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ABSTRACT
Dengue is the world’s most prevalent and important arboviral disease. More than 50% of the world’s
population lives at daily risk of infection and it is estimated more than 95 million people a year seek
medical care following infection. Severe disease can manifest as plasma leakage and potential for
clinically significant hemorrhage, shock, and death. Treatment is supportive and there is currently no
licensed anti-dengue virus prophylactic or therapeutic compound. A single dengue vaccine, Sanofi
Pasteur’s Dengvaxia®, has been licensed in 20 countries but uptake has been poor. A safety signal in
dengue seronegative vaccine recipients stimulated an international re-look at the vaccine performance
profile, new World Health Organization recommendations for use, and controversy in the Philippines
involving the government, regulatory agencies, Sanofi Pasteur, clinicians responsible for testing and
administering the vaccine, and the parents of vaccinated children. In this review, we provide an over-
view of Dengvaxia’s® development and discuss what has been learned about product performance since
its licensure.
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Introduction

Dengue is an increasing public health threat

Dengue is a continuously increasing global public health
threat with the four dengue virus types (DENV-1 to 4) now
co-circulating in most dengue endemic areas.1 Population
growth, an expansion of areas hospitable for Aedes mosquito
species, and the ease of travel have all contributed to a steady
rise in DENV infections and disease.2 It is estimated there are
over 390 million infections globally each year of which more
than 95 million are clinically apparent.3 There is no specific
anti-DENV therapeutic, but supportive care is very effective
when delivered by experienced practitioners.

DENV infections may be asymptomatic, result in a mild
and non-specific febrile illness, cause classic dengue fever, or,
in a small percentage of individuals, result in a severe disease
phenotype. Severe disease manifests most often with plasma
leakage but may also include clinically significant bleeding;
the potential end result of both is decreased intravascular
volume, decreased organ perfusion, and the potential for
shock and death. It is not completely understood why some
people experience no disease and others severe disease, but
there is strong evidence sequential infections with different
DENV types separated by more than 18 months significantly
increases the risk for a severe disease outcome.4-7 Four anti-
genically distinct DENV types (DENV-1 to −4) cause dengue.
Infection with one type confers long-lasting homotypic pro-
tection and short-term heterotypic protection. DENV infec-
tion triggers an immune response that can result in protection
or disease enhancement during subsequent heterotypic

infections, thus complicating the effort to develop dengue
vaccines.8 A variety of factors including viral characteristics,
host immunity and genetics, and epidemiological context,
along with the relative timing of these factors, play a role in
ultimately protecting against or enhancing disease.9 In order
to address this problem, vaccine developers have primarily
sought to induce simultaneous tetravalent immunity against
all four DENV types. However, these efforts have been ham-
pered by an incomplete understanding of the relevant
immune responses that contribute to protection or
enhancement.

Dengue vaccine development landscape

A safe and efficacious dengue vaccine capable of preventing
clinically significant disease caused by any of the DENV types
will be needed as part of a comprehensive global prevention
and control strategy. Reaching this goal, however, has been
difficult and success has eluded vaccine developers for nearly
75 years.10 In addition to the requirement to successfully
develop a vaccine for each DENV type and then combine
them, there have been other development challenges such as
the absence of a well-characterized animal model of disease
which recapitulates human immunopathology and the
absence of an immune correlate or surrogate of protection.

The only licensed dengue vaccine is Sanofi Pasteur’s
Dengvaxia®, which has now been registered in 20 dengue
endemic countries, and more recently by European Union
(EU) and United States (US) regulatory authorities.
However, immunization implementation has been limited to
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subnational public health programs in only two countries,
Brazil and the Philippines. Low vaccine uptake has been
fueled by concerns about the increased risk of severe dengue
in vaccinated dengue seronegative individuals and vaccine
affordability.11 Dengvaxia® development, deployment, and
long-term safety experiences provide important lessons for
dengue vaccine and anti-DENV therapeutic development
and use.

Two other dengue vaccines are currently in phase 3 trials.
Takeda’s dengue vaccine candidate, TAK-003, is being evalu-
ated in a multi-country phase 3 trial (NCT02747927) in Asia
and Latin America, while Instituto Butantan’s dengue vaccine
candidate, Butantan-DV, is being evaluated in a single-country
phase 3 trial (NCT02406729) in Brazil. The TAK-003 is based
on DENV-2 backbone with DENV-DENV chimeras (DENV-
2/-2, DENV-2, DENV-2/-3, and DENV-2/-4). Similarly,
Bhutantan-DV is a live virus vaccine attenuated thru directed
mutagenesis with one DENV-DENV chimera (DENV-1,
DENV-4/-2, DENV-3, and DENV-4). Safety, immunogenicity,
and efficacy reports are expected.

The Dengvaxia® experience, which we will detail below, has
and will continue to impact subsequent dengue vaccine can-
didate development efforts, as well as prophylactic and ther-
apeutic compound development. Vaccines and compounds
will need to be assessed not only for acute and near-term
safety but also for safety remote from vaccination or com-
pound administration. Immune responses imparted by vacci-
nation will be assessed for their propensity to increase the
occurrence of symptomatic infection or severe disease in
recipients compared to non-recipients. Similarly, the immune
profiles developed following a natural infection which is “pre-
vented” or interrupted by compound administration will be
under scrutiny. DENV type-specific efficacy will also be of
interest as well as efficacy durability in different recipient
groups (i.e., seronegative versus seropositive, different age
groups). Defining a correlate or surrogate of protection will
remain of significant interest and a priority in the dengue
vaccine field.

Of note, the information and data detailed below were
taken from publications, when available, or Sanofi’s briefing
document recently provided to the U.S. Vaccines and Related
Biological Products Advisory Committee in preparation for
their, March 7, 2019 review of Dengvaxia®, or both (https://
www.fda.gov/media/120943/download, accessed 31 APR
2019).

Dengvaxia® construct

Dengvaxia® is a live attenuated tetravalent vaccine consisting
of chimeras made up of structural pre-membrane (prM) and
envelope (E) genes of the four DENV types combined with
the nonstructural genes of yellow fever 17D vaccine strain
(chimeric yellow fever dengue – CYD). The chimeric
approach originated at St. Louis University and was first
used to develop a Japanese encephalitis vaccine construct.12

The chimeric technology was later applied to dengue at
Acambis, Inc. which subsequently became part of Sanofi
Pasteur.13 The Dengvaxia® parent strains consist of type 1:
Thailand PUO-359/TVP-1140, type 2: Thailand PUO-218,

type 3: Thailand PaH881/88, and type 4: Indonesia 1228
(TVP-980).14 Each monovalent CYD DENV was obtained
separately via recombinant deoxyribonucleic acid (DNA)
technology. The four chimeric vaccine DENVs were cultured
in Vero cells and then combined into a single vaccine
formulation.

Phenotypic characterizations demonstrated stable plaque
size for each DENV at all production steps. The CYD gen-
omes (DENV-1–4) were fully sequenced at various stages
throughout the production of vaccine lots to good manufac-
turing practice (GMP) standards, from the first passages, to
premaster seed lots (PMSL), master seed lots (MSL) and bulk,
and ultimately at a later step in the process (bulk + 10
passages).15 Nine point mutations across all DENV types
were identified; five at late passage (p10 – p21), three in
a mixed population with the original sequence, and one silent
mutation (all except one were in the non-structural (NS)
regions). Viral morphology observed by electron microscopy
was typical for a flavivirus at different stages of maturation
(round, smooth particles of about 52–54 nm and spiked or
partially spiked particles of about 54–56 nm).16,17 The ratio of
non-infectious to infectious particles was consistent through-
out all production steps.18,19 Additional studies explored pro-
tein content consistency using sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) analysis,
replication potential in insect C6/36 cells, temperature sensi-
tivity, replication in Dendritic Cell-Specific Intercellular adhe-
sion molecule-3-Grabbing Non-integrin-transfected (DC
SIGN) cell lines, and glycosylation status.18,20-22

The vaccine is provided in a powder and solvent for sus-
pension containing ~5 log10 cell-culture infectious dose 50%
(CCID50) of each live, attenuated, DENV type. Dengvaxia is
a sterile and freeze-dried product reconstituted before injec-
tion with a sterile solution of 0.4% sodium chloride. The
vaccine (freeze-dried product) and the diluent are presented
in a single-dose vial. After reconstitution, one dose (0.5 mL) is
administered by needle in the subcutaneous (SC) space. Three
vaccine doses are provided 6 months apart; 0, 6, and 12
months.

