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Abstract
In recent years, considerable progress has been made in increasing the knowledge of tumour biology and drug resistance 
mechanisms in urothelial cancer. Therapeutic strategies have significantly advanced with the introduction of novel approaches 
such as immune checkpoint inhibitors and Fibroblast Growth Factor Receptor inhibitors. However, despite these novel 
agents, advanced urothelial cancer is often still progressive in spite of treatment and correlates with a poor prognosis. The 
introduction of antibody–drug conjugates consisting of a target-specific monoclonal antibody covalently linked to a payload 
(cytotoxic agent) is a novel and promising therapeutic strategy. In December 2019, the US Food and Drug Administration 
(FDA) granted accelerated approval to the nectin-4-targeting antibody–drug conjugate, enfortumab vedotin, for the treatment 
of advanced or metastatic urothelial carcinomas that are refractory to both immune checkpoint inhibitors and platinum-based 
treatment. Heavily pre-treated urothelial cancer patients reported a significant, 40% response to enfortumab vedotin while 
other antibody–drug conjugates are currently still under investigation in several clinical trials. We have comprehensively 
reviewed the available treatment strategies for advanced urothelial carcinoma and outlined the mechanism of action of anti-
body–drug conjugate agents, their clinical applications, resistance mechanisms and future strategies for urothelial cancer.

Keywords Antibody–drug conjugate · Urothelial cancer · Enfortumab vedotin · HER2 · Immunotherapy · Nectin-4 · 
Sacituzumab govitecan · Bladder

Introduction

The treatment options for advanced urothelial cancer (UC) 
have been rapidly developing over the last few years. This 
development began with the approval of anti Fibroblast 
Growth Factor Receptor (FGFR) and various immune 
checkpoint inhibitors (ICIs), followed by the Food and 
Drug Administration (FDA) approving enfortumab vedotin 
(EV), an antibody–drug conjugate (ADC) for the treatment 
of advanced urothelial carcinoma in 2019 [1]. Whilst EV 
is the first ADC to gain FDA approval for the treatment of 
UC, their use is not novel and are commonly used for the 
treatment of breast cancer [2, 3] and hematologic malignan-
cies [4, 5]. Given the positive results observed with EV in 
patients with advanced UC, several clinical trials are under-
way with the aim of demonstrating the improved efficacy of 
ADCs and with the ultimate goal of approving the ADC use 
in earlier lines of therapy. This review will provide an over-
view of current treatment options for advanced urothelial 
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carcinoma and details of the clinical development of various 
ADCs being studied for use in this cancer type.

Urothelial carcinoma

Urothelial cancer is the fourth most common cancer among 
American males with over 80,000 cases diagnosed in 2020 
[6]. UC normally occurs in older patients (7th decade and 
older). Risk factors for development include a genetic pre-
disposition (such as Lynch syndrome), chemical and envi-
ronmental exposure (cyclophosphamide, aromatic amines), 
cigarette smoking and male sex [7]. The vast majority of 
urothelial cancers arise within the bladder and are found to 
have not yet invaded the muscle at diagnosis [8]. First-line 
treatment for non-muscle invasive bladder cancer (NMIBC) 
(Ta/Tis/T1) is generally surgical via transurethral resection 
of bladder tumour (TURBT) with additional intravesical 
therapy using bacillus Calmette-Guerin (BCG) or mitomy-
cin, in order to prevent either disease relapse or regression 
[9, 10].

Even though a large number of patients benefit from the 
aforementioned strategy, a fraction of these patients will 
progress to muscle-invasive bladder carcinoma (MIBC), 
a locally advanced disease stage that is associated with a 
high rate of lymph node spread and distant metastasis [11]. 
In these cases, the gold standard treatment involves neoad-
juvant cisplatin-based chemotherapy (although still poorly 
adopted compared to adjuvant chemotherapy) followed by 
radical cystectomy, a surgical procedure associated with 
non-trivial mortality and a significant effect on quality of 
life [12]. As a result, it is clear that in certain cases there is a 
significant unmet clinical need and thus an opportunity for 
future drug development.

