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Abstract

Optical coherence tomography (OCT) has revolutionises the diagnosis of retinal disease based on the detection of
microscopic rather than subcellular changes in retinal anatomy. However, currently the technique is limited to the detection
of microscopic rather than subcellular changes in retinal anatomy. However, coherence based imaging is extremely sensitive
to both changes in optical contrast and cellular events at the micrometer scale, and can generate subtle changes in the
spectral content of the OCT image. Here we test the hypothesis that OCT image speckle (image texture) contains
information regarding otherwise unresolvable features such as organelle changes arising in the early stages of neuronal
degeneration. Using ultrahigh resolution (UHR) OCT imaging at 800 nm (spectral width 140 nm) we developed a robust
method of OCT image analyses, based on spatial wavelet and texture-based parameterisation of the image speckle pattern.
For the first time we show that this approach allows the non-invasive detection and quantification of early apoptotic
changes in neurons within 30 min of neuronal trauma sufficient to result in apoptosis. We show a positive correlation
between immunofluorescent labelling of mitochondria (a potential source of changes in cellular optical contrast) with
changes in the texture of the OCT images of cultured neurons. Moreover, similar changes in optical contrast were also seen
in the retinal ganglion cell- inner plexiform layer in retinal explants following optic nerve transection. The optical clarity of
the explants was maintained throughout in the absence of histologically detectable change. Our data suggest that UHR
OCT can be used for the non-invasive quantitative assessment of neuronal health, with a particular application to the
assessment of early retinal disease.
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Introduction

The quantification of cellular health is essential to allow

accurate monitoring of responses to experimental or therapeutic

interventions. Many of the available optical techniques to probe

cellular health rely on either the use of fluorophores to tag

molecules of interest [1,2] or are limited by the need for a high

numerical aperture (NA) in microscopy or Raman spectroscopy

[3]. While ligand-based methods can, in vitro, provide robust

staging of cellular events, such as apoptosis, the in vivo use of these

methods is problematic due to ligand toxicity, the need for ligand

delivery, and an inherent bias towards the detection of late stage

apoptotic events [4].

The development of a high resolution, non-invasive label-free

technique would significantly advance our ability to follow cellular

events over time. Interference based imaging technology such as

optical coherence tomography (OCT) is particularly promising in

this respect and has recently been used for quantification of cell

death in vitro and in vivo [5]. Since the axial resolution in OCT is

not constrained by the numerical aperture of the focusing optics

[6] it has the potential to detect subcellular changes (such as

organelle disruption) that are known to precede cell death [7,8],

allowing the non-invasive characterization of early apoptotic

events. The availability of broad spectral bandwidth light sources

(spectral spread 140 nm and above) has increased the resolution of

these devices to 1–2 mm which should, in principle, allow the

detection of optical changes driven by organelle alterations at a

subcellular scale, even when the identification of individual

organelles is not possible.

To explore this possibility, we imaged cultured neurons and

retinal explants following the initiation of apoptosis using a

specially developed novel spectral domain UHR-OCT. The

chosen wavelength (800 nm) permitted the detection of structural

changes in the 1 mm–4 mm range [9] that might arise from

subcellular organelles (mitochondria, endoplasmic reticulum,

Golgi apparatus and the nucleus) which undergo degenerative

changes in the early stages of apoptosis. At this wavelength,

multiple light scattering produced by these structures [10] will be
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close to maximal and within the detection limits of UHR-OCT

[11]. We therefore reasoned that changes in the light scattering

properties of cells in the early stages of apoptosis could be

detectable by UHR-OCT at the level of cell populations. The

mitochondrial contribution to cellular light scattering [12,13], if

detected, could also be used as a robust biological marker of early

neuronal degeneration, as reconfiguration of the mitochondrial

network is associated with increased mitochondrial membrane

permeability allowing the release of pro-apoptotic molecules such

as cytochrome c, and the activation of the caspase cascade [14,15].

