Amongst beads classified as both GC and glomerulus-specific cells, we found that the overlapping

beads on average had higher expression of Ren1 than the rest of the granular cell population (Figure S52).

As a result, overlapping beads maintained their glomerulus cell type assignments. Beads classified as both

GC and MD cells were assigned to the group in which they had the higher gene expression marker.

PCT, DCT, and CD-PC detection

We curated PCT, DCT, and CD-PC-annotated beads in a similar manner. Polygons encapsulating

glomeruli, granular cell clusters, and MD clusters were identified with alpha = 0.01, and all instances of

curated CD-IC, CD-PC, DCT, and PCT beads were removed from their areas. On calls of DCT and CD-

PC in the cortex and medulla separately and all PCT, we ran our KNN-filtration method, selecting param-

eters that maintained beads contained within tubule structures. Additional filtering was done with the

Python package alphashape (v. 1.0.2) (https://alphashape.readthedocs.io/en/latest/), which output a poly-

gon encapsulating most of the beads of the cell type of interest. All beads outside of the alphashape were

filtered. Remaining PCT beads within our proposed medulla region of each array were removed

(Figures S56–S58).

CD-IC detection

We first combined CD-A-IC and CD-B-IC cell calls and called them CD-IC. Because it is possible to find sin-

gular CD-IC beads that occur within CD-PC tubular structures, CD-IC isolation was done by concatenating

CD-IC beads with curated CD-PC beads in the cortex and medulla separately, and running KNN-filtration.

Following this step, we aimed to remove remaining CD-IC beads that occurred within dense clusters
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outside of CD-PC tubules. We further filtered any instances of CD-IC beads that were located further than a

distance of 100 pixels from the polygon surrounding CD-PC tubules using the distance() method from the

Python package Shapely (v. 1.7.0) (https://github.com/Toblerity/Shapely) (Figure S59).

Polygons encapsulating glomeruli, granular cell clusters, andMD clusters were identified with alpha = 0.05,

and all instances of curated CD-IC, CD-PC, DCT, and PCT beads were removed from their areas. TAL beads

were removed only from glomerulus and granular cell areas.

Immune cell, fibroblast, and vSMC detection

Because our human single cell reference dataset (Subramanian et al., 2021) had only an immune cell cluster,

we parsed out macrophages from our immune-annotated beads by identifying those that expressed either

C1qa/C1QA or C1qb/C1QB (Zimmerman et al., 2019).

Because fibroblasts, vascular smooth muscle cells, and immune cells do not have a clear underlying struc-

ture, we did not use KNN-filtration here.

TAL beads were removed only from glomerulus and granular cell areas.

Spatial outlier detection

Abundant cell types such as PCTs, TAL, and endothelial cells that reach the edges of arrays sometimes

spilled over outside of the array area. Because these distant beads are no longer associated with coordi-

nates across tissue space, they were deemed spatial outliers and eliminated from the analysis. Detection of

these outliers was accomplished by the anomaly detection algorithm ensemble.IsolationForest() from the

Python package scikit-learn. For every Slide-seq array, all raw coordinates were fed into the isolation forest

algorithm, and outliers were thrown out. Lastly, curated beads from each cell type class were merged with

the filtered set of coordinates.

Cell type structure assignment

Certain cell types formed discrete, classifiable groupings across arrays. CD-IC, CD-PC, and DCT formed

tubular islands, GC and MD cells formed elliptical structures, and mesangial cells, endothelial cells, and

podocytes comprised circular glomeruli. Formulating structure aggregates were motivated by two down-

stream analyses: (1) morphology quantifications and (2) transcriptomic characterizations.

First, we identified individual structures with cluster.KMeans(), from the Python package scikit-learn, on the

coordinates of each curated cell type. With podocytes, mesangial cells, and endothelial cells within

glomeruli, GC, and MD cells, K was determined to be the number of dense clusters of points visualized

in a scatter plot of curated coordinates. For CD-PC, and DCT, where each cell type comprises a single bio-

logical structure, but is characterized by natural partitions, K was determined by a silhouette analysis. Here,

we searched for a K that maximizes the difference between minimum average out-of-cluster distances and

average within-cluster distances. For every k in {2,.,max (number of beads, 50)}, we computed metrics.sil-

houette_score() of cluster.KMeans(K=k) from the Python package scikit-learn. We ultimately used the

K-means clustering results with K being the number of clusters corresponding with themaximum silhouette

score. CD-IC beads were assigned to their nearest CD-PC cluster (Figures S34–S51).