Treatment of advanced muscle‑invasive 
urothelial carcinoma

Systemic treatment is required for patients with advanced or 
metastatic urothelial cancer (mUC). Until recently, cisplatin-
based combination therapies were the only option available. 
Examples included: methotrexate, vinblastine, adriamycin 
and cisplatin (MVAC), or gemcitabine and cisplatin (GC). 
In a phase III trial, both regimens demonstrated a similar 
response rate of approximately 40–50% and a 5-year sur-
vival rate of 10–15%. However, GC regimens reported lower 
toxicity and are therefore currently the treatment of choice 
in ongoing trials [13]. Conversely, regimens containing 
carboplatin (usually gemcitabine plus carboplatin), are the 
preferred treatment for those deemed cisplatin-ineligible, 
with similar response rates to GC regimens, but with poorer 
survival outcomes [14, 15].

Further research in this setting has led to the development 
of immune checkpoint inhibitors, such as atezolizumab, ave-
lumab, durvalumab, nivolumab and pembrolizumab; all of 
which are now can be used in patients with UC [16]. Phase 
III trials recently demonstrated that pembrolizumab treat-
ment resulted in a 3 months benefit in terms of survival 
when compared to standard of care taxane or vinflunine in 
platinum-ineligible patients [17, 18]. Notably, in another 
phase III trial, atezolizumab showed no benefit on overall 
survival. Nonetheless, both atezolizumab and pembroli-
zumab were granted FDA approval for their use as first-line 
agents for platinum-ineligible patients with UC [19].

In addition to immunotherapy options, second-line regi-
mens including antifolates and taxanes represent a valid 
option for patients who have had disease progression on 
platinum-based regimens, although these regimens do report 
poor response rates of approximately 15% [17]. Addition-
ally, a vinflunine agent reported a debatable improvement in 
survival when compared to the standard of care in a phase 
II trial, achieving European Medicines Agency but not FDA 
approval [20].

Moreover, significant treatment advancements have been 
made for those metastatic UC patients (20%) harbouring 
mutations in the FGFR pathway. Erdafinitib, an oral FGFR-
inhibitor, reported a response rate of 40% in patients with 
FGFR alterations in phase II single study, leading to acceler-
ated FDA approval for use in patients who have progressed 
on platinum-based therapy [21, 22]. Despite these devel-
opments, a large number of patients still relapse following 
platinum-based regimens as well as immunotherapy. Con-
sequently, this unmet clinical need led to the generation of 
antibody–drug conjugates, which have generated a robust 
interest within the scientific community.

Antibody–drug conjugates (ADCs)

ADCs are small molecule anticancer agents covalently 
linked to a monoclonal antibody (mAb). Specific antigens 
expressed on tumour surfaces are targeted by the mAb, 
resulting in selective delivery of the anticancer agent to 
tumour cells [23] (Table 1). Excessive toxicity or poor 
handling limits some chemotherapeutic drugs from being 
used as classical chemotherapeutic agents [24]. ADCs can 
overcome this limitation by selectively delivering cytotoxic 
agents to tumour targets, reducing toxicity, and increasing 
efficacy. The early development of ADCs involved the use 
of murine antibodies conjugated with chemotherapeutic 
agents such as methotrexate, doxorubicin, and vinblastine, 
even though these agents have limited selectivity and strong 
immunogenicity [25]. As the technology has evolved and 
humanised antibodies developed, these agents have become 
more effective and specific, leading to improved potency and 
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reduced immunogenicity [26]. Three components make up 
an ADC; an antibody specific for the target antigen, a linker 
domain and then the cytotoxic agent.

Antibody identification

ADCs are not required to elicit an immune response after 
linking with the cytotoxic payload [27]. Presently, immuno-
globulin G forms the integral structure and is composed of 
four subclasses (IgG1, IgG2, IgG3, and IgG4), each of which 
differ from each other in the structure of the constant domain 
and hinge regions [28, 29]. Most immunotherapies, includ-
ing ADCs, utilise IgG1 as it can stimulate immune effector 
functions (receptor binding, endocytosis and downstream 
activation of immune pathways). IgG1 also has the advan-
tage of high stability in serum, and low molecular weight 
and is well distributed in the intra- and extravascular space 
[26] (Fig. 1).

The mAb should be targeted against an antigen strongly 
expressed on malignant cells, and absent on non-malignant 
cells, this is crucial in reducing systemic toxicity and wid-
ening the therapeutic window. Examples of such antigens 
within UC cells include HER2, Nectin-4 and Trop-2. Fur-
thermore, there should be limited antigen cross-reactivity, 

with strong binding affinity to the target to ensure effective 
internalisation and stability [30, 31].

