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Abstract: Microlens array (MLA) errors in plenoptic cameras can cause the confusion or mismatching
of 4D spatio-angular information in the image space, significantly affecting the accuracy and efficiency
of target reconstruction. In this paper, we present a high-accuracy correction method for light fields
distorted by MLA errors. Subpixel feature points are extracted from the microlens subimages of a raw
image to obtain correction matrices and perform registration of the corresponding subimages at a
subpixel level. The proposed method is applied for correcting MLA errors of two different categories
in light-field images, namely form errors and orientation errors. Experimental results show that the
proposed method can rectify the geometric and intensity distortions of raw images accurately and
improve the quality of light-field refocusing. Qualitative and quantitative comparisons between
images before and after correction verify the performance of our method in terms of accuracy, stability,
and adaptability.
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1. Introduction

Plenoptic imaging is an advanced computational photography technique that can obtain both
spatial and angular information of light rays in a single exposure [1,2]. The retention of radiation
information in the angular dimension provides the necessary light-field data for altering the viewpoints
or focusing depth of the target scene, which enables the capabilities of depth estimation, dynamic
capture, and volumetric reconstruction [2–5]. This means that plenoptic imaging systems can be used
as sensors for making measurements in complex scenarios, such as high-temperature flames [6–8], 3D
fluid flow fields [9,10], and organ microtopography [11]. In such systems, a microlens array (MLA)
built in front of the image sensor plays an important role in recording 4D light field. It disperses
the light rays from the main lens onto the sensor pixels to form a series of microlens subimages that
constitute a light field raw image. Each subimage holds 2D spatial information, and the sequential
pixels beneath it contain 2D angular information. Owing to this correlation, the accuracy of light-field
data is affected by the MLA parameters. To support the use of plenoptic imaging sensor in measurement
applications, MLAs must maintain a predesigned geometric form and remain aligned with internal
components. Similarly, in artificial compound-eye imaging sensors and other stretchable optoelectronic
imaging systems [12,13], the use of improved MLA structures such as elastomeric MLAs and curved
MLAs, opens up the potential for wide-angle field of view and infinite depth of field. The geometric
parameters of the built-in MLAs also determine the optical performance of these imaging systems.

However, variability in MLAs is inevitably introduced in the manufacturing and assembly stages,
and thus the captured raw images have geometric and intensity distortions. For example, displacements
and aliasing artifacts occur among subimages owing to the orientation errors between the MLA and
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sensor planes [14–16], and there are the deviations in the brightness, clarity, and projection center of
the subimages caused by microlens form errors [17,18]. Extant researches shows that these distortions
deteriorate the quality of light-field reconstruction. In particular, confusion or loss of data results
in nonlinear distortion of light-field refocused images [16,17,19], which in turn, leads to inaccurate
measurement results [20–23]. In recent work, researchers have attempted to calibrate the MLA errors
in plenoptic imaging systems and correct the resulting distortions in raw images. Suliga et al. [24]
proposed a calibration method for MLAs in unfocused plenoptic cameras where the centers of the
microlens subimages are estimated using a single image to determine the position offsets of the MLA
with relation to the image sensor. Su et al. [25] formulated a geometric projection model that considers
the translation and rotation errors of the MLA and applied the obtained error functions in optimization
algorithms for the MLA orientation parameters. Bok et al. [26] presented a method for the geometric
calibration of plenoptic cameras. The extrinsic parameters of the MLA are estimated and optimized
using line features extracted from raw images. However, large errors remain at outer regions of the
images after this calibration procedure because certain aberrations and errors from the microlenses are
neglected in their model. Moreover, Cho et al. [27] attempted to deal with the MLA rotation errors for
commercial Lytro cameras and correct the image distortion based on parameter calibration. Jin et al. [28]
employed a similar technique to estimate MLA orientation errors via the fitting of subimage centers
and by adjusting the entire raw image to the horizontal axis for rectifying the distorted light field.

The current approaches for MLA error calibration and image correction generally focus on the
orientational offsets between the array and the image sensor while neglecting form errors based on the
simplification that the microlens is considered as a pinhole model or a thin-lens model. Thus, there are
some limitations to these simplified models and methods. First, parameter calibration algorithms
depend on the estimated subimage centers. However, integer pixel levels are not adequate for locating
the exact center points, causing variation in the solved parameters from the ground truths. Second,
microlens errors and various aberrations of the main lens may affect the shape and uniformity of
the subimages, which also aggravates the inaccuracy of parameter estimation and projection error
corrections. Third, the types and values of the form errors that occur on each microlens are distinct,
and even the degradation of subimages owing to the same source of error can be different [18] such
that integral correction techniques are neither effective nor efficient for local microlens errors and their
corresponding distortions.

In the previous work [29], a method was proposed for rectifying the image distortions caused
by MLA form errors. However, it yields an undesirable effect due to insufficient precision when
determining the center locations and the pixel shift of microlens subimages. In this paper, we present
a correction method for MLA errors with subpixel accuracy. Compared with previous algorithms,
the proposed method mainly improves two key techniques of light field correction: feature point
extraction and subimage registration. The center location and edge detection algorithms based on
multi-interpolation are first used to improve the accuracy of subimage feature-point location from
the integer pixel level to subpixel level. This can enhance the sensitivity of the subimage feature
variation and obtain the accurate coordinates of the feature points, thereby avoiding the effect of
coordinate deviations caused by the integer pixel location on the correction solution. Then the subpixel
registration method based on backward mapping and grayscale interpolation is used to realign the
geometric-corrected subimages to the ideal positions, avoiding vacant pixels and improper subimage
movement due to the forward mapping registration at an integer pixel level. To evaluate the proposed
method, we derive a complete error model correlating the MLA form errors with orientation errors
and obtain multiple sets of raw images under different error conditions using a ray-tracing simulation
plenoptic imaging system [30]. The reasonable upper bounds and correction accuracy of the errors are
analyzed by measuring the image quality before and after correction. A benchmark comparison with
the previous method demonstrates the superior performance of the proposed method for correcting
image distortions.
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2. Correlated MLA Error Model

In an unfocused plenoptic imaging system, the MLA is positioned at the imaging plane of
the main lens and the image sensor is located behind at a distance equal to the focal length of
the microlens, as illustrated in Figure 1. The MLA determines the angular sampling distribution
of the rays passing through a point at the main lens pupil and projects it onto the sensor pixels
assigned to the corresponding microlenses to form subimages. Such a system structure can achieve
maximal light-field depth resolution and provide depth constraints to estimate the object depth map
without calibration [2,3]. Ideally, each microlens has an identical geometric form and a uniform
arrangement, and the MLA is aligned with the image sensor. Thus, a definite correspondence between
the object-space points, the microlenses, and the subimage-space points can be established to convert a
2D raw image into 4D light-field data. However, owing to defects arising from manufacturing and
assembly adjustment processes, the form and orientation parameters of the MLA may deviate from
the design values, resulting in mismatches between the spatial and angular information recorded by
the subimages. Many kinds of MLA errors that occur in the imaging system are limited to the use of
different machining materials and methods [31–33]. According to their characteristics, MLA errors can
be classified into two categories: form errors, which include pitch error, radius-of-curvature error, and
decenter error; and orientation errors, which comprise distance error, translation error, and tilt error.
The actual MLA error can be represented as a combination of these basic error types.