Dengvaxia® is considered a genetically modified organism and
risk assessments (humans and environment) have been
completed.23(https://www.ema.europa.eu/en/documents/scienti
fic-guideline/guideline-quality-non-clinical-clinical-aspects-live-
recombinant-viral-vectored-vaccines_en.pdf, accessed 7 MAY
2019)(https://www.ema.europa.eu/en/documents/scientific-guide
line/guideline-environmental-risk-assessments-medicinal-pro
ducts-consisting-containing-genetically_en.pdf, accessed 7 MAY
2019)(https://www.ema.europa.eu/en/documents/scientific-guide
line/international-conference-harmonization-technical-require
ments-registration-pharmaceuticals-human-use_en-10.pdf)(htt
ps://www.who.int/biologicals/Clinical_guidelines_revised_IK_
29_Oct_2015.pdf, accessed 7 MAY 2019). The potential for CYD
viruses to enter the environment was evaluated by assessing vac-
cine virus shedding following administration. No safety concerns
were associated with viral RNA shedding assessed in urine and
saliva. Dengvaxia® contains no adjuvant or preservatives.
A proprietary stabilizer is present in the finished product with
accelerated stability studies demonstrating vaccine from the phase
3 lots of CYD TDV (single dose presentation) was stable up to 1
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month at 25± 2°C, and that the viral titer decreased by less than 0.5
log 10 CCID50 after 7 days at +37 ± 2°C. Reconstituted vaccine
was found to be stable for up to 6 h at +5 ± 3°C.18 No material of
biological origin (animal or human) is used in the CYD virus seed
lot system manufacturing process, Vero cell banking system, or
CYD Drug Substance (DS) and Drug Product (DP). Dengvaxia®
contains nomaterial of porcine origin. Extensive testing for adven-
titious agents is completed using in vivo animal testing, in vitro cell
substrate testing, andmolecular assessments of themanufacturing
process of the seed lots, cell banks and DS. See Table 1 for
a summary of relevant non-clinical studies performed during the
development of Dengvaxia®.

Preclinical in vitro studies

As an infected female Aedes mosquito probes for a blood meal
and viral particles are introduced intracutaneously, dendritic
cells (DCs) are amongst the first immune cells to encounter
the virus. DCs are efficient antigen-presenting cells (APCs)
and initiate the immune response cascade following DENV
infection or immunization.38 The CYD viruses were assessed
for their infectivity of immature human myeloid DCs reveal-
ing they induced DC maturation with a limited inflammatory
cytokine response and expression of anti-viral type
I interferon (IFN).21,31 These in vitro findings suggested that
the vaccine induces a controlled inflammatory response favor-
ing efficient antigen presentation, potential adaptive immu-
nity, and perhaps safety of acute vaccination. See Table 1 for
a summary of preclinical in vitro studies performed during the
development of Dengvaxia®.

Preclinical studies in non-human primates

Rhesus (Macaca mulatta) and cynomolgus (Macaca fascicu-
laris) macaques can be inoculated with the DENVs resulting
in viral replication and a measurable immune response but
there is a minimal, if any, clinical disease phenotype pro-
duced. Peripheral RNAemia, measured with quantitative
reverse transcriptase-polymerase chain reaction (qRT-PCR),
and viremia, measured by plaque assay, have been used as
indicators of human disease severity.39-46

A single-dose of tetravalent CYD was administered subcuta-
neously (SC) to cynomolgus macaques, demonstrating tetrava-
lent neutralizing antibody seroconversion.When followed by SC
DENV challenge 6 months later, 22 of 24 monkeys were pro-
tected from DENV viremia, although anamnestic antibody
response after challenge occurred in most of the NHPs, suggest-
ing possible low-level infection.34 In another study in cynomol-
gus macaques, interference among the vaccine DENVs was
evaluated in a study that included tetravalent vaccine with
equal concentrations of each DENV viral antigen (5 logs of
each DENV type), demonstrating DENV-4, and to a lesser
extent DENV-1, had a predominant neutralizing antibody
response following vaccination.33 A modified tetravalent formu-
lation with a reduced DENV-4 component (5 logs of DENV-1,
−2, −3 and 3 logs of DENV-4) induced a predominant DENV-1
neutralizing antibody response following vaccination.35

To evaluate in vitro neutralization against different DENV
strains, monkey sera collected 2 weeks after Dengvaxia®

administration in cynomolgus macaques neutralized a broad
range of DENVs representing all types and most genotypes,
suggesting a vaccine with potential to protect against a diverse
range of circulating strains.36 This was subsequently not sub-
stantiated in human clinical efficacy trials, calling into ques-
tion the clinical relevance of in vitro assays and NHP models.
However, the early timing of blood collection after vaccina-
tion in this NHP study may have resulted in a mix of homo-
typic and highly cross-reactive heterotypic antibodies which
over-estimated the protective breadth of the vaccine.47,48

A more stringent DENV NHP challenge model was
explored by administering two-doses of Dengvaxia® to cyno-
molgus macaques followed by intravenous (IV) challenge with
107 CCID50 of DENV 8 months after vaccination. All vacci-
nated monkeys were protected from RNAemia after DENV-4
challenge, while only 6 of 18 were protected from RNAemia
after DENV-2 challenge; the remainder had RNAemia levels
1–3 logs lower than controls.37 This study suggests that an
NHP model with different conditions may have had more
clinically relevance. Please see Table 1 for a summary of
preclinical in vivo studies performed during the development
of Dengvaxia®.

Clinical development

Overview

Early clinical studies (phase 1 and 2) are performed to build
a vaccine candidate’s safety profile and to explore immuno-
genicity. Taken together, these data build the case for whether
a vaccine candidate has the potential for clinical benefit and
should proceed to advanced clinical testing (phase 2b and 3).

Dengvaxia® has been studied in 26 clinical trials including
more than 41,000 volunteers. At least one injection of final
tetravalent formulation has been administered to more than
28,500 individuals from 9 months through 60 years of age and
20,974 individuals aged 9 years through 45 years. Early studies
explored safety and immunogenicity in different ages, regions,
and flavivirus priming status. Clinical end-point studies were
performed in Thailand (phase 2b, CYD23) and Asia (CYD14)
and Latin America (CYD15).49-51 See Table 2 for a summary
of clinical trials performed during the development of
Dengvaxia®.

Phase 1-3 trial review

A phase 1 trial was performed in the U.S. using a monovalent
DENV-2 formulation (CYD01).52 Subsequent phase 1 trials
(CYD02, CYD04, CYD05, CYD06) evaluated the safety of
a tetravalent Dengvaxia® in adults from non-endemic areas
in the U.S. (CYD02, CYD04) and in a second step in adults
and children in non-endemic (CYD06) and endemic areas
(CYD05) in Mexico and the Philippines, respectively.,53-55

The studies were first conducted in non-endemic areas to
collect data from individuals who were seronegative to flavi-
viruses, and especially to dengue, prior to vaccination. These
phase 1 studies together with three phase 2 studies (CYD10,
CYD11, CYD12) provided data on safety and immune
responses induced by several different vaccine formulations
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and immunization schedules. The results of these studies
supported the selection of the final vaccine formulation and
schedule: ~5 log10 CCID50 of each live, attenuated, DENV
type 1, 2, 3, 4 given as 3 injections 6 months apart.