Drug‑mAb linker

The linker acts to join the cytotoxic agent to the antibody 
via the conjugation sites in the antibody heavy chains. Two 
crucial characteristics must be present for the Linker to be 
functional. Firstly, the linker must ensure the antibody and 
cytotoxic agent remain firmly bound, particularly in the 
plasma during circulation. An unstable linker may lead to 
premature delivery of the cytotoxic agent into the systemic 
circulation leading to unwanted toxicity and reduced thera-
peutic efficacy [32]. Secondly, the linker must be able to 
deliver the drug once at the tumour site [33].

There are two main sub-classes of linkers; cleavable 
and non-cleavable. Cleavable linkers rely on factors in the 
tumour microenvironment to stimulate the breakdown and 
release of the ADC cytotoxic agent [34]. Mechanisms of 
linker cleavage are diverse; one such mechanism is driven by 
glutathione (highly represented in the cytoplasm compared 
to the extracellular space), which leads to the release of the 
cytotoxic agent via breakage of disulphide bonds [35, 36]. 
A second type of mechanism involves linkers that cleave in 

Fig. 1  Different types of ADCs tested in urothelial cancer. DXD der-
uxtecan, DM-1 emtansine, MMAE monomethyl auristatin E, HER2 
human epidermal growth factor receptor 2, T-DM1 trastuzumab 

emtansine, TROP-2 Trophoblast cell surface antigen 2, SLITRK Slit- 
and Trk-like protein
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environments with an acidic pH, such as hydrazone. This 
type of linker exploits the acidic pH found in endosomes 
and lysosomes. However, premature cleavage of these link-
ers into the circulation may lead to hepatotoxicity such as 
that described in gemtuzumab ozogamicin [32, 37]. A third 
type of linker is those that are protease-dependent and are 
degraded by lysosomal proteases after recognition of a spe-
cific peptide sequence. These linkers allow the ADC to be 
remarkably stable within the plasma and thus avoid a pre-
mature release of the cytotoxic agent. Examples of this type 
of linker include enfortumab vedotin, ADC directed against 
nectin-4, and sacituzumab govitecan (SG) directed against 
the human trophoblast cell surface antigen 2 (Trop-2) [38].

Cleavable linkers are less stable than non-cleavable link-
ers. Non-cleavable linkers rely on the degradation of the 
complete antibody-linker complex to release the cytotoxic 
agent. Examples of ADCs with non-cleavable linkers are 
belantamab mafodotin and trastuzumab emtansine (T-DM1) 
[39].

Payloads

The cytotoxic agents in ADCs are often referred to as the 
payload, and these drugs are usually heavily toxic molecules 
[40]. The antibody acts as the delivery mechanism of this 
payload to the tumour target. The early ADCs could deliver 
classical chemotherapeutic agents, such as methotrexate, 
vinca alkaloids and doxorubicin [41, 42]. However, ADCs 
delivering these agents did not demonstrate higher efficacy 
than when these agents were delivered as standard chemo-
therapeutic agents [43].

ADC payloads can be split into different macro-categories. 
The most important of which are the agents that destabilise 
microtubules, such as auristatins and maytansins, which are 
derived from natural bacteria. Monomethyl auristatin E and 
F (MMAE, MMAF) are examples of auristatins and are syn-
thetic derivatives of the dolastatin 10 peptide which is isolated 
from Dolabella auricularia [44]. These drugs act by inhibit-
ing the polymerisation of tubulin, resulting in cell cycle arrest 
and then apoptosis. Maytansins such as DM1 act in a similar 
fashion and target tubulin via the vinca alkaloid binding site, 
subsequently leading to a blockade of mitotic replication and 
then cell cycle arrest and apoptosis [45, 46].

Other types of payload include those that act directly 
on DNA damage, examples include cuocarmicins and 
pyrrolobenzodiazepines. These agents can generate DNA 
double helix damage and act as alkylating agents leading 
to disruption of transcription, causing DNA double helix 
breakage and apoptosis [47–49]. Further examples of this 
type of payload include the camptothecin analogues, such as 
SN-38, which can inhibit topoisomerase I resulting in DNA 
damage and breakage.

