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Abstract
Purpose: Manual delineation of a rectal tumor on a volumetric image is time- 
consuming and subjective. Deep learning has been used to segment rectal 
tumors automatically on T2- weighted images, but automatic segmentation on 
diffusion- weighted imaging is challenged by noise, artifact, and low resolution. 
In this study, a volumetric U- shaped neural network (U- Net) is proposed to auto-
matically segment rectal tumors on diffusion- weighted images.
Methods: Three hundred patients of locally advanced rectal cancer were en-
rolled in this study and divided into a training group, a validation group, and a 
test group. The region of rectal tumor was delineated on the diffusion- weighted 
images by experienced radiologists as the ground truth. A U- Net was designed 
with a volumetric input of the diffusion- weighted images and an output of seg-
mentation with the same size. A semi- automatic segmentation method was used 
for comparison by manually choosing a threshold of gray level and automatically 
selecting the largest connected region. Dice similarity coefficient (DSC) was cal-
culated to evaluate the methods.
Results: On the test group, deep learning method (DSC = 0.675 ± 0.144, median 
DSC is 0.702, maximum DSC is 0.893, and minimum DSC is 0.297) showed higher 
segmentation accuracy than the semi- automatic method (DSC = 0.614 ± 0.225, 
median DSC is 0.685, maximum DSC is 0.869, and minimum DSC is 0.047). 
Paired t- test shows significant difference (T = 2.160, p = 0.035) in DSC between 
the deep learning method and the semi- automatic method in the test group.
Conclusion: Volumetric U- Net can automatically segment rectal tumor region 
on DWI images of locally advanced rectal cancer.
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1 |  INTRODUCTION

Magnetic resonance imaging (MRI) is recommended 
by NCCN for the diagnosis and treatment of rectal can-
cer.1 Particularly, diffusion- weighted imaging (DWI) 
may evaluate the microenvironment of tumor func-
tionally and has become an indispensable imaging 
modality in addition to T2- weighted imaging (T2WI). 
Many studies have shown that the apparent diffu-
sion coefficients (ADC) value of a region of interest 
(ROI) inside rectal tumor may predict the response to 
chemoradiotherapy.2,3 In addition, several prediction 
models have been established on DWI or ADC im-
ages by texture analysis, radiomics, or deep learning 
methods.4– 8 The major limitation of these ROI- based 
method is the requirement of manual segmentation. 
It takes 1– 18.5 min to delineate a rectal tumor in pre- 
treatment DWI images, considerably laborious and 
time- consuming.9 Therefore, automatic segmentation 
of rectal cancer is needed as it may facilitate the con-
struction of models for quantitative analysis.

The initial approach to automatic segmentation is 
based on level- set by integrating different types of reg-
ularization into a problem of minimization, but these 
methods are bound to depend on manual intervention 
such as contour initiation or seed points.10 Recently, 
convolutional neural networks, particularly U- shape 
networks (U- Net),11 have been successfully employed 
in the fully automatic segmentation of medical images. 
Most of the rectal or colorectal tumor segmentation 
use CT or T2WI due to the high resolution, high con-
trast, and high signal- to- noise ratio.12– 23 Segmentation 
on DWI or ADC is rarely reported. DWI images suffer 
from noise and artifacts that may lead to false posi-
tives during segmentation. Although it is possible to 
copy the ROI from one pulse sequence (e.g., T2WI) 
to another one (e.g., DWI), sometimes the two sets 
of images are not well aligned due to body motion or 
involuntary bowel movement in the scanning interval. 
Therefore, automatic segmentation of rectal tumor on 
DWI is also necessary. Trebeschi et al. have proposed 
a network for rectal tumor segmentation by incorpo-
rating a fusion between T2WI and DWI.24 Deformable 
registration is required to align the two sets of images. 
If segmentation could be performed using only DWI 
data, it may avoid the possible error during registration.