Sensors 2019, 19, x 3 of 23 

 

2. Correlated MLA Error Model 

In an unfocused plenoptic imaging system, the MLA is positioned at the imaging plane of the 
main lens and the image sensor is located behind at a distance equal to the focal length of the 
microlens, as illustrated in Figure 1. The MLA determines the angular sampling distribution of the 
rays passing through a point at the main lens pupil and projects it onto the sensor pixels assigned to 
the corresponding microlenses to form subimages. Such a system structure can achieve maximal 
light-field depth resolution and provide depth constraints to estimate the object depth map without 
calibration [2,3]. Ideally, each microlens has an identical geometric form and a uniform arrangement, 
and the MLA is aligned with the image sensor. Thus, a definite correspondence between the 
object-space points, the microlenses, and the subimage-space points can be established to convert a 
2D raw image into 4D light-field data. However, owing to defects arising from manufacturing and 
assembly adjustment processes, the form and orientation parameters of the MLA may deviate from 
the design values, resulting in mismatches between the spatial and angular information recorded by 
the subimages. Many kinds of MLA errors that occur in the imaging system are limited to the use of 
different machining materials and methods [31–33]. According to their characteristics, MLA errors 
can be classified into two categories: form errors, which include pitch error, radius-of-curvature 
error, and decenter error; and orientation errors, which comprise distance error, translation error, 
and tilt error. The actual MLA error can be represented as a combination of these basic error types. 

 
Figure 1. Optical configuration and ray tracing of an unfocused plenoptic imaging system. 

MLA errors involve the MLA plane and the image sensor plane of the plenoptic system. To 
describe the error models, we establish a coordinate system O-XYZ between the two parallel planes 
as shown in Figure 2, including an MLA coordinate ost-st with its origin at the MLA center and an 

image sensor coordinate oxy-xy with its origin at ( )T
0,0, mf , where mf  is the focal length of the 

microlens. The Z-axis corresponds to the optical axis of the system, whereas the X-and Y-axes are 
parallel to the sensor pixel grids. The origin O is at the intersection between the optical axis and the 
conjugate image plane of the main lens. In the ideal case, the origin ost coincides with the origin O, 
that is, the origin ost is at ( )T

0,0,0 with the s-and t-axes are parallel to the X-and Y-axes and the x-and 
y-axes, respectively. For a planar MLA arranged in a matrix-form [29], which consists of NW × NH 
microlenses in a square arrangement, the length and center pitch of the microlenses are both p, the 
two sides of the microlenses are spherical surfaces with radius-of-curvature r, the microlens height is 
h, and the optical axes of the microlenses are parallel to Z-axis. The orientation of an arbitrary 
microlens Ui,j in ost-st coordinates can be represented by its center point as 

( )T
, =ci cjs t ( ) ( )( )+ −− −

T

0 0,1 2 1 2s p t pi j , where i and j denote the microlens in the i-th row and the 

j-th column of the MLA, = 1,2, , Hi N  and = 1,2, , Wj N , and ( )TT = −0 0( , ) 2 , 2W Hs t N p N p  is the 

orientation-datum coordinates of the MLA plane. Accordingly, the geometric form of each microlens 
can be described as symmetrical spherical surfaces: 

( ) ( ) ( ) −+ + − =−  
222 2/ 2cjci

t t Z r h rs s  (1) 

Figure 1. Optical configuration and ray tracing of an unfocused plenoptic imaging system.

MLA errors involve the MLA plane and the image sensor plane of the plenoptic system. To describe
the error models, we establish a coordinate system O-XYZ between the two parallel planes as shown
in Figure 2, including an MLA coordinate ost-st with its origin at the MLA center and an image sensor
coordinate oxy-xy with its origin at, (0, 0, fm)

T where fm is the focal length of the microlens. The
Z-axis corresponds to the optical axis of the system, whereas the X-and Y-axes are parallel to the
sensor pixel grids. The origin O is at the intersection between the optical axis and the conjugate
image plane of the main lens. In the ideal case, the origin ost coincides with the origin O, that is, the
origin ost is at (0, 0, 0)T with the s-and t-axes are parallel to the X-and Y-axes and the x-and y-axes,
respectively. For a planar MLA arranged in a matrix-form [29], which consists of NW × NH microlenses
in a square arrangement, the length and center pitch of the microlenses are both p, the two sides of the
microlenses are spherical surfaces with radius-of-curvature r, the microlens height is h, and the optical
axes of the microlenses are parallel to Z-axis. The orientation of an arbitrary microlens Ui,j in ost-st

coordinates can be represented by its center point as
(
sci, tcj

)T
= (s0 + (i− 1/2)p, t0 − ( j− 1/2)p)T,

where i and j denote the microlens in the i-th row and the j-th column of the MLA, i = 1, 2, · · · , NH

and j = 1, 2, · · · , NW , and (s0, t0)
T = (−NWp/2, NHp/2)T is the orientation-datum coordinates of

the MLA plane. Accordingly, the geometric form of each microlens can be described as symmetrical
spherical surfaces:

(s− sci)
2 +

(
t− tcj

)2
+ [Z∓ (r− h/2)]2 = r2 (1)
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where the negative or positive sign for the term (r− h/2) denotes the entrance or exit side of
the microlens.
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If the MLA is perfectly aligned, that is, the coordinates ost-st are on the plane O-XY, only the
first category errors have to be considered. We define the microlens form errors in a unit or region
under the condition that the other parameters are constant and use ∆p, ∆r and δ to represent the pitch
deviation, radius-of-curvature deviation, and non-collinear offset of the spherical centers on both sides
of the microlens, respectively. The corresponding mathematical models can be deduced in accordance
with Equation (1) and the results are listed in Table 1, where α and β are the angles of the pitch error ∆p
and the decenter error δ, respectively, relative to the horizontal direction.

Table 1. Mathematical Model of MLA form error.