Additionally, ADC activity relies on a well-balanced 
drug-to-antibody ratio (DAR). A high DAR can negatively 
impact pharmacokinetics [50], whereas a low DAR may 
reduce ADC potency. ADCs with high DARs may show 
greater efficacy and internalisation, but this may also lead to 
increased clearance [51–53]. Importantly, ADCs with lower 
immunogenicity have a key advantage in that these are less 
likely to lead to the development of anti-drug antibodies, the 
presence of which can suppress drug efficacy [54].

Antitumour activity in urothelial carcinoma

Enfortumab vedotin

Enfortumab vedotin is a novel ADC composed of a fully 
human antibody, targeting Nectin-4 and the potent micro-
tubule-disrupting agent monomethyl auristatin E [55]. Nec-
tin-4 is a junction protein implicated in cell–cell adhesion 
[56]; it is involved in a variety of biological processes such 
as tumour-cell growth, proliferation, immune modulation 
and viral entry [57]. In a previous study, it has been found 
that Nectin-4 mRNA, a poliovirus receptor-related protein-4 
(PVRL4), is highly expressed in cancer cells, especially in 
bladder cancer (BC) [58] and that such aberrant expression is 
associated with cancer progression and poor prognosis. Due 
to its central role in tumorigenesis and lymphangiogenesis, it 
has emerged as a potential biomarker and promising targeted 
therapy. In 2020, a phase III trial has investigated the effi-
cacy of EV versus investigator-choice chemotherapy (doc-
etaxel, paclitaxel, and vinflunine) in 608 patients progress-
ing after platinum-containing chemotherapy and ICI [55]. 
At the prespecified interim analysis, the primary endpoint 
was met with longer overall survival (OS) in the enfortumab 
vedotin group than in the chemotherapy group [median OS, 
12.8 vs. 8.9 months; hazard ratio (HR) for death, 0.70; 95% 
confidence interval (CI), 0.56–0.89; p = 0.001). After these 
results, enfortumab vedotin was granted EMA and FDA 
breakthrough therapy approval for the treatment of patients 
previously treated with platinum-containing chemotherapy 
and ICI [59].

Moreover, in the first-line setting, EV had a synergistic 
effect when combined with ICI, based on the results of the 
ongoing phase Ib/2 EV-103 trial, demonstrating an objec-
tive response rate (ORR) of 73%, with 15.6% of complete 
responses (CR) and median progression-free survival (PFS) 
of 12.3 months in cisplatin-unfit patients [60]. It is notewor-
thy to mention that EV is correlated with severe cutaneous 
adverse reactions, including fatal cases of Steven Johnson 
Syndrome or Toxic Epidermal Necrolysis, especially during 
the first cycle of treatment but may occur later, as well as 
hyperglycemia, pneumonitis, peripheral neuropathy, ocular 
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disorders, infusion-site extravasation, and embryofetal toxic-
ity [55, 61].

Sacituzumab govitecan

Sacituzumab govitecan is a humanized anti-Trop2 mono-
clonal IgG1k coupled to the cytotoxic payload, SN-38, the 
active metabolite of irinotecan and a topoisomerase I inhibi-
tor [62] via a cleavable linker [63, 64]. Trop-2 is a 40-kDa 
transmembrane glycoprotein that was first discovered in 
human trophoblast and choriocarcinoma cell line [65]. Due 
to its short intracytoplasmic tail, it is correlated with several 
pathways regulating cellular functions such as cell–cell adhe-
sion, cell proliferation and mobility [65, 66]. Moreover, a 
high Trop-2 expression has been found in different cancers 
including urothelial cancer where it is associated with aggres-
sive progression and poor survival outcome [67]. The TRO-
PHY-U-01 study is an open-label, single-arm phase II study 
designed to confirm the SG antitumor activity in patients 
with metastatic UC who progressed after prior platinum-
based and checkpoint inhibitor-based therapies [68].

Among the 113 patients who received SG, central review 
evidenced an ORR of 27% with an mPFS and mOS of 
5.4 months and 10.9 months, respectively; thus confirm-
ing the results from the prior phase I/II study showing that 
SG has significant anticancer activity in heavily pretreated 
patients [69]. Regarding the adverse events (AEs), it is 
worth mentioning that SG is generally well tolerated and 
the observed grade 3 or greater AEs were neutropenia (35%) 
followed by leukopenia (18%), anaemia (14%), diarrhoea 
(10%), and febrile neutropenia (10%). Based on this pre-
liminary data, SG received accelerated approval in heavily 
pretreated patients with mUC who had progressed on plati-
num and ICIs.