Results

Optical detection of apoptosis in cultured neurons
We first evaluated the time course of neuronal degeneration and

apoptosis in RGC-5 cell cultures following the administration of

staurosporine. Structural changes were observed 20 minutes after

application as the mitochondria changed from a filamentous

network [16] to one composed of discrete rounded structures

(Fig. 1A). Mitochondrial cytochrome c release (indicating the

break down of the cell membrane [14,15]) could be detected only

60 minutes after the treatment. These data confirmed the

existence of a time window for investigation between the initial

changes in mitochondrial morphology and mitochondrial mem-

brane breakdown in which the cells were stressed but maintained

functionality. The identification of active caspase 3 at 60 min

(Fig. 1B) confirmed that the cells were undergoing apoptosis rather

than necrosis. The final stages of apoptosis were identified using

TUNEL labeling with over 90% of cells being TUNEL positive

24 hours after the administration of staurosporine (Fig. 1C).

We then determined whether it was possible to distinguish

healthy cells from final stage apoptotic cells based exclusively on

OCT images captured 24 hours after the instillation of staur-

osporine (see Fig. 2 and Methods). Data were collected from 20

apoptotic and 20 control RGC-5 cover slip cultures each imaged

at 10 discrete locations. Images were processed to remove

background noise, detect coverslip position, and remove any tilt

and imaging artifacts (Fig. 2B). The part of the image containing

the majority of cells (Region of Interest, ROI) was detected

automatically based on coverslip position and surrounding pixel

intensities (Fig. 2C–E). Each ROI was described by a relatively

large set of parameters (65 in total) in an attempt to capture the

essence of the image texture. We then combined data from the

large number of images of healthy cells to generate a quantitative

multidimensional multi-Gaussian representation of the healthy cell

population in the selected feature space. Each new image (a new

point in the feature space) was characterized by its position in the

feature space and by its distance [17] from the center of cluster(s)

representing images of healthy cells. We used a Sammon

projection method [18] to visualize the distance in multidimen-

sional space [17] as a two dimensional plot. Figure 3A shows that

two distinct classes corresponding to healthy and apoptotic cells

were clearly visible 24 hours after the administration of staur-

osporine. When viewed in 2 dimensions, the difference was mainly

confined to the projection [18] taken in the direction of the

maximum variance (MVP). We therefore selected this projection

for subsequent analyses. Figure 3B highlights the difference in the

position of the centers of clusters representing images of healthy

and apoptotic cell cultures using this metric. To establish whether

apoptosis could be detected automatically, we then selected a

random subset from each group (test data that were not used for

the initial definition of the clusters) to classify images using pattern

recognition techniques [19,20] into either of the two groups. On

the basis of this analysis, apoptotic cell cultures could be

discriminated automatically with an accuracy of 95% (Fig. 3A,B;

test data).

Our immunohistochemical staining (Fig. 1A) indicated that

early apoptotic changes could be detected in the first hour

following the treatment with staurosporine. We next determined

whether OCT could also track the pre-apoptotic optical changes

in vitro in the first hour. On the basis of the time course of

degenerative changes, cells were imaged at 10 min intervals

following the administration of staurosporine. The images were

obtained from 34 separate RGC-5 cultures (1 location/culture).

Figure 1. Immunocytochemistry of apoptotic RGC-5 cells. A–B RGC-5 cells during the first hour after induction of apoptosis. Scale bars
100 mm. Cells were pre-treated with CMxRos to identify mitochondrial morphology (red) before probing with antibodies against cytochrome c
(green) (A) and activated caspase 3 (green) (B) as a marker of apoptosis. The arrow heads (A, third panel) are pointing to the positive staining for
cytochrome c that has leaked out from the mitochondria and into the cell cytoplasm, indicating break down of the mitochondrial membranes.
Activation of caspase-3 is an early indicator of apoptosis and is first present at 60 min (B). C–D RGC-5 cells before and 24 h after induction of
apoptosis. Scale bars 20 mm. Apoptotic cells are visualized using green TUNEL staining (left). The cell nuclei are counterstained using Hoechst (blue,
right panel). Absence of any green TUNEL staining on the left (C) indicates absence of apoptotic cells in control culture. Scale bars 20 mm. Prominent
green TUNEL staining (D) and reduced size of the nuclei on the Hoechst staining (right) mark apoptotic cells.
doi:10.1371/journal.pone.0093916.g001
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OCT signals were processed as for the test cell cultures but the

pattern recognition analyses was now limited to a feature space

containing only the most informative features [21] (see Methods).

