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Navigation can be broadly defined as the process of moving from an origin

to a destination through path-planning. Previous research has shown that

navigation is mainly related to the function of the medial temporal lobe (MTL),

including the hippocampus (HPC), and medial prefrontal cortex (mPFC),

which controls retrieval of the spatial memories from this region. In this study,

we suggested a cognitive and computational model of human navigation

with a focus on mutual interactions between the hippocampus (HPC) and

the mPFC using the concept of synchrony. The Van-der-pol oscillator was

used to model the synchronous process of receiving and processing “what

stream” information. A fuzzy lookup table system was applied for modeling

the controlling function of the mPFC in retrieving spatial information from

the HPC. The effect of attention level was also included and simulated.

The performance of the model was evaluated using information reported in

previous experimental research. Due to the inherent stability of the proposed

fuzzy-oscillatory model, it is less sensitive to the exact values of the initial

conditions, and therefore, it is shown that it is consistent with the actual

human performance in real environments. Analyzing the proposed cognitive

and fuzzy-oscillatory computational model demonstrates that the model is

able to reproduce certain cognitive and functional disturbances in navigation

in related diseases such as Alzheimer’s disease (AD). We have shown that an

increase in the bifurcation parameter of the Van-der-pol equation represents

an increase in the low-frequency spectral power density and a decrease in

the high-frequency spectral power as occurs in AD due to an increase in the

amyloid plaques in the brain. These changes in the frequency characteristics

of neuronal activity, in turn, lead to impaired recall and retrieval of landmarks

information and learned routes upon encountering them. As a result, and
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because of the wrong frequency code being transmitted, the relevant set

of rules in the mPFC is not activated, or another unrelated set will be

activated, which leads to forgetfulness and erroneous decisions in routing and

eventually losing the route in Alzheimer’s patients.

KEYWORDS

navigation, hippocampus, medial prefrontal cortex, interaction, Van-der-pol
oscillator, rule-based fuzzy system, retrieval control

Introduction

Navigation is the process of moving from a current location
(origin) to a predetermined goal on a path resulting from the
process of planning. Indeed, navigation is a cognitive process
that enables the person to remember different places and
spatial relations between objects and find their path toward the
goal. In recent years, navigation has been the subject of much
research especially since it is an essential cognitive function
for all animals and humans, and because of the increasing
number of occurrences of navigational difficulties in dementia-
related diseases such as Alzheimer’s disease. In fact, navigational
difficulties are common in patients with different types of
dementia (not only AD) and more than 60% of persons with
dementia will wander. This clearly shows the importance of the
issue.

Due to the multi-faceted nature of human navigation and
routing, there are a multitude of approaches in related research,
e.g., in cognitive and computational modeling of its different
aspects. Some deal with this issue at the cellular (microscopic)
level, some at the mesoscopic level, and some at the macroscopic
and functional level (Madl et al., 2015).

Some studies only investigate the performance of one brain
area during the relevant task (Nyberg et al., 2022), some others
investigate, study, and model the interaction of several brain
areas during the relevant task like (Chersi and Burgess, 2015).
Also, some studies include the process of learning and finding
the optimal path (with different approaches e.g., the shortest
time or the shortest path, etc.), or planning in navigation,
and use Markov’s and Bayesian decision modeling to update
map-learning based on observed evidence (Kaplan and Friston,
2018). The other approach is to only investigate how the learned
maps are recalled and the correct route is chosen based on
retrieved memory.

Due to the inherent complexities of the navigation problem
and the simultaneous activity of many brain areas during this
cognitive task, and because in various studies only a part of the
related brain areas and certain aspects of the navigation process
have been studied and modeled; far more studies are needed
in this field to provide a more comprehensive cognitive and
computational model of navigation.

In this study, our aim is to provide a cognitive and
computational model of human navigation with a stronger focus
on mutual interactions between the hippocampus (HPC) and the
mPFC (as spatial memory retrieval controller) using the concept
of synchrony. The assumption of the problem is that learning
has been done. Also, in this study, considering the functional
nature of different brain regions, a computational model with
greater similarity to the actual human performance in retrieving
information during navigation has been presented as compared
to previous models. With this explanation, we will continue to
explain the topics and studies in this framework.

The process of navigation depends on two types of
representations: egocentric (self-to-object) and allocentric
(object-to-object). Since egocentric information and path
integration are not sufficient, the allocentric representation is
necessary for navigation towards a destination that is initially not
observable. Evidence exists regarding the role of the parietal lobe
and PFC in providing egocentric representations and short-term
memory (STM), whereas medial temporal lobe (MTL) provides
allocentric representation and long-term memory (LTM;
Hartley et al., 2004). The allocentric representation is in fact, a
result of processing and storage of information by different HPC
cells.

The HPC is a c-shaped cortical structure that forms an
important part of the MTL. There is a hippocampal segment
in each hemisphere of the brain. The term “hippocampal
formation” often refers to the HPC along with its related
structures including the subiculum and entorhinal cortex
(EC). The EC is located behind the HPC and connects
it to the cortical areas and provides an important input
to the HPC. The HPC consists of different cell structures
like pyramidal cells including Cornu Ammonis1–3 (CA1,
CA2, CA3) which are also called place cells, and granule
cells including the dentate gyrus (DG), which have different
tasks and are arranged along the longitudinal axis of the
hippocampus in an orderly manner. According to studies,
the EC, DG, and CA1–3 areas and the synaptic circuits
between these areas play a decisive role in learning and
retrieval. With the discovery of the types of HPC formation
cells and their functions, new mechanisms of routing and
navigation were understood. To read more about the anatomical
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details of the hippocampus, the interested reader can refer to
(Anand and Dhikav, 2012).

It is often stated that spatial memories are stored as cognitive
maps (Moscovitch et al., 2005), and such maps are used in
the process of path planning. According to Tolman’s study,
the cognitive map is in fact a unique representation of the
spatial environment that the brain creates and employs for
supporting the memory and guiding further steps (Tolman,
1948). The process of navigation based on cognitive maps is
mostly related to the function of the MTL including the HPC
(Burgess et al., 2002), and the cognitive map is stored and
presented by different types of HPC formation cells including
place cells, grid cells, boundary cells, and head direction cells
(O’Keefe and Dostrovsky, 1971; Eichenbaum et al., 1999; Fyhn
et al., 2004; Moser et al., 2015; Epstein et al., 2017; Nyberg et al.,
2022).

The HPC and mPFC regions strongly contribute to the
encoding and retrival of episodic memories (Jin and Maren,
2015). It has been shown through spatial working memory
tasks that damage to the PFC impairs the spatial firing of
the HPC place cells (Jin and Maren, 2015). The HPC plays a
vital role in long-term memory, and it has also been reported
to be involved in short-term memory, where certain modes
of spatial processing are required even for very brief periods
(Hartley et al., 2007). Lesion and imaging studies show that
episodic memory retaining and retrieval are always dependent
on the HPC, whereas semantic memories possibly benefit
from the HPC while still being able to do without it. Recent
evidence indicated that new events are learned in the context of
existing memories. In the HPC and mPFC, related memories are
represented by integrated codes. These codes constitute the basis
for spatial, temporal, and conceptual maps that resulted from
every experience (Morton et al., 2017).