Quantifying the morphology of glomeruli

In order to address the hypothesis that glomerular morphology differs between the disease states of kidney

tissue, we computed the followingmorphologymetrics for every glomerulus: (1) area, (2) percentage of po-

docytes, (3) percentage of mesangial cells, and (4) percentage of endothelial cells. In order to compute the

area of glomeruli, the convex hull of each glomerulus was found with the Python package alphashape (v.

1.0.2), using the function alphashape() with alpha = 0. This step returned a convex polygon enclosing all

points in every glomerulus, along with an area attribute.

The percentages of podocytes, mesangial cells, and endothelial cells in glomeruli were computed with the

following protocol: for every glomerulus, we divided the number of beads classified as the cell type of in-

terest by the total number of beads in the glomerulus. Statistical tests were performed with theMann-Whit-

ney U-test.
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Cell type proportion quantification

In order to address whether there was a significant difference in the cell type composition of kidneys in diseased

versus wild-type kidney tissue, we computed the proportion of every cell type in the medulla, cortex, and whole

kidney ineachofour arrays. That is, for every cell type inevery region,wedivided thenumberofbeadsclassifiedas

this cell typeby the total number of beads in the regionof interest or entire array.We then compared thesequan-

tificationsbetweenUMOD-KI andWTmice,BTBRob/obandBTBRwt/wtmice,and thehealthy,DKD,and injured

humans. Statistical tests were performed with the Mann-Whitney U-test (Figures S13, S19, S32, and S33).

Transcriptomic data preprocessing

We conducted quality control by computing the number of genes and UMIs per array and UMIs per cell

type were quantified (Figures S30 and S31). Prior to running our transcriptomic analyses, we applied

normalization and batch effect removal methods to our data, all done using the R package Seurat. In order

to account for sequencing depth per bead, we normalized our data using the SCTransform() function

(Hafemeister and Satija, 2019) on each array. Next, we combined the transcriptomic data in arrays with ge-

notypes or disease states we planned on comparing (e.g., BTBR wt/wt and BTBR ob/ob mice, WT and

UMOD-KI mice, and all humans) into a single data matrix. We ran SelectIntegrationFeatures() to find the

top 3000 consistently variable features in the sctransform data across all arrays in each comparison

grouping. SCTransform() was then run across all the data in each group at once, this time using the shared

variable feature space discovered in the previous step.

In order to remove batch effects, within each genotype or disease state grouping of mice and humans, we

searched for differentially expressed genes across batches. We used the function FindAllMarkers() with the

negative binomial test on the raw counts, filtering for genes characterized by a log fold-change of at least

0.05 and occurring in a minimum fraction of 0.05 of the beads in each of the batch groups under compar-

ison. The union of the sets of batch markers derived from disease states that we intended on comparing

downstream were removed from the data (Figures S16, S21 and S22).

Disease state clustering and differential expression analysis

With regards to glomerulus-specific cell types, DCT, CD-IC, and CD-PC, where we had clusters of cells

forming small, discrete structures, we decided to cluster on the structures rather than cells. Because

Slide-seq beads don’t always capture mRNA purely from a single cell type, we reasoned that in smaller

structures, surrounded by a mixture of other cell types, edge beads would be prone to picking up

mRNA from external cell types. To remove some of this noise, we averaged the sctransform residuals of

the gene expression profiles of beads belonging to each of our previously-defined structures. Gene pro-

files consisting of sctransform residuals of cell types that did not form these smaller, discrete structures,

such as TAL, vSMC, fibroblasts, macrophages, and other immune cells were not aggregated in this way.

For dimensionality reduction, we performed uniform manifold approximation and reduction (UMAP) with

the Python package umap-learn (v. 0.4.6) (McInnes et al., 2018). We chose the clustering algorithm that best

fit the biological labels of our data in UMAP-space: hdbscan (v. 0.8.26) (McInnes et al., 2017) in the cases

where we clustered on cell type aggregates, and cluster.SpectralClustering() from scikit-learn in the cases

where we clustered on the gene expression profiles of individual beads.

Clusters were assigned a disease status based on the composition of points contained within them. That is,

if a cluster contained > 70% structure aggregates or beads coming from diseased arrays, all data points

within it were labeled as diseased (Figures S16, S21 and S22).

Differential expression across clusters was performedwith the function scanpy.tl.rank_genes_groups() from

the Python package scanpy (Wolf et al., 2018), using theWilcoxon rank-sum test and filtering for the top 100

differentially expressed genes in each cluster. Genes were called differentially expressed if their adjusted

p-value, computed with the Benjamani-Hochberg correction method, fell below 0.05. For each DE gene,

the average log fold-change was computed from the sctransform corrected counts, defined as the log10

transform of the difference in the average expression of the gene between the two clusters, added by one.