Errors Center Coordinates Surface Description Equations

Pitch error ∆p
(

sci + ∆p cosα
tcj + ∆p sinα

)
[s− ((i− (NW + 1)/2)p + ∆p cosα)]2 + [t− (((NW + 1)/2− j)p + ∆p sinα)]2

+[z∓ (r− h/2)]2 = r2

Radius-of-curvature
error ∆r

(
sci
tcj

)
[s− (i− (NW + 1)/2)p]2 + [t− ((NW + 1)/2− j)p]2

+[z∓ (r + ∆r− h/2)]2 = (r + ∆r)2

Decenter error δ

(
sci
tcj

)
[s− ((i− (NW + 1)/2)p)]2 + [t− (((NW + 1)/2− j)p)]2

+[z− (r− h/2)]2 = r2(
sci + δ cos β
tcj + δ sin β

)
[s− ((i− (NW + 1)/2)p + δ cos β)]2 + [t− (((NW + 1)/2− j)p + δ sin β)]2

+[z− (r− h/2)]2 = r2

Then we discuss the MLA orientation error models and formulate the transformation matrix
between the misaligned plane os′t′ -s′t′ and the ideal plane ost-st. Assume that the image sensor plane
oxy-xy shown in Figure 2 is mounted on and along its ideal position and direction, and this plane is
used as an orientation reference. As shown in Figure 2, if the MLA plane moves along the Z axis, which
changes the coupling distance from the main lens and the image sensor, the resulting error is referred
to as the coupling distance error ∆z. This error can destroy the conjugate imaging conditions of the
plenoptic system, thereby reducing its light-field resolution and focusing-depth range. If the MLA
plane moves on plane O-XY, that is, it undergoes a translation perpendicular to the Z axis, the resulting
error is referred to as the translation error ∆t, and ϕ is the angle of the error relative to the horizontal
direction. The translation error causes all the microlens subimages to be offset in the direction of the
error, resulting in a shift in the recorded spatial information of the target. If the MLA plane is not
parallel to the image sensor plane and there is a tilt angle around the t-axis, the resulting error is
referred to as tilt error θ. Because of this tilt angle, the optical axis of each microlens is also tilted, and
the coupling distance varies linearly with the distance from each microlens to the horizontal axis of the
MLA, which makes the subimages appear as different defocusing and position offsets. The MLA plane
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os′t′-s′t′ with orientation errors can be obtained via translation and rotation transformation of plane
ost-st. The two planes satisfy the relationship:

s′

t′

z′

1

 =

[
Rt T
0T 1

]
s
t
0
1

 (2)

where T = (∆t cosϕ, ∆t sinϕ, ∆z)T is the translation matrix comprising error parameters ∆t and ∆z,
and Rt is the rotation matrix around the t axis. The latter is associated with the error angle θ, which
can be represented as:

Rt =


cosθ 0 sinθ

0 1 0
− sinθ 0 cosθ

 (3)

By combining Equations (2) and (3), we can obtain the center coordinates
(
s′ci, t′cj, z′, 1

)T
of the

microlens Ui,j in O-XYZ coordinates under the specified orientation error conditions as follows:
s′ci
t′cj
z′

1

 =


cosθ 0 sinθ ∆t cosϕ

0 1 0 ∆t sinϕ
− sinθ 0 cosθ ∆z

0 0 0 1




sci
tcj

±(r− h/2)
1

 (4)

At this point, the corresponding surface equation can be also obtained by substituting the results
of Equation (4) in Equation (1). Consequently, the MLA orientation errors can be combined with the
microlens form errors to construct a correlated MLA error model, in which the parameters for each
category and type of error are independent.

3. Correction Method

3.1. Principle

During the light-field recording, the form and arrangement of the microlenses govern the spatial
distribution of the subimages, and the orientation of the MLA determines the sampling relationship of
the spatio-angular information of light rays. Whenever the MLA incurs in form or orientation error,
the subimages get mapped into a distorted image on the sensor plane. The observed distortion is
predominantly of geometric distortion caused by translation, rotation and scaling of subimages, and
grayscale distortion, such as blurred edges and changing brightness and contrast of images. Thereby,
these distortions can be described using geometric and grayscale transformations. For a given feature
point xi, j on the 2D image plane and its corresponding ideal point x′i, j, the geometric transformation
between them is given by:

xi, j = P′i, jx′i, j (5)

where subscripts i and j represent the subimage in the i-th row and the j-th column of the distorted

image, and xi, j =
(
xi, j, yi, j, 1

)T
and x′i, j =

(
x′i, j, y′i, j, 1

)T
are the homogeneous coordinates of the

feature point in subimage i,j and the corresponding point in the ideal subimage, respectively. P′i, j is the
geometric error matrix of subimage i,j which contains translation, rotation, and scaling transformations
and is defined as:

P′i, j =

[
Ri, j ti, j
0T 1

]
=


r11

i, j r12
i, j t13

i, j
r21

i, j r22
i, j t23

i, j
0 0 1

 (6)
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where Ri, j is the rotation scaling matrix of subimage i,j and ti, j is the translation vector. Because
the coordinates of the feature points in the distorted light-field image are known, we can obtain the
undistorted pixel point x′i, j from the pixel point xi, j in the captured distorted subimage via geometric
transformation with P′i, j. It is clear that Ri, j is a nonsingular matrix, then P′i, j is also a nonsingular

matrix. Hence, there is an inverse matrix Pi, j =
(
P′i, j

)−1
such that:

x′i, j =
(
P′i, j

)−1
xi, j = Pi, jxi, j (7)

where Pi, j is the geometric correction matrix of subimage i,j. It can be concluded from Equation (6) that
Pi, j has six degrees of freedom and that, theoretically, can be estimated using three feature point pairs
of xi, j and x′i, j within the subimage. However, to improve solution accuracy and reduce computational
complexity and time, we consider five feature points, namely the calibrated center point and four
edge points along the center lines of each subimage, and perform geometric correction according to
Equation (7).

After that, the grayscale distortion in subimage i,j is corrected. This process serves two
considerations: on the one hand, rectifying the brightness and contrast deviations in the subimages
caused by the MLA errors and improving the overall grayscale uniformity of the light-field image,
and, on the other hand, eliminating the additional grayscale inconsistencies, especially those
concerning uneven pixel intensity after the scaling transformation, induced during geometric correction.
The purpose of the grayscale correction is to adjust each subimage to the equivalent intensity level of
the ideal subimage so as to guarantee the accuracy of the light-field data and the reconstruction results.
We define the grayscale correction factor for subimage i,j after geometric correction as:

gi, j =
µu

i, j

µd
i, j

(8)

where µd
i, j and µu

i, j are the average intensities of the grayscale-distorted subimage i,j and the its
undistorted subimage, respectively. Thus, using the grayscale correction factor gi, j, we can transform
the intensity value fi, j(x′, y′) of the pixel point (x′, y′) in geometric-corrected subimage i,j by Equation (9)
to obtain the corrected intensity value f ′i, j(x

′, y′):

f ′i, j(x
′, y′) = gi, j fi, j(x′, y′) (9)

From the above analysis, once the spatial geometric and grayscale information of the distorted
subimage i,j and the corresponding ideal subimage are known, it is possible to estimate the desired
coordinates of each pixel point using the geometric correction matrix Pi, j and its intensity values
obtained using the grayscale correction factor gi, j to restore the 4D light field data recorded by the
subimage. In our previous method, the solution accuracy of Pi, j suffered from the integer-pixel
extraction for the subimage feature points where the center and edge points could only reach integer
pixel points. Another problem was that the geometric transformation process for subsequent subimage
correction operated using integer pixel units, which caused deviations in the geometric and grayscale
characteristics of some pixels after correction. Therefore, in this paper, we apply feature point
extraction with subpixel accuracy and subpixel registration based on backward mapping to correct
light-field images.