In this work, a deep learning model is proposed for fully 
automatic segmentation of rectal tumors on DWI images. 
Instead of breaking the images into two- dimensional (2D) 
slices or patches, a three- dimensional (3D) volumetric U- 
Net is constructed to utilize the spatial features in all three 

directions. The strategy suppresses false positive signals 
and avoids the need of following region selection. A semi- 
automatic segmentation method of gray- level threshold-
ing was used for comparison to validate the advantage of 
using deep learning for segmentation.

2 |  MATERIALS AND METHODS

2.1 | Participants

Patients were enrolled in this study with following in-
clusion criteria: (1) locally advanced rectal cancer con-
firmed by MRI and biopsy; and (2) MRI scanned at the 
same scanner with the same parameters. Exclusion 
criteria were: (1) lack of DWI images; and (2) insufficient 
image quality for measurement. Totally 300 patients 
were enrolled in this study.

2.2 | MRI scanning

All participants were scanned at a 3.0 T MRI scanner 
(MR750; GE Healthcare) with T2WI, T1WI, DWI, and 
contrast- enhanced T1WI pulse sequences. Only DWI 
data were analyzed in this study. The scanning param-
eters are listed in Table 1.

2.3 | Manual segmentation

Manual segmentation was used as the ground truth in 
this study. All manual segmentations were performed 
by two radiologists with 10 years experience of diagno-
sis of rectal cancer. Segmentation file was created by 
ITK- SNAP software (www.itksn ap.org)25 with a graph-
ics tablet. Freehand delineation was performed on DWI 
images (b = 1000 sec/mm2). Tumors show high sig-
nals in DWI images scanned at large b- value. Images 
of other pulse sequences (T2WI, T1WI, and dynamic 
contrast- enhanced T1WI) were used as a reference.

2.4 | U- Net and data pre- processing

The architecture of the networks is a U- Net depicted in 
Figure 1. It is composed by 21 convolution layers with 
a kernel of 3 × 3 × 3, four max- pooling layers (down- 
sampling) with a kernel of 2 × 2 × 2, four transpose layers 
(up- sampling) with a kernel of 2 × 2 × 2, four concatenate 
layers. The final layer uses a Softmax function to produce 

TR (s) TE (s)
FOV 
(mm)

b- value (s/
mm2) Matrix

Thickness 
(mm)

Gap 
(mm)

2.8 0.066 340 1000 256 × 256 4.0 1.0

Abbreviations: FOV, field of view; TE, time of echo; TR, time of repetition

TA B L E  1  Magnetic resonance 
imaging scanning parameters

https://www.itksnap.org
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a probability between 0 and 1. Since rectal tumor was 
located at the central region of the imaging field during 
scanning, all images and segmentations were cropped 
or zero- padded to the size of 256 × 256 × 32. After 
four repetitions of convolution and max- pooling layers, 
the image was reduced to the size of 16 × 16 × 2. After 
four repetitions of convolution and transpose layers, the 
image was restored to the size of 256 × 256 × 32. The 
concatenate layers shortcut the images at the same 
depth. The total number of parameters in the U- Net is 
6,832,321. The network was designed and trained with 
TensorFlow (Version 1.4.0), Keras (Version 2.1.5) on the 
platform of Python (Version 3.6).

2.5 | Training, validation, and test

All 300 patients were randomly divided into a training 
group (n = 180), a validation group (n = 60), and a test 
group (n = 60). Dice similarity coefficient (DSC) was 
used for training by defining 1- DSC as the loss func-
tion. DSC is defined by Equation (1), where V(A) is the 
volume of the delineated tumor region (ground truth) 
and V(B) is the volume of automatic or semi- automatic 
segmentation.

The validation group was used to optimize the hyper-
parameters such as learning rate, decay rate, and ep-
ochs by maximizing DSC. The test group was used to 
evaluate the network with DSC and Hausdorff distance 
(HD). HD is defined by Equation (2), where d(a, b) is the 
distance between point a and point b.