Additional phase 2 trials testing Dengvaxia® were per-
formed in multiple endemic and non-endemic countries in
Asia (India, Philippines, Singapore, Vietnam), Latin America
(Brazil, Colombia, Honduras, Mexico, Peru), Australia and
the U.S. (CYD13, CYD22, CYD24, CYD28, CYD30), addres-
sing questions related to dose, schedule, priming by other
flaviviruses or flavivirus vaccines, and the safety of co-admin-
istration of administration of other vaccines.57-61,63,64,66-68,74

CYD47 was performed in India to assess Dengvaxia’s® safety
and immunogenicity in Indian populations. A co-administra-
tion Phase 2 study (CYD08) was also conducted assessing
Dengvaxia® together with measles/mumps/rubella (MMR)
vaccine in toddlers less than 2 years of age. An indication
for traveler/non-endemic populations was explored (shorter
schedule) in a phase 2 adult study in the U.S. (CYD51 and
CYD56). In CYD63 and CYD64, a booster dose (5 years after
dose three of the primary series) is being evaluated in two
phase 2 studies using subsets of individuals who participated
in CYD28 and CYD13, respectively. In addition, a study to
assess alternate vaccination schedules and booster dose was
initiated in individuals 9 to 50 years of age in the Philippines
and Colombia (CYD65).

Four phase 3 clinical studies (CYD17, CYD29, CYD32, and
CYD33) were performed without assessing for an efficacy clinical
endpoint. CYD17 compared lot-to-lot consistency in dengue
naïve adults in Australia up to 60 years of age and provided data
to support phase 2 to phase 3 bridging required due to new
manufacturing processes. A phase 3 trial was conducted in
Malaysian children (2–11 years of age) assessing Dengvaxia’s®
safety and immunogenicity (CYD32). Studies in Peru and
Colombia assessed Dengvaxia® co-administration with Yellow
fever vaccine in infants and toddlers less than 2 years of age
(CYD29), while CYD33 (Mexico) assessed co-administration of
DTacP-IPV (diphtheria and tetanus toxoids and acellular pertus-
sis adsorbed and inactivated poliovirus vaccine) as a booster
administered with the second injection of Dengvaxia®. Three co-
administration studies with human papilloma virus (HPV) vac-
cine were completed in individuals 9 to 13 years of age inMalaysia
(CYD67) and 9 to 14 years in Mexico (CYD71). The third study
(Philippines) assessed co-administration of a tetanus/diphtheria/
pertussis vaccine in individuals 9 to 60 years (CYD66).73,75-77

Safety and immunogenicity summary of non-efficacy
studies

Dengvaxia’s® acute safety profile was found to be similar to
licensed Yellow fever vaccine (YF-VAX®, Sanofi Pasteur,
Swiftwater, PA) and not affected by pre-existing Yellow
fever immunity. Most volunteers seroconverted in the
monovalent DENV-2 trial (CYD01), and pre-existing
Yellow fever immunity contributed to a more cross-reactive
and enduring anti-DENV antibody response.52 Subsequent
tetravalent studies demonstrated an acceptable acute safety
profile with low levels of mostly CYD-4 RNAemia (mea-
sured by qRT-PCR) occurring after the first

injection. Second and third doses maintained their positive
safety profile and demonstrated sequential increases in ser-
oconversion among recipients and increasing anti-DENV
geometric mean titers (GMTs).53 Of interest, exploration
of different dosing schedules hinted that a more delayed
dosing schedule (more than 4 months between first
and second dose) may be superior from an immunogenicity
standpoint; an observation made for other live virus dengue
vaccine candidates.78-80 Studies in Mexico, the Philippines,
and Australia continued to confirm acute safety in children
and adults with varied pre-existing flavivirus immunity,
including Japanese encephalitis, at the time of vaccination.
The benefit of this pre-existing immunity toward develop-
ing rapidly increasing, broad, and potent immune responses
after Dengvaxia® administration was also reinforced.54,55,57

Efficacy trial (clinical endpoint) review

Three clinical endpoint studies have been conducted with
Dengvaxia®; a phase 2b trial in Thailand and two phase 3
trials (CYD14 and CYD15) in Asia Pacific and Latin
America.49-51 Vaccine or control/placebo was administered
at study months 0, 6, and 12. The primary efficacy endpoint
was protection against dengue disease of any severity caused
by any DENV type. The active phase of the study assessing for
all symptomatic dengue was completed between study months
0 and 25 while hospital-based surveillance was originally
planned from month 25 thru year 6; mid-way thru year 4,
the surveillance expansion phase (SEP) was instituted mark-
ing a return to active surveillance methods.

Assessment of acute safety and reactogenicity in 9–17-year-
olds revealed more vaccine recipients compared to placebo
reported expected adverse events (AEs) within 7–14 days
following injection, the frequency of grade 3 (severe) reactions
was low. Most reactions were mild and resolved within a few
days and the frequency of reactions lessened with each sub-
sequent injection. Unsolicited AEs within 28 days after injec-
tion were similar between vaccine and control recipients.
Serious allergic reactions occurred in <0.1% of vaccine reci-
pients. Serious adverse events (SAEs) thought to be related to
the injection was <0.1% in both vaccine and control recipi-
ents. Deaths occurred with equal frequency (<0.1%) in both
vaccine and control recipients. For those with available base-
line dengue serostatus (determined by PRNT50), there was no
difference in the frequency or severity of acute adverse events
as a function of serostatus. Finally, there were no safety con-
cerns related to vaccine viremia, co-administration of other
vaccines, or the inadvertent vaccination of pregnant women;
the frequency of adverse pregnancy outcomes in 22 women
was similar between vaccine and control recipients.

CYD23 was a Phase 2b proof of concept study in 4 to 11-
year-old children residing in Thailand. Subjects were rando-
mized 2:1 to vaccine: placebo, and the per-protocol group for
efficacy included 2,452 vaccine and 1,221 placebo recipients.
In both vaccine and placebo groups, the mean age of subjects
was 8.2 years and the majority (>80%) were between the ages
of 6 and 11 years. The male to female ratio was balanced and
>90% of subjects were flavivirus seropositive at baseline (den-
gue = 70.1% and JE/YF = 79.9%). From 28 days following the
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last dose of vaccine (injections at time 0, 6 months, 12
months) to the end of the active surveillance phase (study
months 0–25), 78 virologically confirmed dengue cases
occurred in 77 subjects. The study did not meet the primary
efficacy endpoint with an overall efficacy of 30.2% [95% CI:
−13.4; 56.6].

CYD23, Dengvaxia’s® first clinical endpoint study, yielded
important observations; 1) tetravalent dengue vaccines may
have variable DENV type-specific efficacy; 2) neutralizing
antibody titers may not predict efficacy; and 3) powering
a study to assess for DENV type-specific efficacy or efficacy
against preventing severe disease would require extremely
large sample sizes. Vaccine efficacy following at least one
vaccine dose against DENV types −1, −3 and −4 was 61.2%,
81.9%, and 90.0%, with lower bound of the CI above 0,
respectively. However, after at least one injection, efficacy
against DENV-2 was 3.5%, with lower bound of the CI cross-
ing 0. Considering the low DENV-2 efficacy and the fact most
of the dengue cases in the active surveillance period were due
to DENV-2 infection (32 cases in the vaccine group compared
to 19 in the control), it is not surprising the overall efficacy
was low. Neutralizing antibody titers against each DENV type
(measured 1 month after dose 3) were well within titer ranges
previously hypothesized, and supported by animal and cohort
data, to be protective: DENV-1: 146.1 (98.5–216.7); DENV-2:
310 (224–431); DENV-3: 405 (307–534); and DENV-4: 155
(123–196). This observation reinforced concerns about the
ability of the PRNT assay to distinguish protective and non-
protective, type-specific and cross-reactive antibody
responses. Furthermore, wild-type DENV-2 isolates obtained
from the CYD23 trial were able to be neutralized in a PRNT
assay by sera from CYD-TDV recipients from the trial,
further calling into question the clinical relevance of the
assay.81 Nevertheless, in an NHP study in which higher
doses of DENV challenge were administered intravenously,
NHPs vaccinated with CYD-TDV had poor protection against
DENV-2, suggesting that other models may potentially be
more clinically relevant.37 Finally, there were five severe dis-
ease cases reported (three in vaccine group and two in con-
trol) without any discernable differences in virologic or
clinical determinants of severity.49