3.2. Subpixel Feature-Point Extraction

In order to accurately determine the error and correction matrices derived in Section 3.1, we propose
a subpixel-level method for the extraction of feature points from raw images. This method can locate
the center points and edge feature points of each microlens subimage and divide the corresponding
subimage regions, allowing for better-performing local geometric and grayscale corrections on the
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light-field image, which will be described in the next section. The extraction procedure is summarized
in Algorithm 1.

Algorithm 1 Feature-Point Extraction Procedures

Capture a white light-field raw image
Bilateral filtering
Segment microlens subimage regions by the
threshold method
1: Procedure Center-Point Estimation

Compute the overall intensity of the pixels within
each row and column of the subimage region

Equation (10)

Determine coarse center regions Equation (11)
Subdivided center regions by bilinear interpolation Equation (12)
Estimate the coordinates of the center point at a

subpixel level based on a center-of-gravity algorithm
Equation (13)

2: Procedure Edge-Point Estimation
Detect edge pixels using Sobel operator and

polynomial interpolation
Equations (14)–(16)

Fit defined parabolic functions φ(x) and φ(y) to
edge pixels and adjacent pixels

Equation (17)

Estimate the coordinates of the edge point at a
subpixel level

Equation (18)

First, a white raw image of an evenly illuminated flat white surface is captured, an example of
which is shown in Figure 3a. This image contains geometric and grayscale information of all the
microlens subimages. To reduce signal noise, the captured image is preprocessed by bilateral filtering.
A bilateral filter considers both the spatial proximity and grayscale similarity between two pixel points
and can preserve the edge information. The filtered counterpart of the image is presented in Figure 3b.
Then, we threshold the image, which is afterwards segmented it into a series of distinct subimage
regions. The threshold value depends on the overall intensity of the image pixels. The sum of the
intensity values within each row and each column of the filtered image is calculated as follows:

Srow(x) =
N∑

y = 1

f (x, y), x = 1, 2, · · · , M (10a)

Scol(y) =
M∑

x = 1

f (x, y), y = 1, 2, · · · , N (10b)

where S(·) denotes the sum of intensity values, superscripts row and col denote summing by rows and
by columns, respectively, f (x, y) is the intensity value of the pixel point (x, y), and M and N correspond
to resolution of the image, which is M (H) × N (W). Threshold values of Throw = 15 min

1≤x≤M
Srow(x)

and Thcol = 15 min
1≤y≤N

Scol(y) are used for the segment boundaries; the x-th row with Srow(x) less than

Throw is identified as the horizontal boundary, and likewise, the y-th column with Scol(y) less than Thcol

is identified as the vertical boundary. The microlens subimage regions R : R1,1, R1,2, . . . , Ri, j, . . . are
then determined according to the adjacent boundaries as shown in Figure 3c, where subscripts i and j
represent the subimage in the i-th row and the j-th column. The subpixel extraction of feature points is
based on these segmentation results. Next, we estimate the center feature points of each microlens
subimage. In accordance with the vignetting effect, the microlens centers can be identified by the
peak intensity points in the subimages. To mitigate the impact of uneven diffuse reflection on center
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calibration, the pixel intensities over the entire subimage region are gathered and summed along each
row and column, that is:

Srow
i, j (x) =

ne
i, j∑

y = nb
i, j

f (x, y), x = mb
i, j, · · · , me

i, j (11a)

Scol
i, j (y) =

ne
i, j∑

x = nb
i, j

f (x, y), y = nb
i, j, · · · , ne

i, j (11b)

where m and n denote the row and column numbers of the horizontal and vertical boundaries of
subimage region Ri, j, respectively, and superscripts b and e represent the beginning and ending
boundaries of the subimage region. The rows and columns that correspond to the four highest Srow

i, j

and Scol
i, j values are sorted in ascending order. The components of the sorted rows and columns are

labelled as x1i, x2i, x3i, x4i and y1 j, y2 j, y3 j, y4 j, respectively, to constitute a 4 × 4 coarse center region
Ci, j =

{
(x1i, y1 j), (x1i, y2 j), · · · , (x2i, y1 j), (x2i, y2 j), · · · , (x4i, y4 j)

}
, as shown in Figure 3d. To achieve

subpixel accuracy for the center location, bilinear interpolation with a coefficient of k is performed to
subdivide the pixels in the coarse center region Ci, j. Let (x + p̃, y + q̃) denote an interpolation point,
and its intensity value is determined by the adjacent integer pixel points (x, y), (x + 1, y), (x, y + 1)
and (x + 1, y + 1):

f (x + p̃, y + p̃) = (1− p̃)(1− p̃) f (x, y) + p̃(1− p̃) f (x, y + 1)+
p̃ (1− p̃) f (x + 1, y) + p̃p̃ f (x + 1, y + 1)

(12)

where p̃ = p/k and q̃ = q/k are the row and column spacing from the integer pixel point (x, y), and
0 < p̃ < 1 and 0 < q̃ < 1. Here, p and q denote the interpolation point in the p-th row and q-th column
between adjacent integer pixel points, p = 1, 2, · · · , k− 1 and q = 1, 2, · · · , k− 1. Finally, we estimate
the subpixel center point (xci, ycj) of the subimage based on a center-of-gravity algorithm:

xci =
4k∑

x = 1

4k∑
y = 1

x f (x, y)/
4k∑

x = 1

4k∑
y = 1

f (x, y)

ycj =
4k∑

x = 1

4k∑
y = 1

y f (x, y)/
4k∑

x = 1

4k∑
y = 1

f (x, y)
(13)

The estimated result is shown in Figure 3e, where the red cross-point is the center feature point.
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Figure 3. Location and extraction of subpixel feature points: (a) White raw image; (b) Bilateral-filtered
image; (c) Microlens subimage region segments; (d) Coarse center region location; (e) Extracted center
feature point; and (f) Extracted edge feature points.



Sensors 2019, 19, 3922 9 of 22

The last step of the proposed method is to extract the edge feature points from the subpixel center
lines (i.e., the xci-th row and ycj-th column where the center point is located). Considering the image
features and edge location requirements, we use an edge detection method combined with Sobel
templates and polynomial interpolations. The Sobel template is used to detect pixel points in the
horizontal and vertical gradient directions of the calibrated center point and initially locate edge points
at the integer pixel points E0◦

i, j and E180◦
i, j as well as E90◦

i, j and E270◦
i, j along each direction, namely:

E0◦
i, j(xci, Y1 j) = argmax

ycj≤y≤ne
i, j

{
g0◦(xci, y)

}
(14a)

E180◦
i, j (xci, Y2 j) = argmax

nb
i, j≤y<ycj

{
g180◦(xci, y)

}
(14b)

E90◦
i, j (X1i, ycj) = argmax

mb
i, j≤x<xcj

{
g90◦(x, ycj)

}
(14c)

E270◦
i, j (X2i, ycj) = argmax

xcj≤x≤mb
i, j

{
g270◦(x, ycj)