Macrophage–Cell Neighbor Analysis and Statistics

In order to explore cell neighborhoods and cell-cell interactions between macrophages and other cell

types, we used a custom analysis. For every macrophage bead of interest, we looked at all of its neighbors
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within a radius of 25 pixels using the function neighbors.radius_neighbors_graph() from the Python pack-

age scikit-learn. For every array, we were then able to compute the spatial interaction of a cell type, A, with a

cell type, B, as the number of times A is a neighbor of B, normalized to the square-root of the product of the

total number of cells A and total number of cells B. This normalization accounted for overall frequency of

each cell type and all possible interactions between the two cell types of interest across arrays.

In order to see if the cell-cell interaction neighborhoods were unique, we controlled for all other cell types.

For humans, to determine if interactions between LYVE1+ macrophages versus their newly defined neigh-

bors were unique, we also looked at cell interaction frequencies of all macrophages versus all other cell

types in the medulla. For mice, to determine if interactions between all macrophages and their newly

defined neighbors in the medulla were unique, we also looked at cell interaction frequencies of all macro-

phages versus all other cell types in mouse cortex.

In order to define differences between healthy and injured tissue, we performed further statistical analysis.

For humans, cell type interaction frequencies for all LYVE1+ macrophages versus all cells, and all macro-

phages versus all cells were compared across healthy and injured medulla. For mice, cell type interaction

frequencies for all macrophages versus all cells were compared across the cortex and medulla in UMOD-KI

and UMOD-WTmice. The statistical test used to compare interaction frequencies between healthy and dis-

ease tissue was the Mann-Whitney U-test, correcting p-values with the Benjamani-Hochberg method.

These new analyses are now presented as dot plots showing relative proportions of cell types normalized

across healthy and disease tissue. Specifically, dot plots were generated showing the interaction frequency

of macrophages (all macrophages or a subset, i.e. LYVE1+) versus every other cell type in the tissue array.

The color of the dots indicates the intensity of the interaction (red, increased; blue, decreased interaction).

The size of the dots indicates the adjusted p-value for cell-cell interactions and significance is shown by a

black outline around the dot (adjusted p-value < 0.05). Cell types not represented in the dot plot had no

interactions with macrophages of interest.

Glomerulus and granular cell distance computation

In order to analyze the spatial relationship between glomeruli and GC, we aimed to compare the distances

between the two structures across genotypes in mice and used two different methods. In the first method,

using the previously-computed K-means cluster centers, we computed the Euclidean distances between

the cluster centers of all glomeruli and granular cell structures in every array. We then searched for glomer-

ulus-granular cell structure pairs at a minimum distance to each other. Distances were then compared be-

tween BTBR wt/wt and BTBR ob/ob mice. In the second method, we computed the minimum Euclidean

distances between the edges of the convex hulls encompassing glomeruli and granular cell structures us-

ing the distance() method from the Python package Shapely. The distribution of distances was then

compared between arrays of BTBR wt/wt and BTBR ob/ob mice. Statistical tests were performed with

the Mann-Whitney U-test.

UPR pathway analysis in UMOD mice

A list of UPR-specific genes was acquired from Adamson et al., 2016 (Adamson et al., 2016). Genes appear-

ing in < 50% of the UMOD-KI and WT transcriptomic data matrices were removed. The select set of genes

were then subset from the raw transcriptomic data of each of our UMOD-KI and WT mouse arrays and all

data was combined into a single matrix. Beads expressing at least one feature of the UPR signature were

maintained for the rest of the analysis. In order to account for sequencing depth of each bead, we ran the

SCTransform() method from the R package Seurat. Next, we averaged the sctransform-normalized gene

expression profiles of beads classified as being TAL in the medulla, per mouse. Differential expression

was performed across aggregated gene expression profiles of TAL-medulla beads in UMOD-KI and WT

mice. Here, we used the function scanpy.tl.rank_genes_groups() from the Python package scanpy with

the Wilcoxon rank-sum test. We called genes differentially expressed if their adjusted p-value, computed

with the Benjamani-Hochberg method, fell below 0.05. In order to visualize these gene expression differ-

ences across UMOD-KI and WT mice, we used the method clustermap() from the python package seaborn

(v. 0.10.1) (Waskom, 2021), performing min-max normalization for every gene. The same protocol was fol-

lowed in order to conduct DE across TAL-cortex and PCT beads in UMOD-KI and WT mice as negative

controls.
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