Decision-making is yet another principle issue in routing
(Patai and Spiers, 2021) in order to choose the correct route at
crossroads. When we make a decision, we often need to consider
the available options in order to choose the most appropriate
one. This process requires an evaluation of the pros and cons
of previously available options, and this, in turn, depends on
the memories of previous actions and their corresponding
outcomes. It has been reported that HPC and PFC are needed
for encoding and retrieval of information and decision making
(Yu and Frank, 2015; Nyberg et al., 2022). These regions interact
through oscillatory synchronization in the theta frequency band
(Place et al., 2016). Theta band activity increases with increased
working memory load (Jensen and Tesche, 2002; Kaplan et al.,
2017).

In 2013, Preston and Eichenbaum (2013) showed that mPFC
and medial entorhinal cortex (MEC) play distinct roles in
retrieving representations of context-based memories stored
in the HPC. The mPFC provides contextual control over the
retrieval of object location memories using strict rules, whereas
the MEC provides the required information for HPC to map

the spatial context, including where essential events occurred
(Preston and Eichenbaum, 2013). Later in 2016, they focused on
the dynamics of interaction between the HPC and PFC in rats
during the use of spatial context for guiding the retrieval of object
memory. Analysis of functional information in this study has
shown that while entering the context (i.e., the place where the
objects are located), the contextual information stream would
be from the HPC towards the PFC. However, upon beginning
to focus on the objects themselves and sampling thereof, the
information stream is reversed. This finding lends support to
the fact that the PFC controls the retrieval of HPC memory
representations corresponding to context (Place et al., 2016). So,
it seems that HPC supports mPFC with bottom-up information
and mPFC in a top-down manner affects prospective spatial
representations (Brown et al., 2016; Nyberg et al., 2022).

In 2015, Chersi and Burgess (2015) paid attention to the
collaboration between the HPC and striatum. Using the previous
findings, they introduced a simplified cognitive architecture that
included: 1-reinforcement learning by the striatum on the basis
of representations of sensory and practical states, 2-implicit
connections between sensory information and representations of
allocentric conditions in the HPC, and 3-comparing and judging
the outputs of both systems based on confidence or uncertainty
in the mPFC (Chersi and Burgess, 2015). Despite alleviating the
limitations of previous models by taking the role of striatum into
account, the mutual relations between the HPC and PFC were
not considered in this model. In addition, the role of the PFC is
limited to solely judging between two inputs from the striatum
and the HPC.

Available data, demonstrate that the HPC-mPFC interaction
during the encoding and retrieval of the episodic memory is
dynamic, and these regions are strongly involved in encoding
and retrieval of episodic memories (Jin and Maren, 2015). Also,
this mutual interaction supports content-dependent memory
encoding and retrieval (Preston and Eichenbaum, 2013).
There is abundant evidence that in the HPC-mPFC mutual
information stream, events triggering the PFC control over
the HPC memory retrieval originate from the ventral/anterior
HPC. Information from these regions is directly sent to the
mPFC, and the mPFC affects the retrieval of the specific object
representation through its strong connections to the perirhinal
(PRC) and lateral entorhinal cortex (LEC) cortical regions
(Preston and Eichenbaum, 2013; Zangbar et al., 2020).

The HPC is viewed as a constructor and retriever of
specific memories, whereas the PFC integrates features of
related memories, which constitutes the context, from a set
of continuous experiences, such as a common place in
which several events have occurred or a common set of
implementing rule tasks that manage multi-memory decisions.
In this way, whenever the PFC points to a specific context
or content, it subsequently biases and activates context or
content-related memories in the HPC and other brain regions
and “turns off ” non-related memories. In fact, the mPFC
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employs these contextual representations to control the retrieval
of detailed memories in the HPC. Studies show that the
neuronal populations in the mPFC are fired selectively in
behavioral contexts. These neuronal activity patterns in the
mPFC are predictors for the switching between the recall
of place and response strategies in the spatial memory
domain. When the mPFC is inactivated, dorsal HPC neurons
non-selectively retrieve both related and non-related objects’
memory representations. These findings show that the HPC is
able to retrieve memories even in the absence of input from
the mPFC, and the actual role of the mPFC is to select the
appropriate memory for a specific context or content. Based
on this scenario, in addition to environmental landmarks that
define a context, events occurring in that context are processed
by the anterior/ventral HPC (Preston and Eichenbaum, 2013).
Through mapping and direct connection, the present location
and local trajectory information (Jin and Maren, 2015) are sent
to the mPFC, where neural ensembles create a set of distinct
contextual rules during the learning process. Consequently, after
the learning process, when the person is placed in the same
context, and the processed sensory information arrives at the
mPFC directly from the anterior/ventral HPC, mPFC applies
rules corresponding to the context. This is performed to employ
appropriate representations (with regard to the context) in
the dorsal/posterior HPC while suppressing context-irrelevant
memories (Preston and Eichenbaum, 2013) and making the final
decision based on the retrospective and prospective information
received from HPC (Nyberg et al., 2022). These concepts
constitue the basis for the novelties of this article.

This article is a novel attempt to address some of the
challenges and shortcomings in the current understanding
and modeling of navigation. Despite advances in this field,
there is still much ambiguity surrounding important aspects of
navigation. These include how mammal brains represent goal
locations; or how goal-related representations are transferred
from the Hippocampal formation to other regions of the
brain. Goal identification codes depend on the type and stage
of navigation. The importance of clarifying the navigational
strategies and demands from which the goal codes originate has
thus been underlined by previous reports (Nyberg et al., 2022).

In this article, we present a step towards clarifying the
process of navigation and what happens in the retrieval of
information relating to the location and nature of the goal
and subgoals. To overcome the above-mentioned ambiguities,
a new cognitive and computational model of navigation with
more focus on the HPC-mPFC interaction and the control
function of the mPFC in memory retrieval during navigation
is proposed.

Some novelties of this study in comparison with previous
navigation cognitive and computational models are as bellow:

‚ Inclusion of the mutual interaction between the HPC and
mPFC in the cognitive and computational models.

‚ Inclusion of the short-term memory unit and as a
consequence, the spatial working memory.

‚ Computational modeling of the mPFC as the controller of
cognitive map memory retrieval.

‚ Providing suggestions for modeling the what and where
information streams during navigation.

‚ Modeling based on the concept of synchrony, and a
new analysis of the cause of forgetfulness and losing the
path in people with Alzheimer’s by analyzing changes in
parameters.

‚ Inclusion of the attention level parameter in the navigation
model.

Background

In the following, we explain our proposed cognitive model.
The cognitive and computational model scenario is based on
the synchrony mechanism in the brain regions’ interactions
corresponding to cognitive functions. Thus, we first provide
a brief explanation about the synchrony mechanism in brain
interactions.