}
(14d)

where g0◦(xci, y), g180◦(xci, y), g90◦(x, ycj), and g270◦(x, ycj) are the convolution results for the Sobel
templates in gradient directions of 0◦, 180◦, 90◦, and 270◦, respectively. The convolutions can be
calculated as:

g0◦(xci, y) = f (xci − 1/k, y + 1) + 2 f (xci, y + 1) + f (xci + 1/k, y + 1)
− f (xci − 1/k, y− 1) − 2 f (xci, y− 1) − f (xci + 1/k, y + 1)

(15a)

g180◦(xci, y) = f (xci − 1/k, y− 1) + 2 f (xci, y− 1) + f (xci + 1/k, y + 1)
− f (xci − 1/k, y + 1) − 2 f (xci, y + 1) − f (xci + 1/k, y + 1)

(15b)

g90◦(x, ycj) = f (x + 1, ycj − 1/k) + 2 f (x + 1, ycj) + f (x + 1, ycj + 1/k)
− f (x− 1, ycj − 1/k) − 2 f (x− 1, ycj) − f (x− 1, ycj + 1/k)

(15c)

g270◦(x, ycj) = f (x− 1, ycj − 1/k) + 2 f (x− 1, ycj) + f (x− 1, ycj + 1/k)
− f (x + 1, ycj − 1/k) − 2 f (x + 1, ycj) − f (x + 1, ycj + 1/k)

(15d)

For the purpose of the high-accuracy edge locations, the pixel points at 1/k from the center lines are
used as the adjacent pixel points in the convolution calculations, and the intensity values are obtained
via polynomial interpolation. Let (x̃, y) be a non-integer pixel point and (x0, y), (x1, y), (x2, y) and
(x3, y) be adjacent integer pixel points that satisfy x0 < x1 < x̃ < x2 < x3. We define an interpolation
function ϕ(x̃) as:

ϕ(x̃) =
3∑

α = 0

3∏
α = 0,β,α

x̃− xα
xα − xβ

f (xα, y) (16)

where ϕ(x̃) is the intensity value f (x̃, y) of the pixel point (x̃, y). Similarly, the intensity value f (x, ỹ)
can be obtained using an interpolation function ϕ(ỹ). For the initial edge points E0◦

i, j and E180◦
i, j as well as

E90◦
i, j and E270◦

i, j , three adjacent pixel points are taken as interpolation nodes along the gradient direction.
Substituting them into interpolation function φ(y) in Equation (17a) or interpolation function φ(x) in
Equation (17b), the subpixel edge points along the horizontal and vertical directions can be determined
by considering dφ(y)/dy = 0 or dφ(x)/dx = 0:

φ(y) =
2∑

α = 0

2∏
α = 0,β,α

y− yα
yα − yβ

g(x, yα) (17a)
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φ(x) =
2∑

α = 0

2∏
α = 0,β,α

x− xα
xα − xβ

g(xα, y) (17b)

Here, g(x, yα) and g(xα, y) are the gradient values of the interpolation nodes along the
corresponding gradient directions, which can be calculated using Equation (15). Considering
E0◦

i, j(xci, Ywj) for example, the interpolation nodes are (xci, Ywj − 1), (xci, Ywj), and (xci, Ywj + 1) for the
interpolation function φ(y); thus, the subpixel coordinate y1 j can be expressed as

y1 j = Y1 j +
g(xci, Y1 j − 1) − g(xci, Y1 j + 1)

2
[
g(xci, Y1 j − 1) − 2g(xci, Y1 j) + g(xci, Y1 j + 1)

] (18)

By the above operations on the initial edge points, the final subpixel feature points e0◦
i, j(xci, y1 j),

e180◦
i, j (xci, y2 j), e90◦

i, j (x1i, ycj), and e270◦
i, j (x2i, ycj) within the subimage region Ri, j are obtained, as shown in

Figure 3f, where the blue cross-points are the edge feature points.

3.3. Geometric and Grayscale Correction

With the feature-point pairs of subimage region Ri, j and its ideal subimage, which is estimated as
explained in Section 3.2, the geometric correction matrix Pi, j can be accordingly worked out, so that
the distorted subimages can be then corrected and re-registered via coordinate transformation and
mapping. We use a backward model for inverse mapping from a corrected image to a distorted image,
which avoids the occurrence of overlapping or vacant pixels and the excessive computational cost
associated with the forward model. For a corrected subimage R′i, j, the pixel point (x′i, j, y′i, j) is mapped
back to (xi, j, yi, j) in the distorted subimage Ri, j in accordance with Equation (7), and the intensity value
of this mapped point, f (x′i, j, y′i, j), can be estimated via bilinear interpolation:

f (x′i, j, y′i, j) = (1− u)(1− v) f (Xi, j, Yi, j) + v(1− u) f (Xi, j, Yi, j + 1)+
u(1− v) f (Xi, j + 1, Yi, j) + uv f (Xi, j + 1, Yi, j + 1)

(19)

where u = xi, j −Xi, j and v = yi, j −Yi, j are the decimal fractions of the mapped point (xi, j, yi, j). After
subpixel registration, the average intensities of subimage R′i, j and its ideal subimage are calculated,
and the grayscale correction factor gi, j is obtained by Equation (8).

Thus, using the distorted raw white image and its ideal raw white image, the geometric correction
matrices and the grayscale correction factors of all the microlens subimages can be estimated to
constitute a geometric correction matrix P and a gray correction matrix G for the light-field raw image.
After that, we can apply them to other light-field images captured by the same plenoptic camera. For a
raw image x to be corrected, the geometric distortion is first removed using P, which yields image x′

after subimage registration. Afterwards, grayscale transformation is carried out using G to realize
intensity adjustments, thereby obtaining the desired image x”:

x′′ = Gx′ = G(Px) (20)

4. Results and Discussion

In this section, we verify the proposed models and correction method by comparing with previous
algorithms and present various experimental results on simulated datasets to assess the performance
of the proposed method. The experimental platform used was based on a physics-simulation imaging
system for the unfocused plenoptic camera introduced in Section 2. Information on the main parameters
and properties of this system can be found in a previous work [16]. The simulated light-field raw image
had a resolution of 2040 × 2040 pixels with 102 × 102 microlens subimages aligned in a square grid.
Each subimage covered a region of 20 × 20 pixels. The ray simulation for the imaging process used
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the Monte Carlo method and was executed with 10 parallel threads on an Intel(R) Xeon(R) E5-2670v2
server. The total number of computational rays was 3 × 1010.

4.1. Improved Method Validation

In order to test the effectiveness and feasibility of the improved method proposed in this paper, we
employed it to correct the microlens form errors for a direct comparison with the previous method [29].
Distorted white raw images were captured using the simulation imaging system, for which a form
error model was set up. The imaging object was a flat and evenly illuminated white plate with a size of
0.25 m × 0.25 m and placed 2.5 m away the main lens. For the image correction process, we set the
subpixel interpolation coefficient k = 10 in Section 3.2 to achieve high accuracy and efficiency when
determining the subimage feature points. We extracted the subimage feature points and estimated the
correction matrices for the distorted white raw images using the proposed method. We then projected
the matrices onto these white images to verify the correction accuracy of our approach. To benchmark
image quality before and after correction, deviations relative to the ideal image were characterized with
peak signal-to-noise ratio (PSNR). Table 2 shows the correction results obtained using the previous [29]
and presently proposed method for different form error types and values.