CYD14 and 15 were clinical end-point efficacy studies
conducted in five Asia Pacific countries (Philippines,
Thailand, Indonesia, Malaysia, and Vietnam) and five
Latin American countries (Brazil, Colombia, Honduras,
Mexico, and the U.S.82). Subjects 2–14 years (N =
10,275) and 9–16 years of age (N = 20,869) were enrolled
in CYD14 and 15, respectively. Randomization was 2:1
(vaccine: placebo), equating to 6,851 subjects receiving
Dengvaxia® in CYD14 and 13,920 in CYD15.
Immunogenicity and reactogenicity subsets were 20% (N
= 2000) in CYD14 and 10% (N = 2000) in CYD15. In
CYD14 (per-protocol analysis set for efficacy), the mean
age of subjects was 8.8 years with a 48% to 52% split
between boys and girls, respectively. In the immunogeni-
city subset, the seropositive status of subjects for dengue
or Japanese encephalitis was 79% and 77% for the vaccine
and control groups, respectively (dengue alone was 68%
and 67%).50 In CYD15 the mean age was 12.4 years in the

per-protocol analysis set for efficacy. The male-to-female
split was 49.7% and 50.3%, respectively. In the immuno-
genicity subset, baseline seropositivity to dengue (any
serotype) was 80.6% in the vaccine group and 77.0% in
the control group.51

Both studies met the primary efficacy endpoint (2–16 years
old, after three injections, during active surveillance months
13–25) with an efficacy in CYD14 of 56.5% (43.8–66.4) and
CYD15 of 60.8% (52.0–68.0); the combined study efficacy end-
point (CYD14 + 15) was 59.2% (52.3–65.0). Vaccine efficacy in
the same population from the first injection (months 0–25) was
very similar. Combining studies, DENV type-specific efficacy
was greatest for DENV-4 [76.9% (69.5–82.6)], followed by
DENV-3 [71.6% (63.0–78.3)] and DENV-1 [54.7 (45.4–62.3)],
with the lowest efficacy against DENV-2 [43.0% (29.4–53.9%)].
Efficacy against hospitalized dengue due to any of the DENV
types after the first injection (months 0–25) was 67.4%
(50.6–78.7) for CYD14 and 80.3% (64.7–89.5) for CYD15, with
a combined efficacy of 72.7% (62.3–80.3). Efficacy against severe
dengue after the first injection was higher in CYD15 [95.5%
(68.8–99.9)] thanCYD14 [70.0% (35.7–86.6)], and the combined
efficacy was 79.1% (60.0–89.0).

The relative risk (RR) of hospitalized dengue due to any
DENV type in CYD14 favored Dengvaxia® during the active
study phase (years 1 and 2) and for the entire study period,
but was inconclusive for years 3 and 4 as the upper limit of
the RR confidence intervals crossed 1. The results were some-
what different in CYD15 with more convincing RRs for the
active phase [0.197 (0.11–0.35)] and entire study period [0.323
(0.22–0.47)]. Years 3, 4, and 5 all had RRs below 1, but the
upper limit of the CIs crossed 1; 1.16, 1.05, and 4.04, respec-
tively. The RRs of experiencing severe disease conclusively
favored Dengvaxia® in CYD14 only for the active phase
[0.300 (0.13–0.64)]. In year 3, the data strongly favored the
control with a RR of severe disease of 5.497 (0.80–236.60). In
CYD15, the data favored the vaccine during the active phase
and the entire study period; while the year 3 safety signal was
not observed, the upper range of the CI did cross zero [0.300
(0.05–1.54)].

Safety and immunogenicity summary of efficacy studies

In three clinical endpoint studies, Dengvaxia® maintained
the positive acute safety and reactogenicity profile estab-
lished in early clinical studies. DENV type-specific and
mean tetravalent neutralizing antibody responses were
superior to placebo/control, moderate in titer, and rela-
tively balanced across the different DENV types, but were
not directly associated with DENV type-specific efficacy
(i.e., immunogenicity by PRNT for a certain type did not
predict type-specific efficacy). Vaccine efficacy against any
dengue, of any severity, caused by any DENV type was
low to moderate, with DENV-4 and −3 efficacy superior
to DENV-1 and −2. Efficacy against hospitalized and
severe dengue was superior when compared to prevention
of any dengue. Efficacy as a function of time from injec-
tion demonstrated a positive trend toward the vaccine in
years 0–2 and overall (0–5 years), but there was a safety
signal in year 3 among some vaccine recipients.
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Exploring Dengvaxia’s® variable safety and efficacy by
age

Dengvaxia® performed differently, from both a safety and
efficacy perspective, in different populations. Based on the
available data from CYD23, 14, and 15, Sanofi focused on
two lines of thinking regarding these observations; 1) there
was an age-specific effect, and 2) baseline dengue serostatus at
the time of vaccination impacted outcome following natural
infection. It was difficult to complete these analyses for
a number of reasons; 1) the CYD23, 14, and 15 efficacy
studies enrolled subjects across different age ranges limiting
age-specific sample size; 2) baseline blood samples were not
collected on all subjects making defining baseline serostatus
a challenge; 3) surveillance for dengue following injection
varied from actively capturing all cases to passively capturing
only hospitalized cases; and 4) severe dengue occurs in a small
minority of infected individuals (2–4% of second infections)
reducing the power and confidence of safety and efficacy
calculations related to hospitalized and/or severe disease out-
comes. Notwithstanding these challenges, clear and significant
trends emerged regarding Dengvaxia’s® performance when
these factors were analyzed.

In the original manuscript describing the results of long-
term follow-up, the RR for dengue-related hospitalization
during year 3 of CYD14 was 1.04 (0.52–2.19) for all parti-
cipants, 7.45 (1.15–313.80) for 2–5-year-olds, 0.63
(0.22–1.83) for 6–11-year-olds, and 0.25 (0.02–1.74) for
those 12–14 years of age.72 When bundling those <9 years
of age and those = />9, the RR was 1.58 (0.61–4.83) and
0.57 (0.18–1.86), respectively. CYD15 only enrolled subjects
greater than 9 years of age, and the RR for all participants
was 0.53 (0.25–1.16). The CYD23 study volunteers had long
term follow-up under study number CYD57. Year 3 and 4
data were available for analysis, demonstrating a RR of 1.01
(0.47–2.30) and 0.44 (0.22–1.00) for all participants in year
3 and 4, respectively. When bundling those <9 years of age
and those = />9, the RR in years 3 and 4 for those <9 was
1.57 (0.60–4.80) and 0.54 (0.23–1.29), respectively. For those
= />9, the RR was 0.31 (0.05–1.58) and 0.31 (0.05–1.58) for
years 3 and 4, respectively. DENV type-specific efficacy
bundled by participants 9 years of age and older compared
to those under 9 years of age across CYD14, 15, and com-
bined 14 + 15 demonstrated moderate efficacy against all
DENV types with a combined efficacy of 65.6% (60.7–69.9).
Combined (CYD14 + 15) DENV type-specific efficacy ran-
ged from DENV-4 at 83.2% (76.2–88.2) to DENV-2 at
47.1% (31.3–59.2). Combined study efficacy against hospi-
talization and severe disease defined by the Independent
Data Monitoring Committee (IDMC) or 1997 World
Health Organization (WHO) criteria in those 9 years of
age or greater was 80.8% (70.1–87.7), 93.2% (77.3–98.0),
and 92.9% (76.1–97.9), respectively. In those younger than
9 years, the data were less convincing with efficacy against
hospitalization of 56.1% (26.2–74.1) and efficacy against
severe disease of 44.5% (IMDC) to 66.7% (WHO) with
large CIs crossing zero.

In summary, there appears to be an age effect on the safety
and efficacy of Dengvaxia®. Specific observations would

include; 1) younger vaccine recipients (<9 years of age) appear
to experience lower overall vaccine efficacy; 2) younger reci-
pients appear to experience reduced benefit related to preven-
tion of hospitalized and/or severe disease; 3) in the younger
vaccine recipients, there was a safety signal of an increased RR
of hospitalized and/or severe disease compared to control/
placebo recipients; and 4) the above trends peaked at
study year 3 and then declined over years 4 and 5.