Theory of brain communication based on
synchronous mechanism

One of the central issues in cognitive neuroscience is
the question of which processes provide for communications
within and between neural networks in the brain. The basic
hypothesis is that phase synchrony plays an important role in
process binding, and this can be one special type of large-
scale communication within the brain. Studies have shown that
synchronous theta band activity between the HPC and mPFC
is necessary for spatial working memory and remote memory
recall (Wirt and Hyman, 2017). Findings show that theta-alpha
phase pairing reflects the control processes in the extensive
memory system, and theta phase synchronization provides
controlled access to episodic memory (Klimesch et al., 2010).
Theta band activity specifically increases during the observation
of landmarks. Similarly, increasing and amplifying theta power
during navigation toward the goal compared to navigation
without a goal demonstrates the role of theta oscillations in
retrieving spatial memory and path planning (Zangbar et al.,
2020; Nyberg et al., 2022). Such an increase in theta power has
also been observed in navigation over longer paths which is due
to the need to retrieve more spatial information and longer path
planning. The higher theta band power in familiar environments
can be justified by the fact that more spatial information is
available that can be used and retrieved to guide motion (Herweg
and Kahana, 2018). Theta signal has been observed both in the
encoding and retrieval phases. The nature of the transferred
information is still unknown (Wirt and Hyman, 2017), and only
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several hypotheses have been suggested based on observations
from laboratory recordings. Considering the complicated nature
of brain functions, we have presented a relatively inclusive
cognitive model by comprehensively reviewing highly cited
research reports in Moghadam et al. (2021). The proposed model
is based on the concept of synchrony in both encoding and
retrieval.

A cognitive model of navigation towards
the initially unobservable destination

Our proposed model is based on an extensive survey of
existing cognitive, behavioral, and biological literature. This
model was presented regarding the function of the brain’s active
regions involved in cognitive-map-based navigation and their
interrelations. Figure 1 shows the model in a step-by-step and
continuous manner from the input of sensory information to the
final processing and execution in a complete performance loop.

As mentioned, the complete set of activities by place cells,
grid cells, boundary cells, velocity, and head direction cells
constitute the cognitive map during the stage of learning. The
next step of the cognitive map toward the goal is retrieved by
updating current information from the head direction cells and
locations of the agent and the landmarks under the control
of the mPFC. This information is compared to environmental
information to assess the correctness of chosen steps towards the
goal.

Percepted environmental information about objects and
events is initially processed in specific brain regions of various
sensory modalities and constitutes the what and the where
streams (Figure 2).

The what stream is directed to the PRC and LEC while the
where stream is directed towards the retrosplenial cortex (RSC),
parahippocampal cortex (PHC), and MEC after being processed
in the posterior parietal region. Subsequently, these two streams
converge in the HPC. Then the PHC and RSC provide the
fundamental inputs which allow the stored cognitive map within
the HPC to anchor to fixed environmental landmarks. Landmark
anchoring helps faster and more exact learning and retrieval.

In the dorsal (animals)/posterior (humans) HPC, neuronal
populations store particular objects and places that have
occurred in a specific context. On the contrary, neuronal
ensembles in the ventral (animals)/anterior (humans) regions
of the HPC connect events within the context and hence
create distinctions between different contexts (Preston and
Eichenbaum, 2013).

As described earlier in this section, the PFC is a vital
structure that supports the working memory and executive
functions, and its activation is generally observed during the
entire navigation task (Zangbar et al., 2020); especially when
the person has to deviate from the trajectory line in order
to reach the goal (Lithfous et al., 2013). It can therefore be

concluded that the stored rules within the mPFC are formed at
the main landmarks, where turning and path changing occur.
Upon reaching these landmarks, the control unit issues the
proportionate command to continue the correct path. This is
the main idea in considering the information of the key points
(landmarks) in (1; Moghadam et al., 2021).

The information regarding the temporal sequence of
landmark encounters during navigation are also required for
the formation of associated links between subsequent landmarks
and associative behavioral responses. Studies show that during
the wayfinding task, which requires recall of the sequential
order of the landmarks, the medial frontal gyrus experiences
higher activity. Also, the frontal cortex has been found to play
a fundamental role in storing the temporal order of landmarks
(Lithfous et al., 2013).

According to recent research, the context (Wirt and Hyman,
2017) and goal locations are also stored in the mPFC (Wirt
and Hyman, 2017; Ito, 2018). This information is employed to
plan successive goal locations (Ito, 2018). It has also been shown
that following mPFC damage, navigation from a new beginning
point towards a specific goal is impaired. This shows, in turn,
that the correct function of mPFC is necessary for navigation
based on the cognitive map from any start point to arbitrary
goals and enables flexible path planning towards a specific goal.
Based on these findings, the order of encounter is stored in the
rules (which are formed during the learning process) in the PFC
(mPFC control block in Figure 1) in the form of (1):

[
LM-Code(here) LM-Code(Goal) Attention level

LM-Code(next step)
]

(1)

According to (1), for each step, considering the current
location of the agent [LM-Code(here)], and the landmarks
in its field of view, and in accordance with the final goal
[LM-Code(Goal)], the appropriate code relevant to the next step
and subgoal [LM-Code(next step)] is stored as a consequent of
the related rule within the PFC.

The whole set of these steps from the start to the goal are
stored in PFC as a set of specific rules for each context and path.
Thus, in each step, regarding the environmental information
sent from HPC to mPFC and based on the person’s attention
level, the code for the next expected landmark and next step
is extracted from the related stored rule and sent to HPC. The
stored memory corresponding to that code is then retrieved
from a related cognitive map stored in the HPC place cells.

Previous studies have shown that in dorsal
(animals)/posterior (humans) HPC, neuronal ensembles
store specific objects and places where they are located in
context. It has been shown that place cells fire according to
the distance to the upcoming goal, which demonstrates the
representation of the expected upcoming place by place cells.
HPC place cells not only show the agent’s current location
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FIGURE 1

The cognitive model of navigation focused on mPFC role in spatial memory retrieval control: spatial information regarding the agent’s location
and the nature and location of objects arrives at the PHC and PRC through the what and where streams. After preliminary processing, the
information reaches the spatial and response memory structures through information pathways 1 and 2. These structures are where place cells,
grid cells, and head direction cells reside. subsequently and after integration and processing of spatial information in this region, information
regarding the agent’s current place and the local trajectory enters the PFC through path number 3, where the PFC acts as a control unit
responsible for controlling memory retrieval. In the PFC, spatial information is matched against the rules sets that have been formed in mPFC
during learning. Then, based on the input information, the context and address code for the next expected landmark are fed back by the mPFC to
the HPC where the cognitive map is stored, through path number 4 and the PRC. In the HPC this code is matched against the cognitive map and
the next expected landmark is loaded into the memory. This loaded data is compared with the input information from the environment through
the what stream. If a mismatch is observed, a “wrong path” message follows in order for the agent to correct its choice. If the environmental
information matches the cognitive map, the next expected landmark information (which itself results from the control unit’s prediction and recall
from the cognitive map) including its characteristics and location, as well as the agent’s current location are sent to the next subgoal buffer in
the short-term memory through path number 5 and its previous stored information shifts to the previous spatial buffer through path number 6.
This information is made available to the spatial working memory and the control unit through paths number 7 and 8, such that an appendage
of such information to the response memories will transmit the next step command and its direction to the motor units. After that movement
command has been executed, the new agent’s location and environmental landmarks enter the sensory inputs through path number 9 and this
cycle continues until the goal is reached.

but also show the past or future path by changing the firing
rate (McNaughton et al., 2006). Therefore place cells can
represent instantaneous, previous, and upcoming locations as
well as trajectories (Lithfous et al., 2013). Consequently, the
cognitive map stored within the HPC is inclusive of landmark
environmental locations and also their relations and distances
from the navigator’s viewpoint (Edvardsen et al., 2020). Building
upon these findings, and in accordance with Moghadam et al.,
2021, the cognitive map stored in the long-term memory is
computationally introduced by a matrix as shown in (2).