Table 2. Quantitative comparison of different correction methods for MLA form errors.

Errors
Distorted

Image

Previous [22] Proposed

Geometric
Correction

Grayscale
Correction

Geometric
Correction

Grayscale
Correction

Pitch error
∆p/µm

0.2 15.2614 27.3087 27.3401 29.7926 29.7975
0.4 11.3084 26.5720 26.6383 29.6418 29.6524
0.6 9.5670 27.7079 27.8181 29.6799 29.6992
0.8 8.5864 28.1185 28.2683 29.6587 29.6842
1.0 7.9800 27.2738 27.4589 29.6771 29.7143

Radius-of-curvature
error εr/%

−10 21.6809 22.5709 25.4931 26.5234 26.8382
−5 27.3614 28.2296 28.9152 30.3768 30.5047
−1 32.2685 32.3726 32.7820 32.9302 32.9569
5 32.0104 32.0559 32.1552 32.0739 32.0916

10 28.2675 29.4416 29.8102 30.1497 30.1912

Decenter error
δ/µm

2.0 27.8829 29.3994 29.4021 30.6986 30.6988
4.0 22.4982 26.5645 26.5748 28.9067 28.9081
6.0 19.3433 25.7290 25.7774 28.9735 28.9756
8.0 17.1759 27.2166 27.2793 30.4878 30.4928
10.0 15.5782 27.5018 27.5799 31.9829 31.9908

We find that the proposed method is more stable and exhibits better compensation effect on each
distorted image than the approach reported in [27]. The PSNR values of the corrected raw images with
pitch and decenter errors exceed 29.6 dB and 28.9 dB, respectively. For a relative radius-of-curvature
error ranging from −5% to 10%, the PSNR values of the images after grayscale correction are over
30.2 dB with negligible distortion. This indicates a significant improvement in correction performance
compared with the previous results. The geometric correction accuracy is raised by a maximum of 17.5%
and by 8.4% on average, and grayscale correction accuracy is raised by a maximum of 16.0% and by 7.1%
on average. Additionally, the overall accuracy is observed to remain nearly constant as the error value
increases. The main reason for this enhancements in accuracy stem from deduction of a more accurate
geometric correction matrix based on subpixel feature points as well as subpixel registration based on
multiple interpolations, thus eliminating mapping deviations and the inhomogeneous intensities of
pixel points in the correction transformations.

The distorted raw white images under each of the error conditions and the corrected images
obtained using both abovementioned methods are shown in Figure 4. It can be observed from the
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partially enlarged views of Figure 4a,b that, in regards to the subimage shifts caused by the pitch and
decenter errors, the proposed method can realign each subimage and only slight position deviations
retain. After correction, the horizontal and vertical pitches between adjacent subimages are consistent
with the ground truths (see the red frames), and the microlens subimages are symmetrical in shape
with no deformation (see the yellow frames). As shown in the images with radius-of-curvature
error in Figure 4c, the blurring and aliasing of the subimages is clearly alleviated by our method,
which produces smoother edges, more homogeneous brightness, and enhanced contrast compared with
the original distorted images and the images corrected with the previous method. These details within
gray-image further indicate that the proposed correction method is superior to the previous algorithm.
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4.2. Orientation Error Correction Effect 

Figure 4. Comparison between partially enlarged white raw images (a) with a pitch error of ∆p = 1.0
µm at α = 90◦, (b) with a decenter error of δ = 10 at β = 90◦, and (c) with a radius of curvature error
of εr = −10% before and after correction. Left: distorted image; Center: corrected image using the
previous method [27]; Right: corrected image using the proposed method. The PSNR values of each
case are displayed in the upper left corner of the image.

4.2. Orientation Error Correction Effect

When using commercial plenoptic cameras or self-assembly prototype cameras for measurements,
small orientation errors may exist in the MLA owing to pre-adjustment deviations in the imaging
system and to vibrations and high temperatures in the surrounding environment. Considering these
actual errors and the degradation level of erroneous images, we set the upper bounds of the coupling
distance error, translation error, and tilt error as 15 µm, 15 µm, and 1.0◦, respectively, in our simulation
experiments, so as to analyze the correction accuracy of the proposed method for this error category.
For each error, we selected simulated raw white images with different error directions and performed
independent correction trials. The PSNR values of each raw image and its microlens subimages were
measured before and after correction to quantify the overall and local differences between the raw
image and the ideal image.
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Firstly, we examined the correction performance with respect to the coupling distance errors in
different directions (i.e., with positive and negative values). As shown in the partially enlarged views
of Figure 5a,c, this error affects the brightness, size, and edge definition of the subimages. When the
coupling distance error is negative, the MLA plane advances such that the light rays that are not
fully focused by the main lens diverge through the microlenses, which in turns causes entrance loss
and large divergence in the exit rays. As a result, the subimages exhibit low brightness and outward
diffusing edges (see the red frame in Figure 5a). In contrast, positive error causes excessive focus and
insufficient divergence of light rays and correspondingly, the brightness of the subimages tends to be
high along with shrinking edges (see the red frame in Figure 5c). Besides, reference to the overall and
local PSNR values of the distorted image reveals that, positive error degrades the quality of light-field
images more seriously than negative error for the same error value.
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Figure 5. Correction results and deviation distributions for images with coupling distance error:
(a) Distorted white raw image with an error of ∆z = −15 µm and (b) its corresponding corrected image;
(c) Distorted white raw image with an error of ∆z = 15 µm and (d) its corresponding corrected image.
The PSNR values of each case are displayed in the upper left corner of the image.

After correcting the light field using the proposed method, the resulting images and correction
deviation distributions are shown in Figure 5b,d. As can be observed, the brightness bias and edge
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scaling in the subimages get refined, and the overall image quality is improved significantly. The PSNR
values of the raw images with negative and positive errors increase from 22.89 dB and 21.85 dB to
29.74 dB and 30.37 dB, respectively, whereas the local correction deviation ranges of each subimage are
26.57–32.37 dB and 23.04–35.11 dB. Although there are quality fluctuations in the corrected subimages
and those for positive errors are larger, the subimages with PSNR values over 27.50 dB account for
99.93% and 97.25% of the raw images with either negative or positive error, indicating that most
subimages are of high quality and almost exactly identical to the corresponding ideal subimages.