It is unclear whether the trends described above are related
to age as a surrogate marker for some other risk factor (i.e.,
age-specific serostatus), or whether the independent combina-
tion of age and another factor is at play. Clinical epidemiolo-
gic studies have identified age as a factor independently
associated with hospitalized and/or severe disease, but numer-
ous, similarly designed, studies failed to replicate the
finding.83,84 The hypothesis that age-related differences in
physiology may predispose an individual to a higher risk of
plasma leakage and severe disease has been suggested.85,86

Exploring Dengvaxia’s® variable safety and efficacy by
serostatus

The vast majority of severe DENV infections occur in indivi-
duals who experience sequential DENV infections with dif-
ferent DENV types separated in time by more than 18
months.4-7 There are numerous hypotheses postulating the
causes of severe dengue, many of which are focused on how
pre-existing dengue immunity from a first infection triggers
an immunopathologic cascade following a second, sequential
infection.87-91 The exact mechanism(s) have not been com-
pletely or conclusively explained, but the data supporting the
risk of sequential infections are robust. How these theories
relate to Dengvaxia’s® performance may be found in the
observations of how baseline serostatus impacted vaccine
safety and efficacy.

As discussed above, only a relatively small number of base-
line blood samples were available from trial subjects, making
it difficult to assess serostatus as a factor in vaccine perfor-
mance using only actual measurements. To mitigate this
situation, the vaccine Sponsor (Sanofi Pasteur, Lyon, France)
used measured (when values were available) or imputed
(when values were missing) PRNT50 titers with imputation
conducted using covariates to include data generated from
study month 13 blood samples (i.e., 1 month after dose 3)
tested with a newly developed dengue anti-non-structural
protein 1 (NS1) assay.92 Because the vaccine construct does
not contain dengue NS1 protein, the absence of anti-NS1
antibodies from study month 13 samples would indicate the
individual had not experienced a natural DENV infection (i.e.,
had seronegative status).70

The Sponsor re-assessed the risk of hospitalization and
severe disease in subjects 9–16 years of age, according to
baseline serostatus. Data were pooled from CYD23 (57), 14
and 15 including subjects who received at least one dose of
vaccine. Regardless of the analytic method (measured,
imputed, or NS1), seropositive subjects had a RR of hospita-
lized or severe dengue which favored the vaccine with RRs
ranging from 0.19 to 0.21 for hospitalized disease and 0.15 to
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0.18 for severe disease. In the seronegative group, the RR
favored the control with RR ranges for hospitalized and severe
disease of 1.41–1.51 and 1.41–6.25, respectively; all CIs
crossed 1 and were wide in the severe disease analysis.
When the RR of hospitalization and severe disease was
assessed in 2–8-year-olds based on serostatus following simi-
lar parameters (at least one dose, pooled data), there was
a trend toward a vaccine benefit in the seropositive vaccine
recipients with RR ranging from 0.35 to 0.50 for hospitaliza-
tion and 0.45 to 0.58 for severe disease; the CIs crossed 1 in
this group regardless of the analytic method. In the seronega-
tive group, the RRs favored the control group with a RR range
for hospitalization of 1.95–2.48, and for severe disease of
3.31–4.31; many of the CIs in these analyses also crossed 1.

Expanding the age range to include older children (2–16
years) demonstrated a more positive vaccine effect in the
seropositive subjects with a range of RR of 0.25–0.32 for
hospitalized dengue and 0.27–0.33 for severe dengue with
more narrow CIs which did not cross 1. Control continued
to be favored over vaccine in the seronegative group with RR
ranges for hospitalization and severe disease of 1.75–2.10 and
2.62–3.93, respectively; as with the seropositive group calcula-
tions, the CIs were narrow and crossed 1 in only one analytic
method.

Data pooled from CYD14 and 15 were used to assess
vaccine efficacy by serostatus between study months 0 and
25. In 9–16-year-olds, vaccine efficacy against symptomatic
dengue in seropositive individuals ranged from 74% to 77%
depending on the analytic method, and CIs were tight with
a range of 64–84%. The efficacy in seronegatives was less with
large CIs and two of the three methods resulting in crossing of
0 (18–45% efficacy range, 18–63% CI range). In the 2–8 year
age range, efficacy in seropositives was less, ranging from 57%
to 70% with a CI range of 31–82%. Younger seronegatives also
had lower efficacy, ranging from 8% to 28% with all CIs
crossing 0. Combining age ranges (2–16 years) maintained
the positive vaccine effect in the seropositive group (71–75%
with CI range 59–82%). Seronegatives continued to have
lower efficacy (15–40%) with two of three CIs crossing 0 (CI
range15-58%).

DENV type-specific efficacy between study months 0–25 in
seropositive 9–16-year-olds (pooled data CYD 14 and 15)
demonstrated superior efficacy against DENV-4 (89.3%
[79.8–94.4]) and DENV-3 (80.0% [67.3–87.7]) and lower
and similar efficacy against DENV-1 (67.4% [45.9–80.4])
and DENV-2 (67.3 [46.7–79.9]).

The Sponsor evaluated the clinical phenotypes of all hos-
pitalizations occurring in seronegative subjects from study
month 13 to the end of the follow-up period (month 60 to
month 72) using pooled data from CYD23 (57), 14, and 15.
Outcome data were assessed in age ranges 2–16, 9–16, and
2–8 years. There were no substantial differences between
vaccine and control groups across any of the age ranges as it
related to median duration of symptoms (7.5–8 days), median
duration of fever (5 days), median duration of hospitalization
(4–5 days), occurrence of any hemorrhage (39.3–45% of
group), or any visceral manifestation of disease (0–5% of
group). There was, however, measurable differences in the
occurrence of plasma leakage (any clinical signs, hematocrit

increase >/ = 20%) and thrombocytopenia (</ = 50x109/liter
or </ = 100x109/liter). The risk ratios favored control for all
measurements of plasma leakage; however, the number of
cases with plasma leakage was small in some categories in
some age groups making the CIs quite large and crossing 1.
Risk ratios also favored control related to the occurrence of
thrombocytopenia, especially for counts </ = 50x109/liter; CIs
were reasonably narrow in all groups and did not cross 1
except in the 9–16 age range. There were very few (N = 6)
cases of shock and they were all in the vaccine groups (2–16
years, N = 3; 2–8 years, N = 3).70

Risk of hospitalization assessed as a function of infecting
DENV type was evaluated following at least one dose of
vaccine in seropositive 9–16-year-olds using pooled data
from CYD23 (57), 14, and 15 measured over a 5–6-year
period. All hazard ratios favored Dengvaxia® with DENV-4
(0.07 [0.01–0.38]) having the most favorable ratio followed by
DENV-2 (0.18 [0.09–0.34]), DENV-1 (0.22 [0.11–0.45]), and
DENV-3 (0.38 [0.17–0.82]).

Risk of hospitalization assessed as a function of time from
vaccination (seropositive, 9–16-year-olds, pooled data) indi-
cated the lowest risk in the first 2 years of the study (0.108
[0.054–0.215]), relative stabilization during years 3 (0.263
[0.113–0.612]) and 4 (0.219 [0.102–0.486]), and a decrement
in year 5 and partial year 6 (0.456 [0.215–0.965]). The data in
seropositive 2–8-year-olds (pooled CYD23 (57) and 14) were
less compelling for a vaccine benefit, with hazard ratios for
hospitalized and severe dengue in 2–5-year-olds of 0.73
(0.41–1.31) and 1.03 (0.33–3.23), respectively. In 6–8-year-
olds, the hazard ratio for hospitalization was robust (0.40
[0.24–0.68]), but not for severe dengue (0.34 [0.11–1.09]).
Cumulative incidence curves for hospitalization and severe
dengue risk in seronegative 9–16-year-olds demonstrated
a crossing of the vaccine and control curves at approximately
study month 30, reflecting the increased risk of both out-
comes in the vaccine group.