[
X-LM (next step) Y-LM (next step)

W-LM (next step) X-motor Y-motor
]

(2)

Here, X-LM and Y-LM are the coordinates of the next
landmark, W-LM shows the oscillation frequency coding the
nature of the next expected landmark, and X-motor and Y-
motor show the current location of the agent. All relations and
distances, either egocentric or allocentric, are obtained using this
information in the computational neural centers of the brain
and are used instantaneously to understand space and motion
commands. Therefore, (2) shows the stored cognitive map and
the spatial information processing in the spatial and response
memory block in Figure 1.

The mPFC, which is known as a vital region for action
planning and decision making, controls which information
shall be retrieved at any time and guides the changes in the
rate of path-dependent frequency (McNaughton et al., 2006;
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FIGURE 2

The What and Where streams within the brain.

Ito, 2018). Once the transmitted next-expected-landmark code
from the mPFC is matched with the cognitive map, the retrieved
information is compared against environmentally obtained
information arriving from the what stream. If they disagree
because of the agent’s improper path selection, contradiction
results in a message of wrong path, so that the agent starts
correcting its path and continues navigating towards the goal.
If the environmental information agrees with the next expected
landmark (predicted by the control unit and retrieved from
the cognitive map), information regarding the next landmark,
including its location and characteristics and also the current
location of the person, is loaded into the short-term memory,
i.e., the buffer relevant to the next subgoal, shifting the prior
information to a previous buffer. This updated information is
now available to the spatial working memory and the control
unit, ready to be attached to the response memory, thereby
sending the next step command and its direction to the motor
unit. Once the agent has executed the movement command,
new information regarding the new location of the agent and
environmental landmarks are entered via the sensory inputs, and
this cycle continues until the goal is reached. Figure 3 shows a
sample cognitive map used in this study.

The performance of the model was evaluated using
information reported in previous experimental research.

Using the mentioned scenario, which has been provided
from the aggregation and integration of information reported in

FIGURE 3

The assumed route for agent’s navigation. Six landmarks are
considered from the origin to the destination. It is assumed
that at each landmark position, the next landmark is visible and
that the landmark positions are the turning points of the route.
Numbers in parentheses indicate coordinates with reference to
the start point. Gray-colored squares between landmarks depict
the correct path. Orange-colored squares indicate wrong paths,
which the agent will enter by mistake, in case of low attention to
turning points (landmarks).

previous experimental research, in this article, the HPC-mPFC
interaction and the mPFC control function during cognitive map
retrieval for navigation are modeled.
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Materials and methods

In the following, we first explain and implement the
proposed computational model, and then the modeling results
will be presented.

Following the background given in the introduction, it is
understood that the whole set of activities and encodings by
HPC cells and other related regions in the MTL, constitute
the cognitive map following the stage of learning. Afterward,
during navigation on the learned route, information regarding
the direction and coordinates of the agent and landmarks is
instantaneously updated; the next steps towards the goal are
retrieved from the cognitive map under the control of the mPFC
and used as expected data to be compared with environmental
data and decide about the correctness of the person’s routing
options. As mentioned, the perceptual information regarding
objects and events are first processed in the particular brain areas
of various sensory modalities, which constitute what and where
streams. In the following, we provide suggestions for modeling
the information flow in these two streams during navigation, and
we have explained some of the simulation results.

Modeling where stream function during
navigation

In this article, a network of polar neurons is used to
model where stream function of the parietal in human brain
during navigation. The network includes 360 polar neurons,
each equivalent to a specific coordinate in the egocentric system.
For computational modeling, a discretization of the space is
assumed with 36 divisions in azimuth (10 degrees resolution)
and 10 divisions in the radial coordinate. Equation (3) denotes
polar neurons:

RPWi = e
−

(
θei −θ

e

σθ

)2

e−
(
ri−r
σr

)2

(3)

In this equation, (ri,θ ei ) are the egocentric coordinates
(radial distance and angle) of the neuron corresponding to the
environmental landmark. Also, σ 2

r and σ 2
θ are considered to be

0.06 and 0.002, respectively. Figure 4 shows simulation results.

Modeling what stream function during
navigation using Adaptive Resonance
Theory (ART)

According to the adaptive resonance theory (ART) first
proposed by Carpenter and Grassberg in a discussion of pattern
recognition, sensory information is synchronized and resonated
with similar information in memory, thus that information is
recognized. If sensory information does not resonate with any of

the items in the memory, a learning process begins (Carpenter
and Grossberg, 2010).

The presented sensory information tries to influence the
brain’s processing resources at different levels. In bottom-up
visual and auditory processing centers, there are different pools
of neurons, each of which responds to one of the stimulus
properties. Thus, it can be said that sets of these pools of
neurons in bottom-up processing centers respond individually
to route’s landmarks during navigation. Accordingly, in the
hypothetical map of this article shown in Figure 3, we have
considered six (in a selective manner) Van-der-pol oscillators
corresponding to the six main landmarks (LM1–LM6). Thus,
other landmarks not already stored in the map of the selected
route for navigation to the target will be considered as non-target
or distractors.

Each property of a landmark can be equated to, and modeled
with a frequency, but for simplification in the computational
model, the landmarks are coded with the dominant frequency
of the spectrum (the main harmonic). It is also assumed that
learning has already been done and the information is stored in
the form of a cognitive map.

The reasons for choosing the Van-der-pol equation are:

1- Among the various oscillators in the literature, Van-der-
pol oscillator has been one of the oscillators used to model
neuronal oscillations.

2- In the Van-der-pol equation, the finer details of the
chemical and electrical activities of the various components
of the neuronal ensemble are omitted, and neuronal
oscillations are modeled with a global view.

Therefore, the use of a Van-der-pol model compared to other
oscillator models used to model neuronal activity, keeps the
proposed general model from becoming too complex. However,
the use of more accurate and complex models as needed may add
more richness to the model.

{
Ẋl =

(
λl − Y2

l
)
Xl − P2

l Yl

Ẏl = Xl
(4)

In the Van-der-pol oscillator in Equation (4), X and Y are
the state variable and output of each neuronal ensemble,
respectively. When λ is less than zero, there is no oscillation in
the ensemble behavior; When the value of λ is between zero and
one, the neuronal ensemble will oscillate with frequency P and
amplitude 2

√
λ (Balanov et al., 2008).