Sirtratumab vedotin (ASG15‑ME)

Sirtratumab vedotin is an ADC composed of a SLITRK6-
specific human gamma 2 antibody (Igγ2) conjugated to a 
small molecule microtubule disrupting agent, monomethyl 
auristatin E (MMAE) via a protease-cleavable linker [70]. 
It enables the release of this MMAE to tumours expressing 
SLITRK6 [71]. This protein belongs to a neuronal trans-
membrane protein family regulating the growth and survival 
of neuronal cells in the inner ear that transmit auditory sig-
nals. Therefore, mutations in this gene lead to myopia and 
progressive auditory neuropathy in humans and mice [72, 
73]. Several immunohistochemical studies have demon-
strated that SLITRK6 is expressed in a variety of epithelial 
tumours, including lung cancer, glioblastoma and breast 
cancer, and that it is moderately negatively correlated with 
tumour malignancy [74].

The first study that reported data on SV anti-tumour activ-
ity was a phase I study that included 51 metastatic urothe-
lial cancer patients. SLITRK6 expression was evaluated by 
immunohistochemistry and results demonstrated it to be 
positive in 93% of patients. Among the 42 patients treated 
with a therapeutic dose (> 0.5 mg per kg), 1 showed CR at 
39 weeks and 13 had a partial response (PR), resulting in an 
ORR of 33%. The median duration of response (DOR) and 
mPFS were 15 and 16 weeks, respectively. SV was gener-
ally well tolerated; fatigue was the most common grade 3 or 
higher AEs, evaluated in 44% of patients [71]. Ten patients 
experienced reversible ocular toxicities with one grade 3 
toxicity. Despite these results, no current ongoing trials are 
evaluating the SV efficacy in UC metastatic setting.

Human epidermal growth factor receptor 2 
(HER2)—ADCs in bladder cancer

HER2 has a firmly established oncogenic potential in both 
preclinical and clinical settings, especially in breast cancer 
[75]. When overexpressed, it leads to the autophosphorylation 
of tyrosine residues within the cytoplasmic domain of the het-
erodimer and triggers a complex pathway, resulting in a strong 
pro-tumorigenic signalling cascade [76]. Recently, various 
ADCs targeting HER2-positive BC have been investigated, 
leading to a significant improvement in survival outcomes 
[77]. Beyond breast and gastric cancer, urothelial carcinoma 
is the third most prevalent cancer with HER2 overexpres-
sion, showing potential utility for HER2-targeting therapy in 
mUC. Notably, it has been shown that HER2 overexpression 
was observed in 9.2–12.4% of invasive bladder carcinoma, 
with 5.1% of those demonstrating a HER2 gene amplification 
[78]. In addition, Fleischmann et al. demonstrated that HER2 
amplification was significantly more frequent in lymph node 
metastases (15.3%) than in matched primary bladder cancers 
as well as being more apparent in the luminal than in the basal 
subtypes [79]. Moreover, previous studies demonstrated that 
in bladder cancer, HER2 overexpression strongly correlated 
with tumour progression and poor prognosis and, unlike BC, 
HER2 genomic amplification is not a common mechanism 
[80, 81]. While in BC the role of HER2-targeting agents has 
been well defined in both metastatic and adjuvant settings, the 
efficacy of HER2-targeting agents in bladder carcinomas still 
remains a challenge.

Trastuzumab emtansine (TDM-1).T-DM1 is a HER2-
targeted antibody–drug conjugate, combining a monoclo-
nal antibody with an anticancer drug called emtansine, a 
microtubule inhibitor [82].