Secondly, we employed images with vertical and horizontal translation errors to the proposed
correction method for translation errors. The feature details of the distorted and corrected images and
the numerical comparisons with the ideal subimages are shown in Figure 6. In Figure 6a,c, it can be
seen that the subimages of two distorted images are uniform and clear but have a position offset of
three pixels along error directions, which led to severe degradation. Consequently, the overall PSNR
values of these images are rather low. The translation errors also cause subimage quality to change
periodically. The amplitude and period of the local PSNR values for both error direction are roughly
the same, and the direction remains in agreement with the error direction.
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Figure 6. Correction results and deviation distributions for images with translation error: (a) Distorted
white raw image with an error of ∆t = 15 µm at ϕ = 90◦ and (b) its corresponding corrected image;
(c) Distorted white raw image with an error of ∆t = 15 µm at ϕ = 0◦ and (d) its corresponding corrected
image. The PSNR values of each case are displayed in the upper left corner of the image.
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Upon completion of the correction process, the misalignments of the subimages are eliminated
while retaining high-frequency edge information. Moreover, image quality is greatly enhanced,
as shown in Figure 6b,d. The PSNR values of the images with vertical and horizontal errors are to
31.02 dB and 31.05 dB, respectively, and those of their corresponding subimages are between 29.73 dB
and 32.37 dB with no obvious periodic variations. This demonstrates that the raw images have high
quality and that the quality differences between subimages are also small. The presented comparison of
images and numerical results confirms the effectiveness of the proposed method as regards translation
error correction.

Thirdly, we used the proposed method to correct the distorted light-field affected by tilt errors.
As shown in Figure 7a, the integral distribution of the raw image distortion is symmetric along the
horizontal central axis. The subimages in the center row exhibit the smallest distortion and attain the
highest PSNR results. The quality of the subimages on either sides decreases dramatically with the
increase in row distance from the central axis. It can be seen from the partially enlarged details of the
different regions that the subimages are both defocused and shifted downward according to the tilt
angle of the MLA plane and the microlens’ optical axis. The difference between the two regions is
that the backward offset of the upper microlenses cause the brightness of the subimages to exceed the
standard value and a reduction in the number of covering pixels (see the yellow frame). On the other
hand, the forward offset of the lower microlenses lowers the brightness of the subimages and induces
crosstalk with adjacent subimages (see the red frame).Sensors 2019, 19, x 16 of 23 
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As for the corrected light-field image, which is shown in Figure 7b, the overall PSNR value of the
raw image increase from 14.68 dB to 25.66 dB. The correction deviation range of the subimages in the
central portion of the image (rows 21–80) is 24.70–35.96 dB, whereas those in the top (rows 1–20) and
bottom (rows 81–102) portions are 23.08–28.69 dB and 15.65–24.67 dB, respectively. Most correction
results are close to the ideal case for all subimages; only the PSNR values of the subimages at the
edges are low, especially those at the bottom edge, thereby reducing the overall correction accuracy.
By referring to the corrected images, we find that the brightness and size of the subimages are recovered
to some extent, but at the edges, zigzag-shaped artifacts and discontinuous pixel intensities arise from
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the scaling transformation. This is the main reason why the correction performance of the proposed
method for tilt errors is not as good as that for the other two types of orientation error.

Based on these results and in order to further evaluate the accuracy and stability of the proposed
method for correcting orientation errors, we varied the coupling distance and translation errors along
two directions from 5 µm to 15 µm at a step of 5 µm and the tilt error from 0.2◦ to 1.0◦ at a step
of 0.2◦. The PSNR results of the distorted raw images under each of the error conditions and the
resulting images after geometric and grayscale corrections are listed in Table 3. For the coupling
distance error, the PSNR values of the corrected images decrease as the absolute value of the error
increases, and correction accuracy reaches over 29.74 dB within the upper error bound. The horizontal
and vertical translation errors are observed to degrade the image quality to a similarly low level, and
the PSNR results after correction are in the range of 31.01–31.31 dB, which is equivalent to the ideal
image. The tilt error correction provides a relatively larger PSNR range, and the PSNR values go from
32.75 to 25.66 dB corresponding to an increase in the error angle. The maximum and average PSNR
values have increased by 74.77% and 58.54%, respectively, compared with the uncorrected images.
It is noticed that the correction results on the small errors of each orientation error still performs well.
Even if the distorted images have high PSNR values with minor geometric and grayscale distortions
among the subimages, the quality of corrected images are improved obviously. This indicates that the
proposed method is sensitive to the variation of the geometric feature of erroneous sub-images and can
locate and extract the coordinates of feature points accurately, thus improving correction performance.
Meanwhile, when the error value changes, the PSNR values of the corresponding corrected images are
stable at an acceptable level. The correction results shown in Table 3 demonstrate that the proposed
method is applicable for realizing correction of orientation errors of different types, directions, and
values within a reasonable upper error bound.

Table 3. Correction results for distorted light-field images with different orientation errors.

Errors Without
Correction

Geometric
Correction

Grayscale
Correction

Coupled distance
error ∆z/µm

−15 22.8892 29.7112 29.7426
−10 25.9022 31.6473 31.6594
−5 31.0463 34.2698 34.2597
5 30.7221 34.1088 34.1179
10 25.1907 31.9324 31.9624
15 21.8477 30.3313 30.3676

Translation error
∆tx/µm

5 15.7850 31.3175 31.3192
10 11.3673 31.1689 31.1711
15 9.2537 31.0213 31.0235

∆ty/µm
5 15.7861 31.3819 31.3837
10 11.3678 31.0084 31.0105
15 9.2537 31.0483 31.0503

Tilt error θ/◦

0.2 25.6067 32.7456 32.7587
0.4 20.3286 31.1000 31.1177
0.6 17.5186 29.1576 29.1997
0.8 15.8102 26.8395 26.9160
1.0 14.6833 25.4762 25.6626

4.3. Evaluation of Light-Field Correction Performance for Real Scene

High-precision correction of light-field raw images is essential in volumetric reconstruction by
digital refocusing. In order to verify the accuracy of the light field reconstruction resulting from
the proposed correction method, we performed imaging simulations on a real scene as shown in
Figure 8a, which consisted of a set of checkerboards placed at 2.5 m from the main lens with a depth
interval of 0.25 m. Each checkerboard measured 0.1 m × 0.1 m in size and the unit square side of the
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checkerboard was 12.5 mm. Figure 8b presents the refocused images of the respective checkerboards
that are computed from the ideal light field.
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placed at x = 2.25, 2.50, 2.75 and 3.00 m; (b) Ideal refocused images at the respective depths.

We captured a dataset of distorted real scene images from this setup according to the orientation
errors in Table 3 and then performed consecutive corrections on these images using the geometric
and grayscale correction matrices of the corresponding errors determined in Section 4.2. For the
uncorrected and corrected raw images, we separately generated refocused images at different depths
and introduced the mean square error (MSE) and the structural similarity index metric (SSIM) [34] as
objective quality measures to characterize the grayscale and structural similarity distortions of the
generated images. The MSE based on pixel grayscale is a negative index with a dynamic range of
[0,2552] (for 8-bit grayscale images): smaller MSE values indicate smaller average grayscale deviations
from the standard image, and MSE = 0 if there is no pixel grayscale error. The SSIM based on image
structure is a positive index with a dynamic range of [−1,1]: the higher the SSIM value is, the better the
structure similarity of the image; when SSIM = 1, the image has no structural distortion. Figure 9a–c
illustrate the quality evaluation results of the light-field refocusing before and after the corresponding
correction for the coupling distance errors, translation errors, and tilt errors.