To quantify changes we defined a Texture Index (TI) as the shift in

the position of the center of the cluster projected in the direction of

the maximum variance (see Fig. 3A). We observed a progressive

shift in the position of the cluster representing treated culture

(Fig. 3D), best represented in the growing value of the TI

throughout the first hour (Fig. 3C). The most dramatic shift

occurred within 30 mins of the administration of staurosporine

with dTI approaching 0 at 50 min (Fig. 3C). Algorithms were

developed to automate the discrimination process based on this

texture analysis; these could separate treated and control cultures

imaged at either 0–20 min or 30–60 min after treatment, with an

accuracy of 85%. These image data correlated well with changes

in mitochondrial labeling and mitochondrial integrity (Mito-

Tracker Red) within 20 minutes of staurosporine administration

(Fig. 1A).

Optical detection of apoptosis in retinal explants
We then tested whether this method could also be used to

quantify neuronal degeneration in intact tissue taking retinal

explants (flatmounts, Fig. 4AB) in a model where sectioning of the

optic nerve initiated apoptosis in retinal ganglion cells [22].

Preliminary experiments showed that explant viability was

critically dependent on sterility, pH, oxygenation and temperature

of the culture medium. In general, ex-vivo explants show low

number of TUNEL positive cells (less than 5%) up to 7 days in

vitro; neuronal death is usually preceded by dendritic degenera-

tion. OCT imaging increased the risk that the explant environ-

ment could be compromised resulting in acclerated cell death

compared with explants kept in the incubator. However,

histological staining (Fig. 4C) indicated that morphology of the

explants was preserved throughout the imaging session. Further-

more, we observed positive (green) Calcein staining with no

propidium iodide (PI staining, red) throughout the imaging session

(Fig. 4D) indicating that the majority of cells remained viable for

the duration of the experiment. Since dendritic atrophy is a robust

marker for retinal ganglion cell degeneration [23,24], we manually

selected several regions of interest in the inner plexiform layer

(IPL) of the retinal explants which contain RGC dendrites rich in

mitochondria for the image analyses (Fig. 4A,B, details in

Methods) for the quantification of image texture. To avoid areas

with prominent blood vessels, several smaller regions of interests

within the IPL were manually selected using a custom graphical

interface written in Matlab. The feature reduction procedure [21]

(Methods) yielded, on average, 15 informative features per image

similar to those seen with the RGC-5 cultures. In the first hour

following axotomy (Fig. 4E,F) the cluster representing images of

axotomised retinal explants shifted in feature space causing the TI

to increase monotonically with time. The greatest change in TI

occurred within 20 min of optic nerve transection. Our automated

discrimination algorithms could sort images taken within first

20 min from those taken 30–60 min post axotomy with 68%

accuracy. It is important to note that the retinal explants remained

transparent throughout the experiment, indicating that the

changes observed were not secondary to opacification of the

retinal tissue.

Discussion

Our study demonstrates that texture analysis of OCT images

can be used to generate quantitative surrogate measures of cellular

health in the early stages of neuronal degeneration. An important

feature of the present study is that we carefully staged the

degenerative changes occurring in neuronal populations using in

vitro and ex vivo preparations. Automated texture analysis was

then able to detect cellular events leading to apoptosis within

30 minutes of the application of staurosporine. While the optical

scatter generated by subcellular changes cannot be used directly to

quantify the structure of individual organelles it can, however, be

used to derive an index characterizing organelle changes in a cell

population. Texture analysis therefore represents a significant step

forward in the use of OCT for quantifying the integrity of

neuronal tissues and, in particularly, the retina.