Finally, to determine if Dengvaxia® protected against sub-
clinical infection, phase 3 trial data from the first 25 months
(active surveillance) was analyzed, with asymptomatic infec-
tion defined by four-fold rise in annual neutralizing antibody
titer; 219/2,485 (8.8%) in the Dengvaxia® group vs 157/1,184
(13.3%) in the placebo group seroconverted between months
13 and 25, yielding vaccine efficacy against asymptomatic
infections of 33.5% (95%CI, 17.9–46.1) during this period.93

In summary, there were clear trends toward superior efficacy
and a beneficial vaccine effect in seropositive versus seronegative
vaccine recipients. Furthermore, there appeared to be a trend of
superior efficacy and beneficial vaccine effect in older children
compared to the younger age groups. Protective effects were
noted against any dengue caused by all DENV types as well as
severe and hospitalized dengue. In contrast, there was a clear
safety signal in seronegative vaccine recipients especially in the
younger age groups. Hospitalization and severe disease occurred
with increased frequency in seronegative vaccine recipients com-
pared to control starting at approximately 18 months following
the last dose of vaccine (or study month 30). These data moved
the Sponsor to seek an indication in children 9 years of age or
greater and in those seropositive to dengue at baseline or with
a confirmed history of past DENV infection.
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Understanding Dengvaxia® performance

Dengvaxia’s® development pathway was guided by decades of
lessons learned from the development of live virus dengue
vaccine candidates, pre-clinical and early clinical data,
demonstrating a promising safety and immunogenicity pro-
file, and the guidance of groups such as the WHO.23,78-80,94-101

There was confidence the prevention of viremia or RNAemia
in NHPs challenged with wild-type viruses would be predic-
tive of the potential for human clinical benefit. It was also
anticipated anti-DENV neutralizing antibodies would emerge
as a correlate or surrogate of protection, supporting the plau-
sibility that a neutralizing antibody response would protect
against dengue. Dengvaxia’s® failure to meet the primary
efficacy end-point in CYD23 was unexpected and called into
question many commonly held beliefs in the dengue vaccine
research community. The vaccine’s variable performance
across different ages and serostatus as well as a clear safety
signal in seronegative recipients, i.e., that Dengvaxia®
enhanced subsequent disease in some seronegative indivi-
duals, raised a number of questions and concepts applicable
to all dengue vaccine candidates.

Immunodominance

One of the challenges in developing dengue vaccines is the
requirement to make a safe and effective vaccine against each
DENV type, and then to successfully combine them into
a single formulation.102-104 With replicating DENV vaccine
platforms, immunodominance and interference are theoretical
risks which may result in having a single DENV type dominat-
ing the antigen presentation process and thereby skew immune
responses and associated protective capability. There is evi-
dence these concepts may be at play with Dengvaxia®.
Following tetravalent vaccination with CYD in cynomolgus
macaques, DENV-4, and to a lesser extent, DENV-1, were
dominant in terms of neutralizing antibody response, and
DENV-4 vaccine viremia was detected.96 In a phase 2 trial,
subjects were vaccinated on Day 0 and Day 105 with four
regimens consisting of bivalent and/or tetravalent formulations:
(1) CYD-1, 3 followed by CYD-2, 4; (2) CYD-1, 3, 4 + VDV2
x 2; (3) Dengvaxia® x 2; and (4) JE vaccine followed by
Dengvaxia®. CYD-4 RNAemia was most frequent after tetra-
valent vaccination. In group one, CYD-3 RNAemia was most
frequent after the first bivalent injection (CYD-1,3), with the
highest immune response being against DENV-3. The second
bivalent injection (CYD-2,4) elicited only low immune
response against DENV-2 and −4.58 In another phase 2 trial
of dengue naïve adults in Australia, CYD RNAemia was
detected in 66/95 (69.5%) subjects who received Dengvaxia®,
most within 6–14 days after the first dose. The most commonly
detected vaccine type was DENV-4 (45/95 [47.4%]), followed
by DENV-3 (13/95 [13.7%]), and DENV-1 (8/95 [8.4%]);
DENV-2 was not detected.105

Immunogenicity data from five Dengvaxia® phase 2 trials
were analyzed to evaluate immune response after each of
the three doses. Neutralizing antibody titers were similar
for all types following the third dose, but DENV-4 was
immunodominant after the first dose.106 Depletion of

cross-reactive dengue antibodies followed by a flow cytome-
try-based neutralization assay was performed on a small
number of phase 2 subjects with baseline dengue seroposi-
tivity (7 subjects from Brazil) and seronegativity (11 sub-
jects from Australia). The intent was to evaluate DENV
type-specific versus cross-reactive neutralizing antibodies
following Dengvaxia® administration. In baseline seronega-
tive individuals, Dengvaxia® induced DENV-4 type-specific
neutralizing antibodies but only low levels of DENV-1,
−2, or −3 type-specific antibodies. In baseline seropositive
individuals, Dengvaxia® induced mainly cross-reactive anti-
bodies, and maintained or boosted pre-existing DENV type-
specific neutralizing antibodies.107

Immunogenicity as a poor predictor of efficacy

The association of quantitative neutralizing antibody
responses after Dengvaxia® with protection in phase 2b
and 3 efficacy trials was evaluated.108 Neutralizing antibo-
dies measured 1 month after the third vaccine dose in the
immunogenicity subsets from CYD 14 and 15 were analyzed
to determine their association with protection against symp-
tomatic dengue thru 25 months after the first dose.
Vaccinees with higher month 13 titers to a particular
DENV type had a lower risk of symptomatic dengue from
that type (hazard ratio of 0.19–0.43 per 10-fold increase in
titer). Vaccinees with higher month 13 mean titers to four
DENV types had higher efficacy against symptomatic den-
gue from any type. However, the lowest titers did not
correspond to zero efficacy, suggesting a role for other
factors in protection, and demonstrating that neutralizing
antibody titers may only be a crude quantitative indicator of
clinically relevant immune responses.

To evaluate the role of conformational epitopes, antigenic
properties of DENV-1–4 were characterized using highly neu-
tralizing human monoclonal antibodies (hmAbs) binding
quaternary epitopes. Binding of DENV-1 (1F4), DENV-2
(2D22), or DENV-3 (5J7) type-specific hmAbs, and DENV-
1–4 cross-reactive hmAb (1C19); demonstrated that
Dengvaxia® had high functional affinity with these hmAbs.
These findings suggest Dengvaxia® can elicit at least some
antibody responses with DENV type-specific specificity simi-
lar to what is observed following a natural infection. However,
the number of tested conformational epitopes was very few,
limiting broader conclusions about antibody specificities.109

Cellular immune responses following vaccination

Cellular immune responses to natural DENV infections are
known to participate in both pathologic and protective immune
responses. The majority of CD4+ and CD8 + T cell epitopes are
located on the DENV non-structural proteins; the CYD vaccine
does not possess these proteins.110-116 In the absence of non-
structural proteins, it is reasonable to postulate Dengvaxia®
would not elicit robust cellular immune responses and this
may contribute to the absence of protection or reduce the dur-
ability and duration of protection remote from vaccination. In
fact, Dengvaxia® elicited mostly YF 17D NS3-specific CD8+
responses and DENV type-specific CD4+ responses. Of interest,
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pre-existing DENV NS3-specific CD8+ responses could be
recalled by Dengvaxia® administration. Dengvaxia® administra-
tion favored responses with IFN-gamma secreting T cells over
TNF-alpha secreting T cells, suggesting a Th1 over Th2
response.65,117