According to Equation (4), it can be seen that the Van-
der-pol oscillator is an inherent oscillator and has no input.
In this study, as in (Baghdadi et al., 2018), we used the Van-
der-pol oscillator as an ensemble of neurons that respond to
input signals. Therefore, considering each landmark as an input
excitation in the form of a sine wave with amplitude As as
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FIGURE 4

The blue star denotes the landmark’s real coordinates relative to the agent’s body axis. The red triangles denote the activated neurons in the
parietal region responsible for the acquisition and processing of egocentric information. The average activity of polar neurons (the pink circle)
represents with negligible error the perceived coordinates information of the blue star (the real landmark coordinates) within the environment.

excitation (event) intensity and frequency ωs as a representation
of excitation properties, according to theories (Kumar et al.,
2010; Onken et al., 2014) based on the frequency coding of
information in the brain, we used the Van-der-pol equation with
the input of Equation (5). In this relation, Bl is the coupling
coefficient between the incoming oscillating input and the neural
units.

stimulus = Bl × As sin (ωst) (5)

According to this model, the receiving field is actually the
oscillation frequency of the neuronal ensemble, and in the
processing stages, neurons whose oscillation frequency is close
to the coded frequency of the input stimulus (the same as the
landmarks of the navigation route) show a stronger response
than other neurons (Fritz et al., 2007).

As can be seen from the above description and the
modeling results in Figure 5, when the agent reaches any
of the 1–6 landmarks specified in Figure 3 (route map), the
corresponding unit is activated by the activity function of
Equation (6). And the field activity of other units is below the
threshold.

{
Ẋl =

(
λl − Y2

l
)
Xl − P2

l Yl + stimulus
Ẏl = Xl

(6)

The frequency activity of neuronal ensembles, in this case, is
also shown in Figure 6. The difference in the amplitude of the
units activity in Figure 5 is due to the effect of the numerical
value of the landmark frequency on the Van-der-pol equation
with the input [Equation (6)]; but what really matters is to cross
the unity threshold. The parameters values of the Van-der-pol
equation with input [Equation (6)] in our proposed model for
the information processing block (what stream) are:

λ = 0.2 B1,...,6 = 1.5 As = 1, P1,...,6 = 4,5,6,7,8,9,
ωs1,...,6 = 4,5,6,7,8,9

Figure 7 also shows the frequency and the amplitude of the
neuronal ensemble’s activity of the what stream, for a different
destination from Figure 3 with a different route. Frequencies
4–9 in Figure 7 are also equivalent to the main landmarks 1–6 in
Figure 3.

One of the features of cognitive map based navigation is
that an agent can path-plan and navigate from any point of
the cognitive map stored in memory as a starting point to
any other point of the same map as the destination (not just
always from a fixed origin to a fixed destination). With this
in mind, the simulation results presented in Figure 7 well
demonstrate the capability of the proposed model in what stream
information processing during navigation in different contexts
of the cognitive map.
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FIGURE 5

The outputs of the Van-der-pol neuron model which is used in this article to model neuronal ensembles in the PRC region. The simulation results
are shown as neuronal units’ responses to input excitations (landmarks 1–6), in the order of encountering based on the route of related context.
Right column: amplitude envelop for neuronal units’ responses to input excitations for context 1. The parameters for the Van-der-pol model in
this simulation are λ = 0.2, B1,...,6 = 1.5, As = 1, P1,...,6 = 4,5,6,7,8,9, ωs1,...,6 = 4,5,6,7,8,9.

FIGURE 6

Frequency spectrum of neuronal units’ responses to
landmarks of context 1. Frequencies 4–9 in this figure
are equivalent to main landmarks 1–6 in Figure 3. The
parameters for the Van-der-pol model in this simulation are
λ = 0.2, B1,...,6 = 1.5, As = 1, P1,...,6 = 4,5,6,7,8,9, ωs1,...,6 = 4,5,6,7,8,9.

With the above explanations, in the following paragraphs
we explain how the proposed model justifies the disruption
in the information retrieval process and, as a result, the
disruption in navigation in Alzheimer’s patients. As explained
in Equation (4), when the value of the bifurcation parameter, λ,
is between zero and one, the neuronal ensemble will oscillate
with frequency and amplitude P and 2

√
λ, respectively. Now,

as the value of this parameter increases, we see that other
harmonics appear and the main harmonics are pulled to
lower powers. In this way, the low-frequency power amplitude
increases (Cutsuridis and Moustafa, 2017; Yu et al., 2020).

This well equals what happens in the brains of people with
Alzheimer’s Disease (AD). According to studies, with the
progression of the disease and increased deposition of amyloid
plaques in the brain, the high-frequency power of brain activity
decreases, and the low-frequency power increases (Figure 8;
Zou et al., 2011). Due to the essential and proven role of
high frequencies in processes related to memory retrieval,
this reduction in high-frequency power and changes in the
frequencies’ harmonics, leads to disruption of the memory
retrieval process (Lisman, 2005; Traikapi and Konstantinou,
2021). Therefore, we can see that the behavior of the proposed
model with an increase in the bifurcation parameter, λ, is
equivalent to the result of increased deposition of amyloid
plaques in the medial and lateral temporal lobes of the brain in
Alzheimer’s patients which causes LM retrieval disruption and
navigation disturbance.

Now, considering ART-based brain function, A consequence
of increasing the bifurcation parameter, λ, is that the
route landmarks will no longer be recognizable to the AD
patient due to the frequency shift of the main harmonics
(Figure 9B). As a result, according to what is described in
the cognitive model of Figure 1, due to the transmission
of the wrong frequency code, the relevant set of rules in
the control center (mPFC) will not be activated or another
set will be activated. As a result, the AD patient will not
be able to remember the landmarks (Figure 9A) and the
route and will not be able to make the right decision in
choosing the right way. This is the phenomenon of forgetting
and losing the path in AD patient. Figure 9 shows the
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FIGURE 7

The outputs of the Van-der-pol neuron model proposed in this article to model neuronal ensembles in the PRC region. The simulation results are
shown as neuronal units’ responses to input excitations (landmarks 1–6), in the order of encountering based on the route of each context. Left
column: amplitude envelope for neuronal units’ responses to input excitations for context 2. Right column: frequency spectrum of neuronal
units’ responses to landmarks of context 2. Frequencies 4–9 in this figure are equivalent to main landmarks 1–6 in Figure 3, where their
sequential order and consequently the route is different in contexts 1 and 2. The parameters for the Van-der-pol model in this simulation
are λ = 0.2, B1,...,6 = 1.5, As = 1, P1,...,6 = 4, 7, 6, 9, 8, 5, ωs1,...,6 = 4, 7, 6, 9, 8, 5.

FIGURE 8

EEG data of Alzheimer’s patient (AD) and normal aging person (control). The picture is reprinted from Yu et al. (2020) with permission.

simulations using the proposed model for this case with
increased “λ”.