Although T-DM1 showed promising antitumor effects in 
preclinical models of HER2 overexpressing bladder cancers 
[83], the multi-histology phase II, basket trial of TDM-1 in 
patients with HER2 amplified cancers failed to demonstrate 
a significant activity of this drug in patients with mUC..
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Trastuzumab deruxtecan (T-DXd). T-DXd (DS-8201) 
is an antibody–drug conjugate that is composed of a 
humanized monoclonal antibody specifically targeting 
HER2 linked to potent topoisomerase I inhibitor as the 
cytotoxic drug (payload) [3]. In the DESTINY-Breast01 
trial, DS-8201 showed durable antitumor activity in a pre-
treated patient population with HER2-positive metastatic 
breast cancer [3]. Moreover, DS8201 have demonstrated a 
satisfactory efficacy in patients with metastatic BC HER2 
low-expressing [3, 84].

Disitamab vedotin.Disitamab vedotin, previously 
known as RC-48, is a novel ADC consisting of a human-
ized monoclonal antibody directed against HER-2 con-
jugated to MMAE via a cleavable linker [85]. In 2021 
Shent et al., in a phase II study, evaluated the efficacy and 
safety of RC-48 in 43 patients with HER2 + (IHC 3 + and 
2 +) locally advanced or metastatic UC refractory to stand-
ard therapies. They demonstrated a promising efficacy of 
RC-48 observing an ORR of 51%, an mPFS and mOS of 
6.9 and 13.9 months, respectively, with a manageable 
safety profile [80]. This trial observed a higher ORR com-
pared to historic response rates of currently available ICIs 
in the second-line setting. Indeed, another phase II trial, 
enrolling 100 patients, is underway to evaluate whether 
RC-48 works to treat HER2 expressing urothelial cancer 
(NCT04879329).

Mechanism of resistance

Little is currently known about potential resistance mecha-
nisms against ADC treatment in UC. Further investigation 
is needed to shed light on drug-intrinsic mechanisms and 
streamline the identification of predictive biomarkers of drug 
efficacy. Preliminary results link ADC resistance to vari-
ous biochemical mechanisms including alteration of the cell 
cycle, loss of payload efficacy, alteration of vesicle pathways 
and prevention of antibody attachment and loss of target 
antigen [16, 33].

Impairment of cell‑cycle

It is well established that the cell cycle plays a pivotal role 
in generating novel resistance mechanisms and a recent 
study showed that the expression of cyclin B is significantly 
increased in TDM-1-resistant cells [86]. Furthermore, modi-
fications of the apoptosis pathway might interfere with the 
efficacy of ADCs. There is evidence of overexpression and 
mutation of BCL-X and BCL-2, plus impairment of protein 
regulation of BAX and BAK pathways in patients treated 
with Gemtuzumab ozogamicin [87].

Inhibition of payload efficacy

A common mechanism of resistance has been shown to arise 
following mutations occurring in the molecular target of the 
payload. For example, the decreased success of SG treatment 
might be due to resistance mutations in topoisomerase-1 
[88]. In addition, ATP-binding cassette (ABC) transporters 
are deemed to be a frequent mechanism of chemotherapy 
resistance, acting to increase drug discharge from the cell 
microenvironment [89]. Several ADC payloads are targeted 
against ABC efflux transporters, thus conferring resistance 
to ADC treatment [90, 91]. Myatansinoids and auristatin 
analogues have been previously reported to be substrates for 
ABC transporters including multidrug resistance-1 (MDR-
1) in preclinical data. Exposing the cell to these agents can 
result in the overexpression of MDR-1 efflux transporters 
[92].

Impairment of vesicle pathways

There is preclinical evidence of decreased treatment sensi-
tivity resulting from the internalization of TDM-1 into cave-
olin-1-coated vesicles [93]. Although the antibody internali-
sation into the cell (by endocytosis) is required to promote 
ADC efficacy, this process might curb payload efficacy. It 
has been shown that the internalization process might take 
place by means of clathrin-caveolin-independent, clathrin-
mediated, and caveolin-mediated endocytosis mechanisms 
[94].