Theories explaining Dengvaxia’s® variable safety and
efficacy signals

Does Dengvaxia® mimic a first infection
One hypothesis explaining Dengvaxia’s® safety issues in ser-
onegative recipients is that vaccination mimics a primary
infection, setting up the recipient for the higher risk of clini-
cally apparent and/or severe disease when he or she experi-
ences a subsequent sequential infection which, in this case,
would be the recipient’s first natural infection.118 Inherent in
this hypothesis is the assumption that Dengvaxia® elicits
homotypic immune responses from ≤ three serotypes; in
fact, given DENV-4’s likely immunodominance, CYD-TDV
may elicit homotypic immune response mainly for just
DENV-4. In this scenario, vaccine recipients would benefit
from durable DENV-4 homotypic protection, but only a short
period of cross-protective immunity against other serotypes.
This could account for the relatively positive efficacy signal in
study years 0–2 of the efficacy trials, and the absence of
a safety signal. Once heterotypic immunity begins to wane,
vaccine recipients would begin to experience natural infec-
tions, possibly accounting for the safety signal appearing only
in year 3, and the decline in risk during years 4 and
beyond.119

However, the analogy of mimicking a first natural
infection is potentially problematic for a number of rea-
sons. First and foremost, there are considerable differ-
ences between a wild-type DENV delivered by
a mosquito versus needle administration of a vaccine.
A probing mosquito delivers a single DENV type, com-
plete viral genome (structural and non-structural pro-
teins) into a superficial anatomic space along with
a variety of mosquito salivary proteins.120-122 A second,
sequential infection would then be experienced months to
years later. In contrast, Dengvaxia® is delivered by
a needle into the subcutaneous tissue, contains only the
prM and E genes from each of the four DENV types, and
is administered three times over a single year. The differ-
ences in virus/antigen make-up and method of vaccine
delivery all have the potential to impact antigen proces-
sing and resulting immune responses, thereby limiting the
comparison.

Does Dengvaxia® fail to produce a cellular immune
response
Another potential explanation for Dengvaxia’s® variable per-
formance is its failure to elicit potent and broad cellular
immune responses. High, post-vaccination antibody titers in
the absence of a cellular response could account for near-term
protection, but as this antibody response wanes, cellular
immune responses are likely required for robust immunologic

memory and an overall protective immune profile. Depending
on the vaccine construct, a frequent schedule of booster doses
may be required to overcome this challenge.

Does Dengvaxia® fail to target relevant DENV epitopes
Relevant epitopes for protection from natural infection with
a wild-type virus (e.g., conformational epitopes) may differ
from the DENV components in Dengvaxia®.

DENGVAXIA’S® waning immunogenicity
Blood was collected from a small number of volunteers 5
years after vaccination as part of a phase 2 trial in
Singapore. In the original trial, 57–84% of volunteers had
a neutralizing antibody response (titer ≥10) to all DENV
types when measured 28 days after a third dose of vaccine.
Five years after the first dose of vaccine, 21/23 had no anti-
bodies measured by ELISA, and DENV-specific memory
B cells were low. The in vivo ability of plasma antibodies to
impact viremia after DENV-2 challenge in a mouse model was
poor with only 2 out of 23 samples demonstrating reduced
viremia.123

Somewhat conflicting data were published by the Sponsor
in a review of 10 phase 2 and six phase 3 trials conducted in
dengue endemic and non-endemic regions. Neutralizing anti-
bodies from available samples were determined at baseline, 28
days after the third dose of vaccine, and annually up to 4 years
after the third dose. Dengvaxia® elicited neutralizing antibo-
dies against each DENV type with increasing GMTs following
each dose. In CYD 14 and 15, GMTs decreased initially
during the first 2 years post-dose 3, but appeared to stabilize
or slightly increase again in year three. When measured out
to year four, GMTs persisted at 1.2–3.2-fold higher than base-
line. Numerous factors impacted antibody titer and kinetics of
decline to include age, dengue serostatus at baseline, and
region.124

Pre-existing immunity to non-DENV flaviviruses
Fourteen subjects previously vaccinated against yellow
fever received a single dose CYD-2 with all subjects devel-
oping an antibody response to all DENV types which
persisted for at least 1 year. The yellow fever naïve subjects
had low response rates to DENV-1, 3 and 4.52 In another
phase 1 trial, a regimen of TDV-TDV-TDV elicited sero-
positivity against each of DENVs between 77% and 92%
while YF-TDV-TDV elicited seropositivity between 85%
and 94%.55 Dengvaxia® administered 1 year after live atte-
nuated dengue vaccine (VDV) types 1 or 2, or YF vaccine
demonstrated that 67% (10/15) of VDV-primed subjects
seroconverted to all DENV types within 28 days compared
with only 25% (2/8) of YF-primed and 0% (0/12) of naïve
subjects.57 In a study of JEV priming, JE vaccine was
administered on days −14, −7 and 0 followed by
Dengvaxia® on day 105. Immune responses after
Dengvaxia® injection in JE-primed individuals were higher
than after one Dengvaxia® injection in dengue naïve
subjects.58
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Does Dengvaxia® miss relevant DENV genotypes
One study evaluated the genetic epidemiology of DENVs
collected from dengue cases in CYD14 and 15 allowing
DENV genotype-specific estimates of vaccine efficacy.
Envelope gene sequences (n = 661) from 11 DENV genotypes
in 10 endemic countries demonstrated high amino acid iden-
tity between the CYD strains and wild-type viruses.
Similarities included epitope sites targeted by neutralizing
human monoclonal antibodies. Post-hoc analysis of all
CYD14 and 15 trial participants revealed a statistically signif-
icant genotype-level efficacy association within DENV-4 while
a subgroup analysis of efficacy in 9–16-year-olds appeared
more balanced within each DENV type.125

Sieve analyses were conducted to evaluate if Dengvaxia®
efficacy varied with amino acid sequence features of the
DENVs isolated from infected subjects. DENV prM and
E amino acid sequences from cases were aligned with the
vaccine insert sequences, and extensions of the proportional
hazards model were applied to assess variation in efficacy
with amino acid mismatch proportion distances from vac-
cine strains, individual amino acid residues, and phyloge-
netic genotypes. In CYD14, efficacy against any DENV type
decreased significantly with increasing amino acid distance
from the vaccine, whereas in CYD15, efficacy was not
impacted by amino acid distance. In DENV type-specific
analyses, there was a decrement in efficacy against DENV-4
with increasing amino acid distance from the corresponding
vaccine insert, but these observations were limited to 2–-
8-year-olds. Finally, there was greater estimated efficacy
against DENV types and genotypes when the circulating
DENVs had shorter amino acid sequence distances from
the vaccine.126

Immunization implementation

World health organization position evolution

The WHO has issued two position papers on Dengvaxia®, one
based on the data used for initial licensure and the second
addressing modifications to the initial indication based on the
observed safety signal in seronegative vaccine recipients in all
ages studied. The first position was issued in July 2016 and
contained the following observations and recommendations:

(1) CYD-TDV should only be introduced in geographic
settings where epidemiological data indicate a high
burden of disease (seroprevalence 70% or greater in
the age group targeted for vaccination);

(2) The vaccine is not recommended when seropreva-
lence is below 50% in the age group targeted for
vaccination;

(3) Use of CYD-TDV in populations where seropreva-
lence is low in the age group considered for vaccina-
tion is not recommended;

(4) If CYD-TDV is introduced, it should be administered
as a 3-dose series given on a 0/6/12-month schedule;

(5) Because of the association of CYD-TDV with
increased risk of hospitalized and severe dengue ill-
ness in the 2–5-year age group, CYD-TDV is not

recommended for use in children under 9 years of
age;

(6) CYD-TDV has not been studied as an intervention
for dengue outbreak control and is not expected to
have a significant impact on the course of the
ongoing outbreak; and

(7) Long-term monitoring for severe dengue, in particu-
lar in seronegative vaccinated subjects, should be
done in selected areas.