As shown in Figure 9A, none of the neuronal units
respond specifically to landmarks. Because the intrinsic
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FIGURE 9

The simulation results of AD patients are shown as neuronal units’
responses to input excitations (landmarks 1–6), in the order of
encountering based on the route of context 1. (A) Amplitude
envelope for neuronal units’ responses to input excitations. (B)
Frequency spectrum of neuronal units’ responses to landmarks.
Frequencies 4–9 in this figure are equivalent to main landmarks
1–6 in Figure 3. The parameters for the Van-der-pol model in
this simulation are λ = 15.2 B1,...,6 = 1.5 As = 1, P1,...,6 = 4,5,6,7,8,9,
ωs1,...,6 = 4,5,6,7,8,9.

frequency of neuronal unit’s activity has changed due to the
deposition of amyloid plaques. This change in oscillation
frequency can also be seen in the PSD coordinates shown
in Figure 9B.

We now focus on describing our proposed model for the
mPFC control function during navigation.

Modeling the mPFC control function
during navigation using a fuzzy lookup
table system

Choosing the appropriate model for the mPFC has to
be undertaken by considering requirements such as the
nonlinearity of brain control function over different routes, the
possibility of correct routing beginning from different starting
points with common or distinct destinations (this indicates the

insensitivity of the model output to exact initial conditions, as
such sensitivity is observed in non-linear chaotic models), the
possibility of considering landmarks in the environment which
might also depend on the person’s level of attention, the speed
of processing and computational model runtime, which should
require a lower amount of computation and higher efficiency
(as an attempt to match as much as possible, the actual brain
function). In this article, we employ the lookup table based fuzzy
system as the mPFC controller model.

Fuzzy logic is in contrast to classical or digital logic which
operates on discrete values of either 1 or 0. Fuzzy inference
systems can formulate the behavior of a phenomenon or process
solely in the form of descriptive and experimental rules without
the need to know the exact analytical model. Fuzzy systems
design can be done in two ways: using the information of an
expert or using experimental data to adjust the parameters of
the rule set. In fact, a fuzzy system is a tool for formulating
a process using if-then fuzzy rules which form the core of the
system. In a fuzzy lookup table system, membership functions
are defined to cover the input space using input-output pairs.
This means that for any input, there must be at least one
set of membership functions in which the membership value
of the input is non-zero. If the rule set is not complete for
some reason, it can be completed using interpolation. On the
other hand, since the equivalent of each input-output pair is
a rule, if the number of input-output pairs is greater than
the number of membership functions sets, among the rules
having the same antecedent, the rule with the highest degree
[equivalent to the multiplication of the input (antecedent) and
output (consequent) membership value] remains, and others are
deleted. The general form of the fuzzy rules is in the form of
relation (7):

if X1 is Ar
1 and X2 is Ar

2 ... and XN is Ar
N then Yr is B (7)

Where r is the rule number, N is the number of input
dimensions, A is the input membership function (antecedent), B
is the output membership function (consequent), X is the input
variable, and Y is the output variable. The membership functions
can have different shapes (such as triangular, gaussian, and so
on.) and therefore a different number of parameters. The shape
chosen for the membership function depends on the number of
allowed system-free parameters and the nature of the variables.
Also, the system’s inference engine is different according to the
nature of the problem. Inference in a fuzzy inference system
refers to how the output value is calculated for input data using
a rule set. The inference in the fuzzy lookup table system used in
this article includes the following steps:

1- Fuzzification
2- Degree of fulfillment or firing strength
3- Implication (use of minimum or multiplier operator)

Frontiers in Systems Neuroscience 12 frontiersin.org

https://doi.org/10.3389/fnsys.2022.972985
https://www.frontiersin.org/journals/systems-neuroscience
https://www.frontiersin.org/journals/systems-neuroscience#articles
https://www.frontiersin.org


Moghadam et al. 10.3389/fnsys.2022.972985

FIGURE 10

(a) Membership functions of the first input: The current location (Here). (b) Membership functions of the second input: the goal location (Goal).
(c) Membership functions of the third input: attention sources. (d) Membership functions of the control unit output and decision-making result:
Next step. Membership functions of the first and second input and the next step as output are Gaussian with a standard deviation of 0.15, and the
membership functions of attention level are smf and zmf.

4- Aggregation (In this part, the outputs of all the rules are
combined)

5- Defuzzification

The fuzzy system design of this article is based on the
expert approach. In this article, Gaussian membership functions
are used for the current-location landmark and the goal
as well as the next step variables (Figure 10). Due to the
nature of brain function in sending and processing information
based on a synchronous mechanism, our proposed model
is based on the frequency of landmarks. Accordingly, in
designing our proposed fuzzy lookup table system for the
mPFC control role, the identification frequency codes are
considered for the environmental landmarks as inputs and
all related bottom-up and top-down processes in the brain
(This frequency code provides a representative frequency for
each of the landmarks and the related actual identification
frequency is, in fact, a frequency spectrum with a dominant

harmonic that may probably be accessible by recording the
brain’s electrical activity). In this article, specific frequency
numbers have no role in the nature of the model. So, we
have used a separate symbolic frequency as a representative for
each landmark. Hence as observed in Figures 10 and 11, the
horizontal axis of the “Here” and “Goal” as inputs and “next
step” as the output membership functions show the symbolic
identification frequency of landmarks. On the other hand, a
particular frequency interval is considered for all membership
functions to take into account possible changes in the Landmark
characteristics and details. For example, if one of the landmarks
is the cinema building, the billboard picture changes according
to the current movie, but nevertheless, the agent considers it
the same cinema building as before. Consequently, using a
fuzzy system model results in improved stability of the model
output regarding changes in the appearance of the landmarks.
No overlap is considered for membership functions because we
assume that at any instant, only one landmark for the next step
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FIGURE 11

The general scheme of the lookup table based fuzzy system. (A) Demonstration of the three-dimensional input with membership functions
defined on each dimension. (B) The three-dimensional table of rules with complete coverage of the input space. Each block (cube in the figure)
represents one rule. The whole set of rules cover all possible options of input and output over the assumed cognitive map with six landmarks
and two attention states (with or without).

is visible and that all landmarks are independent of each other.
For this purpose, the standard deviation of all landmarks is
considered to be 0.15. Figures 10 and 11 depict diagrams for the
membership functions of the input and output corresponding
to the map in Figure 3. Furthermore, in the fuzzy lookup table
system employed in this article, the multiplication inference
engine and central average defuzzification are used as given in
Equation (8):

Youtput =

∑R
i = 1 Ȳi(5

N
j = 1µi,j)∑R

i = 1 (5
N
j = 1µi,j)

(8)

Where i denotes the rule counter, R the number of rules, j the
counter of input dimensions, and N the total number of input
dimensions.

As can be seen in Figure 11, along the six landmarks
considered in the assumed route, 36 possible options exist for the
choice of input-output; and considering two states of attention
(with and without attention), 72 rules cover the space of this
cognitive map and navigations therein. For the assumed route
in Figure 3 and considering two modes for the start and goal
points, 16 rules out of a complete set of 72 rules are active in
our problem. Tables 1 and 2 show these 16 rules as used in our
simulations.