OCT [25,26] is acutely sensitive to changes in small-angle

forward scatter components in the image arising from subtle

variations in cell structure and packing [27]. In the context of

quantifying the dimensions of biological structures, this scatter has

historically been regarded as a negative influence on image quality

[28]. Not surprisingly, commercial OCT systems remove speckle

in the image as one of the first processing steps to facilitate the

delineation of tissue boundaries [29]. The realization that speckle

(coherent noise) contains an optical component arising from the

scattering effects of subcellular structures has prompted the use of

texture analysis [30,31] to extract image features that correlate

with this signal. Schmitt was among the first to consider the origin

of speckle in OCT images, suggesting that it was generated by

scattering between photons combined with the interference of

wavefronts from multiple scatterers [32]. More recently, there has

been increasing interest in the use of speckle information for the

extraction of biological information at scales that exceed

theoretical resolution of the OCT [33–35]. The observation that

the optical texture of retinal layers is consistent with their

anatomical composition [6] (i.e. whether a given layer is composed

Figure 2. Imaging methodology. A. Schematic diagram of the UHR-
OCT system. B–E. Examples of UHR-OCT images of RGC-5 cells; B.
Original image; C. Cropped image; D. Processed image with the region
of interest masked; E. Refined region of interest; F–G. Post-processed en
face images of RGC-5 cells within region of interest in control (F) and
apoptotic cell cultures (G). Scale bars 40 mm.
doi:10.1371/journal.pone.0093916.g002
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predominantly of neurites or cell bodies) indicates that structures

beyond the theoretical resolution limit of the OCT can, when

viewed as an aggregate structure generate informative textural

information. The use of OCT in combination with texture analysis

to distinguish differences between similar types of tissues was first

described by Gossage et al. [30] who were able, using a

combination of statistical and spectral texture analysis, to

discriminate tissue types (skin and fat). Texture analysis has also

been used with other imaging modalities to characterize tissue at

the cellular level. It has been applied to ultrasound images to

discriminate choroidal melanoma subtypes with a high degree of

diagnostic precision [36]. Texture based measures, obtained by

retroillumination methods have also been used to quantify the

degree of posterior capsule opacification following cataract surgery

[37].

In the present study we have not attempted to identify the

source of the scatter. Comparison with cell cultures shows that

textural changes occurred at a time when disruption of the

mitochondrial network would be expected to occur and we would,

on this basis, consider the mitochondrial network as a likely

candidate source of the signal changes. In times of cellular stress,

mitochondria change from filamentous network in which fused

elongated organelles extend over 10 mm [38] to a collection of

fragmented rounded organelles [9]. Furthermore, in the closing

stages of apoptosis, nuclear structures sized in the range of 3–5 mm

[39] should generate additional changes in scatter. Cells texture

can also change as a result of the formation of stress granules [40]

which form particles in the range 1–2 mm. Significantly, these

stress granules can appear and disappear without the initiation of

apoptosis and therefore act as a sensitive marker of cellular health

[41]. Areas with 1 mm differences in average scatter diameter can

be identified/classified using an amplitude and frequency (AM-

FM) modulation analysis of the OCT signal to detect subtle

changes in the spectral profile resulting from variations in the size

of the scatters [42]. Pitris et al used polystyrene beads dispersed in

polyacrylamide gels as imaging phantoms to demonstrate a high

degree of accuracy [43] in the discrimination of the scatterer

particle size.

Our study used stable ex-vivo tissues imaged using high

aperture lenses, which may constrain the application of this type

of analysis to in vivo studies. For the purposes of imaging of living

eye where the numerical aperture would be reduced, the

techniques should still be transferable, especially in combination

with adaptive optics to allow improved transverse resolution [44].

The presence of media opacities such as cataract, while they may

reduce the signal to noise ratio, should not prevent high resolution

texture analysis since the use of imaging wavelengths greater than

1 mm spacing can limit this type of signal attenuation [45].

Techniques for image stabilization [46,47] during acquisition and

the use of faster cameras should reduce any movement artifacts

with in vivo imaging. Since motion artifacts will affect all retinal

layers and, on average be similar in eyes regardless of pathological

status, these should not be major confounders. We have recently

demonstrated that texture analyses could also be employed to

enhance the diagnostic capacity of current clinical OCT imaging

in the discrimination of eyes with glaucomatous damage [48].