2.6 | Semi- automatic method

Semi- automatic segmentation was performed by three 
steps: (1) the lower limit of the gray level inside the tumor 
region was manually assigned; (2) the regions above 
the threshold were automatically segmented; and (3) the 
largest connected region was automatically selected. 
This algorithm was designed based on an assumption 
that the rectal tumor is the largest connected region 
showing high signals in the DWI volumetric image.

3 |  RESULTS

The characteristics of the subjects in the training, vali-
dation, and test groups were summarized in Table 2. 
Continual features such as age and tumor volume 
were compared by ANOVA. Categorical features such 

(1)DSC(A, B) =
2V (A ∩ B)

V (A) + V (B)

(2)

HD(A, B) = max
(

maxa∈A

(

minb∈Bd(a, b)
)

, maxb∈B

(

mina∈Ad(b, a)
))

F I G U R E  1  The structure of U- Net for 
segmentation
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as gender and clinical T- stage were compared by 
Chi- square method. There is no significant difference 
among the three groups considering the age, gender, 
clinical T- stage, and tumor volume.

Optimal learning rate was set to 1e– 4 and the decay 
rate was set to 1e– 5. The training process is visualized 
in Figure 2. It shows the training accuracy, training loss, 
validation accuracy, validation loss from epoch 1 to 1000 
epochs, where accuracy is the mean DSC. Accuracy 
reaches the maximum value at 200 epochs and decline. 
The network trained after 200 epochs was used for test-
ing. DSC and HD were summarized in Table 3. On the 
test group, the mean DSC and median DSC of deep 
learning method are 0.675 and 0.702. The correlation 

between DSC and tumor volume is R = 0.371 (p = 0.004). 
It suggests that segmentation performs better at larger 
tumors than smaller tumors. Despite of manual inter-
vention, semi- automatic segmentation produces smaller 
DSC (mean is 0.614 and median is 0.685). Paired t- test 
shows significant difference (T = 2.160, p = 0.035) in 
DSC between two methods.

The DSC of each patient in test group was plotted 
in Figure 3, where the DSC of deep learning is ar-
ranged in an ascending order. Neighboring bars with 
blue and orange colors belong to the same subject. 
In general, the subjects producing low DSC by deep 
learning segmentation also produce low DSC by 
semi- automatic segmentation, but the semi- automatic 

TA B L E  2  Demographic and clinical characteristics of subjects in the training (n = 180), validation (n = 60), and test groups (n = 60)

Characteristics Training group Validation group Test group Statistics

Age (year) (mean ± SD) 57.2 ± 10.2 56.1 ± 9.4 54.6 ± 11.8 F = 1.462, p = 0.233

Gender (%)

Male 113 (62.8) 39 (65.0) 41 (68.3) Χ2 = 0.620, p = 0.734

Female 67 (37.2) 21 (35.0) 19 (31.7)

Clinical T stage (%)

T2a 29 (16.1) 9 (15.0) 5 (8.3) χ2 = 19.96, p = 0.068

T2b 21 (11.7) 5 (8.3) 13 (21.7)

T3a 58 (32.2) 23 (38.3) 12 (20.0)

T3b 47 (26.1) 16 (26.7) 18 (30.0)

T3c 7 (3.9) 0 (0) 3 (5.0)

T4a 5 (2.8) 5 (8.3) 6 (10.0)

T4b 13 (7.2) 2 (3.3) 3 (5.0)

Tumor volume (voxel) 
(mean ± SD)

2160 ± 1888 2700 ± 2653 2564 ± 2357 F = 1.788, p = 0.169

F I G U R E  2  The training process of 
deep learning model. The accuracy is the 
mean dice similarity coefficient (DSC) 
value. The loss is 1- DSC. The maximum 
accuracy appears at around 200 epochs
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segmentation show several cases with near- zero 
DSC.