Loss of target antigen

Loss or reduction of target tumour antigen can occur due 
to a multitude of reasons. Examples include; gene muta-
tion resulting in antigen concealment to the immune sys-
tem or downregulation of target gene expression or clone 
selection of those tumour cells with lower target antigen 
expression. These mechanisms are a common hurdle to max-
imising ADC treatment efficacy [95] as the loss or reduc-
tion of cancer target antigen might result in the release of 
payload or loss of antibody binding. A study carried out 
on patients with metastatic triple-negative breast cancer 
(TNBC) showed that the loss of Trop-2 expression was 
associated with decreased response to SG treatment [88]. 
The ASCENT trial compounded that finding by demon-
strating that metastatic TNBC patients with high Trop-2 
expression, treated with SG, reported better outcomes when 
compared to those with low or absent Trop-2 expression 
[96]. Comparably, the EMILIA trial (results of which led 
to TDM-1 approval for HER-2-positive metastatic cancer 
patients) observed that patients with higher expression of 
HER-2 mRNA reported better outcomes when compared to 
those with lower HER-2 mRNA levels [97]. Nonetheless, 
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preliminary research studies are underway to verify the effi-
cacy of bispecific antibodies (those able to target multiple 
antigens) with the ultimate goal of overcoming this particu-
lar resistance mechanism.

The role of the tumour microenvironment (TME)

Recent evidence showed that the TME plays a pivotal role in 
regulating tumour progression, metastasis, immune escape, 
and it is involved in acquired resistance of tumours to vari-
ous therapies, resulting in reduced treatment efficacy [98, 
99]. Several mechanisms within the TME are deemed to 
lead to drug resistance. For instance, hypoxia and impaired 
blood supply, which results from the uncontrolled prolif-
eration of tumour, are a cornerstone of TME in all solid 
tumours [100]. Hypoxia and impaired blood supply result in 
abnormal angiogenesis, inflammation and desmoplasia, all 
of which contribute to tumour progression and therapeutic 
resistance [101]. Additionally, hypoxia promotes decreased 
pH in the TME which supports multi-drug-resistances strate-
gies including reduced apoptotic rate, increased activity of 
multidrug transported p-glycoprotein (P-gp/MDR1)(“drug 
efflux pump”), genetic alterations such as p53 mutations, 
and decreased concentration of the drug due to “ion trap-
ping”—namely the inability for charged drugs to diffuse 
through cells [102].

Future options to overcome resistance 
and optimise ADC‑based therapy

Although three new ADCs have been recently granted 
approval for the treatment of solid cancers, a major limit to 
ADC clinical success is resistance to these drugs. Nonethe-
less, ADC modular structure and the biochemical improve-
ments will allow soon the development of new agents capa-
ble of overcoming resistance. Indeed, ADCs engineering has 
recently introduced new payloads, linkers and the develop-
ment of a novel generation of ADCs with an increased drug-
to-antibody ratio (DAR) and solid bystander effects [103]. 
The use of novel cleavable linkers in association with mem-
brane-permeable payload can improve the efficacy of the 
bystander effect, enabling ADCs to be active against target-
negative cells, namely expanding ADC efficacy to cancer 
with low target expression or on heterogeneous tumours 
[36, 104]. Another strategy that can be used is the increase 
of linker hydrophilicity, which can impair drug resistance 
as P-gp/MDR1 binds to hydrophobic compounds more effi-
ciently than hydrophilic compounds [105]. Other studies 
have attempted to improve the stability of ADCs in plasma 
by altering the composition of linkers, focusing on replacing 
the most susceptible to degradation linker components with 
more stable substitutes [106].

Additional strategies have recently been investigated to 
expand the group of patients who might benefit from the 
newer generation of ADCs. Noticeably, new potential targets 
including proteins expressed by cancer stem cells (CSC), 
such as PTK7, ephrin-A4, 5T4 and in the TME, such as 
CD205, CD25, B7-H3, are under investigation with some 
of these that already reached clinical phases of drug devel-
opment [107, 108]. Bispecific and biparatopic antibodies 
are also under investigation in preclinical studies. While 
bispecific antibodies can recognize two different antigens 
on the same antigen, biparatopic antibodies bind two non-
overlapping epitopes of the same antigen. Additionally, a 
newer thread of research is focusing on smarter vehicles for 
payloads [109]. Probody drug conjugates are a novel group 
of ADC prodrugs that can be activated following proteo-
lytic cleavage by TME proteases to minimise on-target/off-
tumour toxicity [110].