To conclude, we demonstrate for the first time the feasibility of

using texture analysis of OCT images for non-invasive character-

Figure 3. Optical signatures of apoptotic and pre-apoptotic cells. A–B. Gaussian mixture model analysis of control and apoptotic RGC-5 cell
images (24 h after treatment with 1 mM Staurosporine). Data were collected from 20 coverslips with 10 images per coverslip taken from different
regions within each coverslip. Two distinct classes were identified based on texture analyses (control training set vs 24 h training set).
Multidimensional data were visualized using Sammon projection along the axis with the largest (maximum) variance (MVP) and the second best
variance (SVP). An automatic procedure placed new images (control test set and 24 h test set) into the correct category in 95% of cases. The Texture
Index (TI) was defined as a distance between data classes along the MVP axis. C–D. Gaussian mixture model analysis of early stages of apoptosis. Data
were collected from 28 cover slips, imaged every 10 min following the administration of staurosporine. Classes of cells for each time point were
identified based on the texture analyses. A progressive shift in Texture Index (TI) defined as before was observed within 20 min of treatment.
Significance levels were calculated by t-test (*p,0.05, ** p,0.01,*** p,0.001).
doi:10.1371/journal.pone.0093916.g003
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isation of neuronal (retinal ganglion cell) degeneration. Longer

wavelengths, while associated with a slight reduction in axial

resolution provide better signal to noise ratio for imaging deeper

structures, raising the possibility that texture analysis could also be

used for the assessment of the integrity of outer retinal layers.

Methods

RGC-5 culture
Cultured RGC-5 cells were obtained from ATCC (American

Tissue Culture Collection) and prepared as previously described

[49]. Cells were grown on sterile glass coverslips in media

containing low glucose DMEM (Sigma) supplemented with 10%

FBS (Invitrogen), 4 mM Glutamine (Invitrogen), 100 u/ml pen-

icillin and 100 mg/ml streptomycin (Invitrogen) and incubated at

37uC/5%CO2 until 70% confluent. For UHR-OCT imaging,

coverslips were put in Sykes-Moore chambers (SciQuip) kept at

37uC with a thermostatically controlled heating stage. To induce

apoptosis cells were cultured in serum free growth media

containing 1 mM staurosporine.

Retinal explant culture
C57BL/6 mice (age P15 and above) were obtained from

Charles River (UK). All procedures were conducted in accordance

with Home Office regulations and the ARVO statement for use of

Animals in Ophthalmic and Vision Research. Mice were

humanely killed at a designated establishment by CO2 induced

asphyxiation (Schedule 1 Method, United Kingdom Animal

Scientific Procedures Act 1986).The eyes were enucleated and

the anterior segment, lens, vitreous body, retinal pigmented

epithelium, and sclera removed. The retina was then flat mounted,

retinal ganglion side up, on a nitrocellulose insert (Millipore, UK)

before being placed in a Sykes-Moore chamber kept at 37uC as for

the cell cultures. Explants were held in position using a slice

anchor (Harvard Apparatus) and submerged in Neurobasal

medium (Invitrogen) supplemented with 2% B27, 0.8 mM L-

Glutamine, 15 mM HEPES, 100 U/ml penicillin and 100 mg/ml

streptomycin. Explant preparation time was completed in under

13 min in all cases. Explants (n = 13) were then imaged over

60 min, using the same system as for the cell cultures.

Immunocytochemistry
Mitochondria were labelled using Mitotracker Red (CMxRos)

(Invitrogen). RGC-5 cells were treated with 200 nM CMxRos in

growth media for 20 min prior to induction of apoptosis. Cells

were then fixed at 10 min intervals for the first 60 min and then at

24 h with 1% paraformaldehyde at 4uC overnight.