Examples of segmentation were demonstrated in 
Figure 4 from three directions. The green contours are 
ground truth and the red contours are segmentation. 
The yellow contours are the overlap of green contours 
and red contours. Figure 4a– d was segmented by the 
semi- automatic method. Figure 4e– h was segmented 
by the deep learning method. Each pair of images (a 
and e, b and f, c and g, and d and h) belongs to the 
same subject. The largest and the smallest DSC by 
semi- automatic method are A (AUC = 0.869) and B 
(AUC = 0.047). The corresponding deep learning results 
are E (DSC = 0.798) and F (DSC = 0.805). The largest 
and the smallest DSC by deep learning method are G 
(DSC = 0.893) and H (DSC = 0.297). The correspond-
ing semi- automatic results are C (DSC = 0.830) and D 
(DSC = 0.559). Results shows that the semi- automatic 
method tends to include more false positives if the gray 
level of adjacent tissues is close to the tumor region.

4 |  DISCUSSION

Region of interest segmentation has become a monot-
onous and time- consuming task for radiologists since 

a huge number of delineated samples are needed for 
machine learning or deep learning. Automatic seg-
mentation of tumor regions may free radiologists from 
manual delineation. Compared with most level- set 
methods that need manual intervention, deep learn-
ing methods manage to achieve fully automatic seg-
mentation. T2WI and DWI are the most useful MRI 
protocols for the diagnosis of rectal tumors. Several 
deep learning models have been established based 
on T2WI images, but segmentation on DWI images 
is rarely reported. Segmentation on each pulse se-
quence is necessary because the images may not 
keep aligned during the scanning of all pulse se-
quences. For example, if body motion or involuntary 
bowel movement happens during the interval be-
tween T2WI and DWI protocols, ROI delineated on 
T2WI data cannot be shared to DWI data. Trebeschi 
et al. have constructed a deep learning model to seg-
ment rectal tumor by a fusion of DWI and T2WI and 
managed to produce a DSC value of 0.70 and 0.68.24 
Our model aimed to perform segmentation using DWI 
data alone. It avoids the potential errors in registra-
tion, especially when the signals and positions of pel-
vic normal structures are altered due to tumor growth.

Several network architectures have been pro-
posed for segmentation, which are summarized in 

TA B L E  3  Dice similarity coefficient (DSC) and Hausdorff distance (HD) of the training, validation, and test groups

Methods Semi- automatic Deep learning

Groups Training Validation Test Training Validation Test

DSC mean 0.565 0.622 0.614 0.764 0.662 0.675

DSC std 0.249 0.209 0.225 0.087 0.147 0.144

DSC median 0.655 0.673 0.685 0.767 0.684 0.702

DSC max 0.867 0.904 0.869 0.910 0.886 0.893

DSC min 0.002 0.009 0.047 0.420 0.229 0.297

HD mean 22.596 19.196 25.069 10.936 16.169 15.891

HD std 16.721 11.081 18.615 6.706 8.894 10.041

F I G U R E  3  Dice similarity coefficient 
(DSC) of segmentation on each subject 
in the test group by the deep learning 
method and the semi- automatic method
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Table 4. Some studies use asymmetrical encoding– 
decoding, such as VGG- like net for encoding and in-
terpolation for decoding.12,17 The most widely used 
net architecture is U- Net, a symmetrical encoding– 
decoding structure.11 The encoding part down- 
samples the image and the decoding part up- samples 
the image. 2D U- Net is commonly used due to the 
limitation of memory or computation time.14,18 But 2D 
U- Net may lose the spatial context along the slice 
direction of MRI data. In clinical practice, radiologists 
generally need to view multiple slices to identify a 

tumor according to its 3D structure. Analogically, 3D 
U- Net has been applied on rectal tumor for volume- 
to- volume segmentation.16,20 In this study, 3D U- Net 
was used to convert a volumetric DWI image into a 
3D probability map with the same size. The abundant 
3D information may reduce false positives caused 
by noise or artifact. Results show that most of the 
cases generate a single connected region by thresh-
olding probability at 0.5. Therefore, there is no need 
of implementing an additional step to select the larg-
est connected region. For the methods that require 