More importantly, the most promising results are com-
ing from several ongoing trials investigating the efficacy of 
novel ADCs in combination with several targeted agents 
such as immune checkpoint inhibitors (ICIs).The advent 
of ICIs and the more recent introduction of FGFR-targeted 
therapy have significantly altered the treatment paradigm 
of advanced urothelial cancer. Additionally, the even more 
recent introduction of ADCs (and the FDA approval of 
EV) are at the forefront of urothelial cancer treatment with 
encouraging preliminary and clinical data. ADCs have a 
multitude of benefits as treatment options. Firstly, response 
rates are promising (so far demonstrated to be between 30 
and 60%) and comparable to current cisplatin-based first-
line regimens. Secondly, response to ADCs has been shown 
to be durable with manageable toxicity. Finally given the 
universal expression of urothelial cancer targets, a large frac-
tion of patients would most likely be considered eligible or 
appropriate for ADC treatment. With that in mind, what does 
the future hold for ADC treatment in urothelial cancer? It 
is highly likely that additional ADC agents will be granted 
approval for advanced urothelial cancer treatment, particu-
larly as interest moves toward studying the outcome of ADC 
therapy in treatment-naïve patients.

Furthermore, the combination of ICIs and ADCs is a 
strategy that needs to be considered, as the biochemical 
effect is potentially synergistic with no overlapping toxic-
ity. For example, ADCs can promote cell death, resulting 
in cancer antigen release, leading to immune system activa-
tion and an increase of antigen-presenting cells [111]. At 
the same time, ICIs can regulate immunosuppression within 
the tumour microenvironment by modulating cytokines, 
enzymes and T immune cells with immunomodulatory func-
tions [112]. Therefore, ADC agents have potential synergis-
tic activity in combination with ICIs. The ability of ADCs 
to modulate the immune system is under investigation in 
preclinical studies. Gardai et al. reported that ADCs with an 
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MMAE payload can trigger anti-tumour immunity and stim-
ulate immune cell death by induction of damage-associated 
molecular patterns (DAMPs) on the cell surface which, in 
turn, can trigger the immune system [113].

Further research in murine models has shown that tumour 
shrinkage was increased with a PD1 inhibitor and brentuxi-
mab combination treatment, corroborating the potential 
synergism of the two drug classes [114]. According to this 
preclinical data, it can be fairly confidently assumed that a 
combination of ADC and ICI might lead to a stronger anti-
tumour response in vivo. Notably, combination treatment 
with ICIs and ADCs has already been granted regulatory 
approval for several cancers, and different combinations 
of these two agents are currently under clinical trial inves-
tigation. The EV-103 trial, a multi-arm phase Ib/II study 
investigating the efficacy of EV alone or in association with 
chemotherapy and/or pembrolizumab in locally advanced 
urothelial cancer, has reported a greater benefit in terms of 
ORR (73%) and mPFS (12.3 months) in the first-line setting 
when combinations are used [115].

In addition, the EV-304 trial, a randomized phase III 
open-label study in cisplatin-eligible patients is underway 
for the investigation of early-setting efficacy in patients 
treated with either EV plus pembrolizumab or neoadjuvant 
cisplatin in combination with gemcitabine [116]. Another 
phase III global study, VOLGA, is testing the efficacy and 
safety of neoadjuvant treatment with EV plus durvalumab 
and tremelimumab or EV plus durvalumab in cisplatin-ineli-
gible MIBC [117]. As far as the development of novel ADCs 
is concerned, different agents including integrin β6, EGFR, 
B7-H1 and CD25 are being evaluated in early phase bas-
ket trials with the ultimate goal of better understanding and 
overcoming primary and acquired resistance mechanisms as 
well as limiting toxicity (Table 2).

Conclusion

Until recently, chemotherapy was the only treatment avail-
able for advanced or mUC. However, over recent years, UC 
treatment has benefited from multiple advances, and now 
more targeted therapy exists, in the form of immunotherapy. 
However, the outcome for these patients remains poor in the 
long term. ADCs are innovative drug agents, which allow 
conventional cytotoxic therapies to be transformed into 
highly targeted chemotherapeutics, potentially enabling bet-
ter outcomes and reduced toxicity. ADCs offer particular 
promise in UC as we know that multiple tumour-specific 
antigens are highly expressed. As a result of this specificity 
and potential efficacy, ADCs offer a renewed hope for those 
malignancies with limited therapeutic strategies such as 
locally advanced or metastatic UC. The ongoing drug devel-
opment within approved clinical trials will elucidate the 

optimal sequencing or combination of these drugs. The end 
goal is a personalized approach to the treatment of urothelial 
cancer, resulting in improved outcomes for patients.
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