Figure 4. Optical signatures of apoptotic cells in tissue. A–C. Images of murine retinal explants. A: OCT, transverse image through the retina,
retinal ganglion cell side up. 10 regions of interest (ROIs) were collected from 13 explants (10 ROI per explants) and imaged every 2 mins during the
first hour (imaging started 10–13 min after transection of axons); B.: Schematic drawing of retinal layers (RGC, retinal ganglion cell layer; IPL, inner
plexiform layer; OPL, outer plexiform layer; PR, photoreceptor layer). C. The morphology of the explants was preserved during the imaging session as
indicate by Haematoxylin and Eosin staining. Scale bars 100 mm. D. Positive Calcein AM (green) but not propidium iodide (PI) staining (red) indicates
that the retinal explants remained alive throughout the imaging session. A few dead cells were sometimes observed at the end of imaging session
(scale bar 100 mm). E–F. Gaussian mixture model analysis of early apoptosis in retinal explants. A progressive shift (similar to RGC-5 cells) in the
Texture Index (TI) was observed over time. Significance levels were calculated by t-test (*p,0.05, ** p,0.01,*** p,0.001).
doi:10.1371/journal.pone.0093916.g004
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Immunohistochemistry
Fixed RGC-5 cells were permeabilised with 0.2% Tween-20 in

PBS for 30 min at room temperature before blocking with 5%

goat serum in PBS. Cells were incubated with primary antibody

directed against the active form of Caspase-3 (Sigma) (1:100) or

cytochrome C (1:100) overnight at 4uC. Visualisation was

achieved by the addition of goat anti rabbit Alexa Fluor 488 for

caspase 3 or donkey anti sheep Alexafluor 488 for cytochrome C

(Molecular Probes). Cell slides using Prolong Gold antifade

reagent (Invitrogen). Caspase 3 labelling was viewed with an

epifluorescent microscope (Leica DM6000B). Cytochrome C

labelling was imaged with a Leica TCS SP2 AOBS confocal

scanning laser microscope (Leica, Heidelberg) using appropriate

excitation and emission parameters for Hoechst (Ex. Max: 365;

Em Max: 480), Alexa 488 (Ex. Max: 494; Em. Max: 519) and

Mitotracker Red (Ex. Max:578; Em. Max: 599). Z-stacks of optical

sections were collected through the entire volume of the cells using

a z-step of 0.3 mm. Z stacks were viewed as maximum intensity

projections prepared using Leica confocal software.

TUNEL labeling
TUNEL labelling was carried out using the ApopTag Fluores-

cein in situ apoptosis detection kit (Millipore) as per manufactur-

er’s instructions.

UHR-OCT system
Images were obtained using a spectrometer-based frequency-

domain OCT using a Femtosource Integral OCT Ti: Sapphire

laser (Femtolasers GmbH, Austria) with a bandwidth of 140 nm.

The sample arm contained a Field Programmable Grid Array

(FPGA) integrated with a CameraLink capable frame grabber.

The FPGA controlled a galvanometric x/y scanner built into a

microscope with a Thorlabs LSM02-BB broadband telecentric

scan lens (0.1NA objective, 7.5 mm working distance for cells,

0.06NA and 25.1 mm working distance for explants) (Thorlabs,

Newton, New Jersey, USA). The axial resolution was ,3 mm with

the transverse resolution in the range 6–8 mm. The reference arm

comprised a moveable stage with a gold-coated hollow corner

cube reflector allowing adjustment of the reference delay, and a

neutral-density filter-wheel was used to keep the signal just below

saturation of the spectrometer (ATMEL AViiVA M2 CL 2048

pixel CCD). The FPGA, real time display and data storage were

controlled by custom software written in Labview (National

Instruments). The light source was connected to a 90/10 beam

splitter (Ipitek Inc, Carlsbad, CA, USA). The scanning microscope

was connected to the 10% arm of the beam splitter and samples

were exposed to ,1.4 mW of power only during image

acquisition. Images were recorded using a 12 bit 2048 pixel

silicon CCD-camera (AVIVA M2 CL2014-BAO, Atmel, CA,

USA) at a line rate of 20 kHz and 50 ms exposure time. Sample

and reference arm comprised FiberCore SM750 single mode

fibers (cut-off wavelength of ,650 nm, Fibrecore Ltd, UK) which

were looped through polarization control paddles to maximise

fringe visibility.

OCT image analyses
OCT images were acquired as stacks of 512 slices sized 512 by

1024 pixels (746 mm by 1492 mm). OCT images were subjected to

standard image processing techniques in which the imaging

artefacts such as light reflections were removed from the image.