F I G U R E  4  Example of segmentation. 
(a– b) semi- automatic segmentation; (e– h) 
deep learning segmentation. The two 
images in each row are from the same 
patient. Green color shows the contour of 
ground truth delineated by radiologists. 
Red color shows the contour of 
segmentation. Yellow color is the overlap 
of green and red contours
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region selection, if the largest connected region is 
not the target tumor, it will give a quite small DSC 
value even zero DSC just like the two examples of 
DSC = 0 given in the related work.24

In this study, a semi- automatic method was used to 
compare with the proposed deep learning method. The 
semi- automatic method requires manually assigning 
a thresholding value for voxel selection first and then 
automatically segment the largest connected region as 
the tumor region. The algorithm was designed based 
on two assumptions. First, it assumes that rectal tumor 
generally shows the highest signals in DWI images. 
Second, it assumes that tumor region is the largest 
connected region and the false positives are scattered 
smaller regions. Results show that the semi- automatic 
method performs well at most subjects. However, sev-
eral subjects produce quite small DSC depicted in 
Figure 3. The reason can be demonstrated by Figure 4b 
where the DWI signals at rectal tumor were too low to 
be discriminated from the surrounding structures. In 
contrast, deep learning segmentation did not produce 
such small DSC. Because deep learning can extract 
high- level features by multiple convolutional layers, it 
may recognize the difference between rectal tumor and 
the surrounding structures.

The study is from a single center and all the subjects 
were scanned at the same MRI scanner with the same 
protocols and parameters, which is a major limitation of 
this study. Single data source makes it easy for training 
but difficult for general application. If data from multiple 
scanners were used, image normalization is required 
to minimize the difference in scaling and resolution. 
However, image normalization is still a difficult question 
for MRI because MRI signals are nonlinear with phys-
ical values and scanning parameters. Compared with 

DWI signals, ADC is an inherent MRI value of the tissue 
and less affected by scanning conditions. Therefore, 
segmentation on ADC map might be appropriate for 
multi- center studies.

5 |  CONCLUSION

Our results demonstrate that the U- Net model can per-
form accurate segmentation of rectal tumor on DWI im-
ages in most cases of locally advanced rectal cancer. 
Deep learning is a promising tool for fully automatic seg-
mentation to overcome the obstacle of time- consuming 
manual delineation.
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TA B L E  4  Related works on rectal tumor segmentation by deep learning

Author Year Modality Network Subjects (n) Mean DSC

Trebeschi et al24 2017 T2WI+DWI 2D patch CNN 70 0.68, 0.70

Men et al12 2017 CT 2D DDCNN 278 0.88

Wang et al14 2018 T2WI 2D U- Net 93 0.74 ± 0.14

Jian et al15 2018 T2WI 2D VGG- 16 512 0.84 ± 0.11

Soomro et al16 2018 T2WI 3D FCN 70 0.94

Men et al17 2018 T2WI, CT 2D CAC– SPP 70, 100 0.78, 0.85

Wei et al18 2019 CT 2D FCN U- Net 107 0.81

Wang et al19 2019 T2WI 2D ResNet- 50 568 0.82

Soomro et al20 2019 T2WI 3D MSDNet 43 0.86 ± 0.02

Liu et al21 2019 CT 2D GAN 223 0.92 ± 0.01

Lee et al22 2019 T2WI 2D U- Net 457 0.74 ± 0.19

Shi et al23 2020 CT SG- Unet 108 0.91,0.85

Abbreviations: CAC, cascaded atrous convolution; DDCNN, deep dilated convolutional neural network; FCN, fully convolutional neural networks; GAN, 
generative adversarial networks; MSDNet, multiscale dense networks; SG- Unet, stacked generalization U- shape networks; SPP, spatial pyramid pooling; 
T2WI, T2- weighted imaging; U- Net, U- shape networks; VGG, visual geometry group.
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