As for the coupling distance error, as shown in Figure 9a, the resultant curves of the uncorrected
refocused images (dotted curves) indicate that the refocusing degradations caused by errors in both
directions are nearly the same. The MSE values of the refocused images increase as the absolute
value of the error increases, and the SSIM values remain constant once the depth of refocus is fixed.
As evidenced by the corrected image curves (solid curves), the grayscale and structural similarity
of each refocused image shows obvious improvements. The MSE and SSIM values are in the range
of 0.2588–2.3331 and 0.9917–0.9998, respectively. As for the translation errors, the results for which
are shown in Figure 9b, the objective indexes of the refocused images without correction deteriorate
sharply as the error value and the depth of refocus increase. In particular, when the depth of refocus is
3.00 m, the SSIM values of the vertical and horizontal error images reduce from 0.9859 and 0.9848 at
∆t = 5 µm to 0.9419 and 0.9398 at ∆t = 15 µm, respectively. After the correction process, all the quality
evaluation results are within an ideal level and do not vary with the error value or the depth of refocus.
The maximum MSE is 0.9859, and the average is 0.9613. The minimum SSIM is 0.9996, and the average
is 0.9997. As for the tilt errors, it can be observed from Figure 9c that the MSE range of the refocused
images reduces from 1.9375–40.1375 to 0.2714–6.8736 compared with the uncorrected refocused image,
whereas the corresponding the SSIM range increases from 0.9459–0.9722 to 0.9911–0.9997. As described
above, the proposed correction method can effectively rectify the real scene light field within the
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specified upper bounds of MLA orientation errors. The light-field refocusing accuracies of coupling
distance error, translation error, and tilt error correction are 2.3331, 0.9859, and 6.8736 in terms of MSE,
respectively, and 0.9917, 0.9996, and 0.9911 in terms of the SSIM.
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In addition, we compared the refocused images with different depths of the scene before and after
orientation error correction, as shown in Figures 10–12. We find that the refocused images computed
using the uncorrected light fields exhibit similar distortion characteristics to the raw images shown in
Section 4.2.

As shown in Figure 10a, the brightness of the refocused image with positive coupling distance
error is supersaturated, and the intensity distortion is more evident, along with artifacts at the pattern
edges that occurred as the depth of refocus varies. For the vertical translation error shown in Figure 11a,
the refocused objects are subject to offset and aliasing distortion along the vertical direction. This extent
is the smallest at original focus position (depth of focus of 2.5 m), and downward and upward offsets
are observed when refocused closer and refocused further; at the same time, there occurs an increase
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in the aliasing distortion. As shown in Figure 12a, the pattern is shifted down in the top portion of
refocused image, whereas blurring and aliasing appear in the bottom portion. Moreover, the entire
image has twisting deformations. This may be attributed to the fact that, the resampled pixels are
shifted and superimposed based on the depth of refocus ratio for light-field reconstruction during
refocusing. Thus, the distorted subimages of the raw image affect the corresponding refocused image,
and the extent of distortion increases as the depth of refocus ratio grows.
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5. Conclusions 

In this paper, we have presented a geometric and grayscale correction method for MLA errors 
in plenoptic imaging sensors by directly utilizing raw white images. We formulated a correlated 
form–orientation error model and derived the correction matrices for the distorted light fields. The 
proposed correction technique employs subpixel-level feature-point extraction and subimage 
registration to achieve high correction accuracy and adaptability of the algorithm to MLA errors of 
different categories and types. Based on the correlated error model, imaging simulations were 
carried out under given error conditions, and the performance of the proposed correction method 
was extensively analyzed. A benchmark comparison with the previous method in terms of form 
error correction indicated that the proposed method achieves significant improvements in accuracy 
and stability. Geometric and grayscale correction accuracies are increased by 8.4% and 7.1% on 
average. Performance improvements rely on the more accurate solution for the correction matrices 
and subimage position realignments, which is obtained by the proposed feature-point extraction 
algorithms and registration method at a subpixel level. The correction results for orientation error 
show that, within reasonable upper error bounds, the proposed method is effective and robust for 
raw images distorted by errors of various types, directions, and values. The PSNR values of the 
corrected images with coupling distance error, translation error, and tilt error are as high as 29.74 dB, 
31.01 dB, and 25.66 dB, respectively. Moreover, we applied the proposed correction method in 
light-field digital refocusing. Quantitative and qualitative comparisons of the refocused images 
before and after correction further verify the validity and accuracy of our method and models. The 
grayscale and structural similarity deviations between the refocused images and the ideal image are 
both maintained at a low level, which allows for extracting accurate spatial and grayscale data from 
space objects for subsequent reconstruction and measurement applications. 
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Figure 12. Comparison of refocused images at varying depths for tilt error correction: (a) With an error
of θ = 1.0◦; (b) After distortion correction. The MSE and SSIM results for each image are displayed at
the bottom.

On the contrary, with raw light-field correction, and as shown in Figure 10b, Figure 11b,
and Figure 12b, the refocused images have less misalignments, distortions, or deformations, and the
pattern exhibits sharper edges and more details, which allows for the detection of accurate spatial
and intensity information of the object at different depths. These comparison results prove that the
proposed method can enhance refocusing effects to obtain refocused images with high quality.

5. Conclusions

In this paper, we have presented a geometric and grayscale correction method for MLA errors
in plenoptic imaging sensors by directly utilizing raw white images. We formulated a correlated
form–orientation error model and derived the correction matrices for the distorted light fields.
The proposed correction technique employs subpixel-level feature-point extraction and subimage
registration to achieve high correction accuracy and adaptability of the algorithm to MLA errors
of different categories and types. Based on the correlated error model, imaging simulations were
carried out under given error conditions, and the performance of the proposed correction method was
extensively analyzed. A benchmark comparison with the previous method in terms of form error
correction indicated that the proposed method achieves significant improvements in accuracy and
stability. Geometric and grayscale correction accuracies are increased by 8.4% and 7.1% on average.
Performance improvements rely on the more accurate solution for the correction matrices and subimage
position realignments, which is obtained by the proposed feature-point extraction algorithms and
registration method at a subpixel level. The correction results for orientation error show that, within
reasonable upper error bounds, the proposed method is effective and robust for raw images distorted
by errors of various types, directions, and values. The PSNR values of the corrected images with
coupling distance error, translation error, and tilt error are as high as 29.74 dB, 31.01 dB, and 25.66 dB,
respectively. Moreover, we applied the proposed correction method in light-field digital refocusing.
Quantitative and qualitative comparisons of the refocused images before and after correction further
verify the validity and accuracy of our method and models. The grayscale and structural similarity
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deviations between the refocused images and the ideal image are both maintained at a low level,
which allows for extracting accurate spatial and grayscale data from space objects for subsequent
reconstruction and measurement applications.
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