The position of the coverslip supporting the cells was detected by

examining the direction of high frequency image component

(when pixels intensity change rapidly or abruptly), and any tilts in

the 3 cardinal directions were removed by rotating the image

accordingly. Line scan artefacts were removed by FFT filtering.

All image processing was performed in Matlab (Mathworks) using

standard functions from image analysis and statistics toolboxes.

Masking the Region Of Interest (ROI) for in vitro cell
culture

For each 3D image, the pixel intensity values were plotted as a

histogram to manually determine a heuristic threshold to remove

the majority of pixels with low signal to noise ratio that could be

attributed to background noise. All pixels above the threshold were

used to define the location of the ROI (Fig. 1DE). This approach,

however, did not guarantee continuity of the ROI, because regions

of low signal to noise intensity could produce holes within the ROI

boundaries. To resolve this issue we used morphological closing

techniques to adjust the ROI boundaries, eliminate holes and low

intensity regions around the border, and produce a homogeneous

3D globule shaped ROI. The degree of morphological erosion was

set empirically to ensure that any background signals were

removed. All brightness variations within the image (largely

dependent on the depth of focus) were corrected using histogram

equalization inside the ROI.

Masking the Region of Interest for explants
Automated ROI selection in retinal explants was complicated

by shadows cast by superficial retinal layers (mostly from blood

vessels). A semi-automatic approach was therefore used in which

multiple ROIs within the IPL were first selected manually using a

custom designed graphical user interface (GUI). These selections

were then adjusted automatically as for the cell cultures.

Feature selection
To reduce data dimensionality each ROI was parameterized

using 65 features. The entropy, range, and standard deviation

were calculated for every pixel of the 3D image and for each of

three matrices mean, median, entropy and standard deviation,

were calculated across the entire ROI; the values were normalised

according to the grey scale resolution of the original image (for

example, for the 8 bit image the entropy value was divided by 8

and standard deviation multiplied by 2) thereby producing the first

12 features. The 3rd and 4th moments of pixel intensity distribution

were averaged across the ROI adding 2 more features. Three co-

occurrence matrices were computed with an offset of 5 pixels (size

of a single cell) along one of three x, y, and z coordinates. For each

of the co-occurrence matrices the contrast, correlation coefficient,

energy and homogeneity were averaged across the entire ROI,

producing the next 12 features. The gray scale image was then

transformed into a binary black and white image and the number

and size of contiguous black patches in the image (referred to as

particles) was estimated. The data were quantified using 12 bins

histogram, where each bin represented the number of particle of a

given size. The value of each bin was taken as an additional

feature. The histogram bin was then doubled in size, resulting in 6

bins histogram (6 features), and doubled again - 3 bins histogram

(3 features), bringing the number of granulometry features to 21.

The directional wavelet analysis was performed [50,51] along the

x and y axes, and at 45 degree between the x and y axis; for each

of the directions mean and standard deviation of coefficients for

the three smallest scales were calculated, adding a further 18

features.
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Feature Analyses
Each class of data (e.g. apoptotic vs control) was represented by

a Gaussian Mixture Model (GMM). This approach has the

advantage of allowing for the presence of subpopulations within

the class (in our case the number of subpopulations was set to 4)

without any a priori knowledge of their parameters. The best

model parameters were determined in accordance with Akaike

Information Criteria [52] (AIC):

AIC~2k{2 ln(L) ð1Þ

where k is the number of subpopulations, and L is the likelihood

function characterising the fit of the model to the training data.

The validation stage consisted of presenting a ‘‘new’’ image to

be classified into one of the existing classes based on the

Mahalanobis distance [17]:

D(x,y)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x{y)T S{1(x{y)

q
ð2Þ

where x is a point in feature space representing a new image and y

is a point representing the centre of a cluster of a given class; S is

the covariance matrix of the cluster. The new image was assigned

to a class separated by the minimal distance. The cross-validation

technique (‘‘leave-one-out’’) was used to assess the accuracy of this

classification. For each step of cross-validation most of the data

(excluding one subset) were used for the training procedure (e.g.

finding parameters for each GMM). The excluded subset was then

used for model validation, e.g. all images of this subset were

classified (correctly or incorrectly) to one of the classes learned

from the training set. Multiple rounds of cross-validation were

performed, and the percentage of correctly classified images was

estimated.