Results

Figure 12 shows the modeling results for navigation over
this article’s assumed route. The shown map is equivalent to the
cognitive map stored in a person’s mind. In this route, the agent
should move from the start point equivalent to LM1 to the goal
equivalent to LM6. In this simulation, the initial values which
are used to start navigation are f(Here) = 4.2 Hz, f(Goal) = 9 Hz,
and Attention Level = 2.3. Considering the primary assumption
that learning is completed and as a result, the cognitive map and
the rules of the control unit have already been formed, and the
performance of the agent is computed as follows:

The input data from the where and what streams are
processed and converted into the equivalent codes of the
cognitive map using Equations (3) and (6). These are then
matched against the membership functions of all three input
dimensions of each rule. For each input, the antecedent
membership values of each rule are collected and multiplied by
each other, and according to Equation (8), the weighted average
of the rules’ consequent is computed using the average basis
values of the output membership functions. Based on this value,
the appropriate command is issued by the mPFC control unit
for changing or choosing the subsequent path for approaching
the next landmark, and this process continues until the goal is
reached.
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TABLE 1 Rule set of the lookup table based fuzzy system for Route
1 with the starting point at LM1 and ending at LM6 (as Goal) from the
assumed cognitive map in Figure 3.

Route 1—Start: LM1 Goal: LM6
Here Goal Attention level Next step

1 6 2 2
1 6 1 7
2 6 2 3
2 6 1 8
3 6 2 4
3 6 1 9
4 6 2 5
4 6 1 10
5 6 2 6
5 6 1 11

It can be seen that due to the natural stability of the designed
fuzzy model against environmental changes (in the allowed
range), the process of navigation has been performed correctly,
and the person has reached the goal over an optimum path,
despite a mismatch at the starting point as compared with the
exact symbolic frequencies of the landmarks.

Since attention level as one of the key parameters in the
navigation process has been included in our model, several
wrong paths are considered in our assumed map such that the
effect of attention in our proposed model can be shown. If
the attention level is below a specific threshold defined in the
model (Figure 10, section c) the agent erroneously enters the
wrong path and remains there until the attention level returns
to a normal state. These wrong paths have been symbolically
depicted by orange-colored blocks and named LM 7–LM11 on
the map. Figure 13 simulates a situation in which a person starts
navigation from LM1 toward the LM6 as the goal. But this time

TABLE 2 Rule set of the lookup table based fuzzy system for Route
2 with the starting point at LM4 and ending at LM1 from the assumed
cognitive map in Figure 3.

Route 2—Start: LM4 Goal: LM1
Here Goal Attention level Next step

4 1 2 3
4 1 1 10/5
3 1 2 2
3 1 1 9
2 1 2 1
2 1 1 8

the attention level of the agent drops in LM4 and the agent
deviates from the main path, enters a wrong path which starts
with LM10 and will remain there until the attention level returns
to the defined threshold.

There are many disorders and diseases in which the
attention level control centers and the centers that provide
the attention sources (such as dopamine) are disturbed or
damaged. In two-way decision points such as LM1–LM5 turning
points in Figure 3, if attention deficit causes wrong path
planning and navigation, it is assumed that the agent will
enter the path with the slightest angle to the previous step
direction. But sometimes a disease leads to the destruction
and disruption of memory centers and loss of connectivities
that support information transfer and memory access in the
brain. Navigation disorder in the Alzheimer’s disease is a clear
example, where the place cells in the HPC (as the center
that stores landmarks and trajectories) are destroyed because
of atrophy and as a result cannot respond to the retrieval
codes and signals sent by the mPFC control unit. In this
case, we assume that the weighted competition of the paths

FIGURE 12

Left: Simulation result for the implemented proposed navigation model in Matlab. Right: An overlay of the simulation output on the predefined
route shown in gray with the starting point at LM1 and the goal at LM6.
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FIGURE 13

Left: Simulation result for the implemented navigation with attention deficit model in Matlab. Right: An overlay of the simulation output on the
predefined route. By introducing a drop in the attention level at LM4, the agent deviates from the route and enters the wrong path denoted by
LM10, and stays there until the attention level is raised to correct the routing.

will determine the direction in which the subject continues
to navigate. This means that in the agent’s stored cognitive
map, at first the landmark and path with the closest code and
response frequency to the lost information is retrieved (seems
more familiar) and takes on more weight, and the agent will
choose the next step and path depending on these weights.
With this explanation, if no path seems more familiar and no
information is retrieved, chances for all path options are equal,
and other factors will determine the direction of the agent’s
next step.

Discussion

To identify the merits and limitations of the proposed model,
we shall briefly consider the shortcomings of previous attempts.
There are different types of navigation, including beaconing,
route following, dead reckoning, and map-based navigation.
Our model assumes map-based navigation. During navigation
using the cognitive map stored in the memory, the agent can
plan a route and navigate from any point of the cognitive
map as a starting point to any other point of the same map
as a destination (not necessarily from a fixed origin to a
fixed destination).

As pointed out in the introduction and background sections,
so far several studies have investigated and proposed cognitive
and computational models of human navigation in cellular
and functional scales. But due to the complexity and multi-
faceted nature of this problem, a comprehensive cognitive and
computational model of what happens in the brain during
this process has not yet been presented. Each study has
investigated limited aspects of navigation. In this study, we

aim to present a more integrative cognitive and computational
model of information retrieval control in the navigation process
in accordance with the perceived natural functioning of the
brain. In this way, some of the novelties are: considering
the interaction between HPC and mPFC, including short-
term/working memory in the model, modeling the functioning,
receiving, and converting information in Where and What
streams, modeling information retrieval control by mPFC,
inclusion of the level of attention in the model, providing a
model-based justification of what causes forgetting the route
in Alzheimer’s patients by analyzing the Van-der-pol model.
The presented model agrees well with the behavior of the brain
of people with Alzheimer’s disease due to the increase in the
deposition of amyloid plaques in the problem of amnesia.

This frequency justification based on ART and the presented
more comprehensive cognitive and computational model as
compared with previous works, allows researchers to evaluate
the effect of pharmacological and non-pharmacological
interventions such as fixed and intermittent electrical
stimulations in improving the recall and recognition of
landmarks and path information, and the general well-being of
these patients.

In the following, we will describe and examine the
shortcomings of previous models and the achievements of this
study in solving some of these shortcomings.

There is strong evidence in the field of brain imaging
and electrical activity recording that supports the HPC-mPFC
interaction and the essential role of the mPFC in controlling
memory retrieval within the HPC during navigation tasks.
However, in previous studies, only the simultaneous activity of
some areas during a specific task is discussed, or measurement
of the cognitive performance of a unit based on the output
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of a specific experiment is reported (Jeanne Sholl, 2001;
Hodgson and Waller, 2006). Also, data traffic between active
areas in this process is not explicitly and comprehensively
available (Nyberg et al., 2022). In many experiments, the
theta signal was observed both during the encoding and the
retrieval, but it is still not entirely clear what the nature
of the transmitted information is (Wirt and Hyman, 2017),
and only hypotheses are presented according to observations
from experimental recordings. On the other hand, in the
field of modeling, many models have been proposed for path
planning and some aspects of navigation, where usually the
connections and structures are in the form of black boxes
and employ a variety of artificial neural networks (Madl et al.,
2015).