To visualise multidimensional data a Sammon [18] projection

along the axis with the largest variance was used. Since the

Mahalanobis distance [17] is only defined for two points within the

same class/cluster, the distance between two points from two

different clusters was calculated as following:

D(x,y)~
2

1
D1

z 1
D2

ð3Þ

where D1 is Mahalanobis distance computed using the covariance

matrix of the first cluster and D2 is Mahalanobis distance

computed using the covariance matrix of the second cluster.

The Centre of Gravity (COG) plots were produced by finding the

mean of each cluster; the confidence intervals were computed,

assuming normal data distribution.

COG~�DDzZ
sffiffiffiffiffi
N
p ð4Þ

Where �DD is an average distance, Z is the upper critical value for

the standard normal distribution (1.96 for 95% confidence

interval), N is a number of points (images used for validation),

and s is the standard deviation of distance.

Feature Reduction. Feature reduction [20] helps to further

decrease dimensionality and speed up the learning process. The

feature reduction was performed using sequential forward search

and an additional cross-validation (‘‘leave-one-out’’) procedure

over each training set. In practice, for each step of the analysis one

data subset was chosen for validation (classification) and the rest of

the data were used for training as before. However, the training set

was also subdivided. One data subset from the training set was

used to select the most relevant features, and the rest of the

training data were used to find GMM parameters as a function of

selected feature set. The procedure was repeated for every subset

from the training set and the multiple sets of ‘‘optimal’’ features

were produced. Due to the limited set of training data ‘‘union’’ of

all the relevant features was performed. It is important to note that

classification was performed on the data subset that was different

and completely independent from the training set. For the larger

set of training data, the optimal feature set was formally defined

based on the binary nature of classification results. The

classification error p can be described by the Bernoulli distribution

(a form of exponential distribution), thus the optimal number of

features k can be estimated using Bayesian Information Criterion

(BIC) [21]:

BIC~n ln(p(1{p))zk ln(n) ð5Þ

where n is the number of features. During training, all features

were sorted based on their classification contribution and the

resulting set formed by adding classification features one by one,

starting from the most relevant feature, while evaluating BIC after

each addition. The minimum BIC value corresponded to the most

appropriate feature set.

Identifying the optical signature of apoptotic RGC-5 cells
24 h after treatment with staurosporine

For the first experiment, data were collected from 20 apoptotic

and 20 control RGC-5 coverslip cultures with each coverslip

imaged at 10 different locations. The quality of all images was

visually inspected: images that were out of focus, had air bubbles in

the cell media or a build-up of moisture on the cover slips were

discarded. The remaining 120 control and 120 apoptotic 3D

images (also referred to as images or image stacks) were selected

for analyses. After initial image pre-processing, a fully automated

approach was used to locate the cells within the region of interest

(ROI).

A set of 65 parameters/features that described each ROI in

compact form was then defined. We used the cross-validation

(‘‘leave-one-out’’) technique to evaluate the statistical accuracy of

the classification. Data were divided into subsets, containing 10 to

20 image stacks according to the imaging session (to minimise

variability due to the manual adjustment of parameters such as

light polarisation during acquisition).

Identifying the optical signature of early apoptosis in
RGC-5 cells

Data were collected from 34 separate RGC-5 cultures

undergoing apoptosis, restricting our analyses to the first hour

after application of staurosporine. Some of the images were

discarded after initial visual inspection due to poor quality, leaving

28 cultures, that were imaged at single location every 10 min from

10 to 60 min post staurosporine treatment (168 image stacks in

total, divided into 6 subsets according to the imaging session).

Identifying the optical signature of early apoptosis in ex
vivo murine retinal explants

The 13 retinas were analysed and 10 ROIs (128664664 pixels)

were defined within the IPL of each retina. This produced 130

image-stacks for each time point; the data were further divided

into 5 subsets.
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