One of the drawbacks of these models is that they often do
not have a biological correspondence to what happens in the
specific brain regions during navigation and are mostly used to
guide the movement of robots; also, the matter of active brain
regions’ neuronal oscillatory functions during navigation and
synchronization of different brain regions in communicating
for information transfer, is not reported so far for some key
brain regions in navigation models (Droulez and Berthoz, 1991;
Byrne et al., 2007; Chersi and Burgess, 2015; Madl et al.,
2015).

In an attempt to solve the above-mentioned problems, we
proposed a cognitive model incorporating the key brain regions
that retrieve the cognitive map during navigation. The resulting
model shows a higher degree of agreement with real brain
function in navigation. Based on this cognitive model (shown
in Figure 1), we further proposed a computational model of
navigation with stronger focus on the mPFC control function in
cognitive map retrieval during navigation. To model this control
function of mPFC, a Fuzzy Lookup Table system has been used.
Our proposed rule-based model is very close to the mPFC real
function in navigation. Also, the model is robust to changes in
some features of landmarks due to the definition of membership
functions (and not just a crisp value) for inputs which makes
the model stability very similar to the actual brain function
during memory retrieval and navigation; since according to
daily experiences, despite some changes in the appearance
of environmental landmarks, the same route is retrieved and
identified in our memory, and these changes do not disrupt the
navigation process.

Furthermore, the proposed model provides the facility
of modeling and investigating attention-related disorders in
navigation, considering the attention level parameter. Likewise,
we can study the effect of amnesia on navigation results by
removing the information of some paths and landmarks from
the cognitive map [equivalent to zeroing their value in the
cognitive map matrix of (2)]. This allows us to model patterns
of navigation, especially in more complex routes where the
agent faces multiple ways at decision points, which help in
the early detection of some diseases and disorders associated

with wayfinding and navigation problems, including Alzheimer’s
disease.

Therefore, the proposed model can be used in cognitive and
brain mapping studies and likewise in designing and predicting
the outcome of drug interventions and transcranial stimulation
in related diseases. As briefly mentioned in Figure 4, a polar
network with 360 neurons (optional depending on the desired
resolution) is considered to model the receiving and primary
processing of the where stream block (parietal lobe and then,
PHC). Each neuron is sensitive to the presence of a spatial
landmark at a specific distance and angle to the agent and fires
when the landmark is placed in such coordinates. For the polar
neuron model, RBF neurons can be used, similar to Equation (3).

We also proposed to use the Van-der-pol neuron model
with relation (6) to model the synchronous process of receiving
and processing what stream information. In this regard, the
stimulus in our model is B ∗ sin (ωLMt). We used the Van-der-
pol model because of its biological justification in Alzheimer’s
disease (AD) as one of the most widespread and well-known
diseases associated with navigation disorders. For example in
AD, due to brain atrophy, it has been observed in brain electrical
activity that the spectral power of high frequencies decreases
and the power of low frequencies increases (Jensen and Tesche,
2002; Lisman, 2005; Duch, 2007; Zou et al., 2011; Cutsuridis
and Moustafa, 2017). This corresponds to an increase in the
value of the parameter λ in the Van-der-pol equation. In the
Van-der-pol equation, the condition implies periodicity in the
behavior of the neuronal population, and the output will be of
a frequency nearly equal to P and oscillation amplitude 2

√
λ.

As λ increases, the amplitude of the oscillation increases and
the frequency decreases to less than P. Thus, if we consider
the increase in λ to be equivalent to the increase in amyloid
plaques and consequently in neuronal ensembles atrophy, both
phenomena are justifiable: the spectral power increase at low-
frequencies, and the inability to recall the learned landmarks
when exposed to them. Because the oscillation frequency of
the corresponding neuronal ensemble is no longer close to the
frequency of the input signal, so the recognition and retrieval
processes are disrupted. Consequently, the relevant set of rules
in mPFC is not activated or the wrong rule set is activated. As
a result, the process of recall and prediction of the subsequent
steps is disrupted and the Alzheimer’s patient will not be able
to remember and make the right decision at the crossroads (key
landmarks) to choose the right direction and will lose the way.
Also, parameter B, which is the coupling coefficient between
the input stimulus and the corresponding neuronal ensemble,
actually determines the sensitivity of the neuronal ensemble to
the input. According to previous studies, the attention control
system plays an important role in regulating this sensitivity
by regulating the level of neurotransmitters used in attention
control areas such as dopamine. The attention control system is
also one of the centers that are severely damaged in Alzheimer’s
patients. This disorder demonstrates itself by changing the
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value of parameter B in our proposed model, such that an
increase in the value of B results in a corresponding increase
in the synchronous speed and reduces the reaction time of
the processor units to the input stimulus. From a biological
point of view, B can be thought of as a chemical carrier that
causes synchronization or desynchronization between neuronal
ensembles. So, it cannot continuously increase, and a saturation
constraint must be considered.

With these explanations, our proposed cognitive and
computational model and the theories embedded therein can
be used to extend brain mapping research and to study and
predict the effect of pharmacological and non-pharmacological
(such as cognitive tasks and extracranial electrical or magnetic
stimulation) interventions. Also, according to Wirt and Hyman
(2017), the mPFC creates a framework in which it combines
various cognitive processes such as emotional valence, rules,
and sequences with spatial information, and this framework
is ultimately stored in the mPFC. Therefore the proposed
model has a firm foundation for such further developments as:
(1) adding an emotion unit and its effect on navigation when
an agent faces the landmarks; (2) adding the process of learning
using a self-organized fuzzy control system; and (3) adding the
striatum in the use of procedural memory and stimulation. The
special structure of this model, due to the explicitly specified
connections of the navigation-related brain regions, and the clear
nature of the information transferred between the units, provides
a strong potential for the model, which facilitates the completion
of the above-mentioned items on the same model.

Conclusion

This article advances the field of modeling the human
brain’s functions in navigation by introducing a cognitive and
computational model of navigation with stronger focus on
HPC-mPFC mutual interactions and the control function of the
mPFC in the spatial memory retrieval from the HPC during
navigation based on the concept of synchrony. For this purpose,
we used polar neuron and Van-der-pol neuron models to model
what and where streams, respectively. Then, due to the nature
of mPFC performance based on rules (the stored memory
of previous attempts and their outcomes) during the spatial
memory retrieval, we used a fuzzy lookup table system model.
Furthermore, we presented a justification for the forgetting of
landmarks and routes in AD patients based on changes in
the Van-der-pol model bifurcation parameter and in agreement

with neuro-biological findings. Also, the model output was
investigated for navigation on the assumed route under
healthy and attention-deficit conditions. Analysis of the results
demonstrates the model’s capability and promising applicability
in extending brain mapping research and predicting the effects of
pharmacological and non-pharmacological interventions. The
model can be extended in several respects, such as modeling
the effect of emotion on navigation upon encountering the
landmarks, and an addition of the process of learning and
cognitive map formation.
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