Based on WHO’s recommendation #7 and the increasing
evidence of a detrimental effect of vaccination in seronegative
individuals, the Sponsor embarked on exploring the effect of
age and serostatus on vaccine efficacy and long-term safety
(described earlier). Based on the data, the Sponsor requested
a change in the vaccine’s label:

Based on up to six years of clinical data… For those not previously
infected by dengue virus, however, the analysis found that in the
longer term, more cases of severe disease could occur following
vaccination upon a subsequent dengue infection … Based on the
new analysis, Sanofi will propose that national regulatory agencies
update the prescribing information… For individuals who have not
been previously infected by dengue virus, vaccination should not be
recommended. November 29, 2017

(https://mediaroom.sanofi.com/en/press-releases/2017/sanofi-
updates-information-on-dengue-vaccine/, accessed 7 MAY
2019)

The WHO revised their position based on this new infor-
mation in September 2018:

(1) CYD-TDV has been shown in clinical trials to be
efficacious and safe in seropositive individuals, but
carries an increased risk of severe dengue in those
who experience their first natural dengue infection
after vaccination (seronegative individuals);

(2) Only people with evidence of a past dengue infection
should be vaccinated based on an antibody test, or on
a documented laboratory confirmed dengue infection
in the past. If pre-vaccination screening is not feasi-
ble, vaccination without individual screening could be
considered in areas with recent documentation of
seroprevalence rates of at least 80% by age 9 years;

(3) Screening tests would need to be highly specific to
avoid vaccinating truly seronegative persons and to
have high sensitivity to ensure that a high proportion
of seropositive persons are vaccinated;

(4) Decisions about implementing a pre-vaccination
screening strategy with the currently available tests
will require careful assessment at the country level,
including consideration of the sensitivity and specifi-
city of available tests;

(5) The vaccine should be used within the indicated age
range, which in most countries is 9–45 years. The age
group to target for vaccination depends on the den-
gue transmission intensity in a given country;

(6) In travelers who have already had a documented
dengue illness or are seropositive, vaccination before
travel to high dengue transmission settings could be
considered; and
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(7) There is an urgent need for the development of highly
specific and sensitive rapid diagnostic tests (RDTs)
for determination of dengue serostatus.

155th vaccines and related biological products
advisory committee (VRBPAC) – 7 MAR 2019

The VRBPAC evaluated Dengvaxia® in March 2019. The
Sponsor’s presentations focused on the unmet medical need
for a dengue vaccine in the U.S., highlighting the potential for
high dengue rates and death in Puerto Rico. The vaccine’s
safety and efficacy were reviewed with a not so surprising
focus on the safety signal in seronegative vaccine recipients.
The requirement and availability of a widely accessible diag-
nostic with high sensitivity and specificity was discussed at
length. There was broad support for the need for a U.S. FDA
cleared rapid diagnostic assay to accurately identify seroposi-
tive individuals. A number of committee members had issue
with extrapolating immunogenicity (non-efficacy) data to the
populations above 16 years of age.

The U.S. FDA requested the VRBPAC consider two
questions:

(1) Are the available data adequate to support the effec-
tiveness of Dengvaxia® for the prevention of dengue
disease caused by dengue virus serotypes 1, 2, 3 and 4
in persons 9 through 45 years of age with laboratory-
confirmed previous dengue infection and living in
endemic areas?

(2) Are the available data adequate to support the safety
of Dengvaxia® when administered to persons 9
through 45 years of age with laboratory-confirmed
previous dengue infection and living in endemic
areas?

Voting on these questions was almost evenly split with ques-
tion 1 votes tallying at 6 Yes, 7 No, and 1 Abstain and
question 2 voting at 7 Yes, 7 No, and 0 Abstain.

The FDA then asked, in real-time, the VRBPAC to con-
sider two additional questions:

(3) Are the available data adequate to support the effec-
tiveness of Dengvaxia® for the prevention of dengue
disease caused by dengue virus serotypes 1, 2, 3 and 4
in persons 9 to <17 years of age with laboratory-con-
firmed previous dengue infection and living in ende-
mic areas?

(4) Are the available data adequate to support the safety of
Dengvaxia® when administered to persons 9 through
<17 years of age with laboratory-confirmed previous
dengue infection and living in endemic areas?

There was increased committee consensus on questions 3 and
4 with voting of 13 Yes, 1 No, and 0 Abstain for question 3
and 10 Yes, 4 No, and 0 Abstain for question 4.

On 1 May 2019, U.S. FDA announced the approval of
Dengvaxia®, “the first vaccine approved for the prevention of
dengue disease caused by all dengue virus serotypes (1, 2, 3

and 4) in people ages 9 through 16 who have laboratory-
confirmed previous dengue infection and who live in endemic
areas.”(https://www.fda.gov/news-events/press-announce
ments/first-fda-approved-vaccine-prevention-dengue-disease-
endemic-regions; accessed 7 May 2019).

Dengvaxia® roll-out and fall-out

Of the 2.9 million doses of vaccine which have been distrib-
uted worldwide, approximately 2.3 million doses have been
used during campaigns in the Philippines and Brazil. In the
Philippines >830,000 children received one dose, >415,000
two doses, and >365,000 all three doses. In Brazil, the dis-
tribution was 300,000 dose 1, 225,000 dose 2, and 146,000
dose 3. A surveillance system was in place by the Philippine
Department of Health at the start of vaccinations, with the
collection of all AEs following immunization (AEFI). AE
causality was made by an AEFI committee. Surveillance for
AEs among Dengvaxia® recipients increased following the
release of the safety signal in seronegative individuals above
9 years of age. Nevertheless, the robustness of these systems to
detect AEFIs, and in particular, to evaluate dengue cases
related to vaccination, was unclear. In Brazil, a public vacci-
nation program was conducted in Parana state, and the exist-
ing surveillance system was purportedly enhanced in
preparation for the campaign.

From initial marketing of the vaccine until
14 September 2018, 51 fatalities were reported in the Sanofi
Pharmacovigilance database. The majority of fatal cases
occurred in children (9–13 years) in the Philippines and 15
of the 51 were dengue cases. The WHO Global Advisory
Committee on Vaccine Safety reviewed 14 deaths and were
unable to make a causality determination, “ … in the absence
of criteria for distinguishing vaccine failure from vaccine-
related immune enhancement, individual cases cannot be
attributed to one or the other. As a result, such cases should
be classified as indeterminate, irrespective of the time since
vaccination.”11

It is beyond the scope of this manuscript to dissect the
political, legal, and social elements associated with
Dengvaxia’s® development, launch, and subsequent chal-
lenges. That being said, the erosion of vaccine confidence in
the Philippines post-Dengvaxia®, criminal indictments of
Philippine medical professionals and Sanofi officials, and the
revocation of Dengvaxia’s® license in the Philippines are
highly concerning occurrences. The scientific, ethical, legal,
and regulatory turbulence resulting from this experience has
the potential to impact the development and deployment of
future dengue vaccines and potentially other technologies
designed to prevent or treat dengue.

Lessons learned

There have been numerous lessons learned from the
Dengvaxia® experience and dengue vaccine development
efforts in general:

(1) A more in-depth understanding of the induction,
kinetics, and contributions to safety and protection
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of long-term homotypic, transient heterotypic, and
long-term heterotypic immune responses is required,
which will, in turn, require better ways to measure
them;

(2) Multivalent replicating vaccines are at theoretical risk
of experiencing immunodominance and immune
interference in the recipient, likely necessitating
a more iterative development approach to evaluate
individual infectivity and immunogenicity (example –
exploring monovalent dengue vaccines in separate
clinical studies prior to combination);

(3) Since clinically relevant immune responses can
change over time after natural infection or vaccina-
tion, the timing of efficacy measurements will need to
be taken into account when considering vaccine effi-
cacy and risk;

(4) Surveillance systems applied to vaccine efficacy trials
should be designed to capture clinical end-points of
interest for the period of time required to make
a maximally informed decision about the vaccine’s
potential for clinical benefit (i.e., how many dengue
seasons?);

(5) Exploring immunogenicity and efficacy as a function
of vaccine viral strains and contemporary circulating
DENV types and genotypes should be considered by
Sponsors, especially those using vaccine strains col-
lected many years prior;

(6) Understanding the impact of age, baseline dengue
and non-dengue flavivirus serostatus, infecting sero-
type, and time from vaccination on immunogenicity,
efficacy, and safety should be a focus of Sponsors;

(7) Expanding and standardizing methods to complete
quantitative and qualitative measures of humoral
immune responses are required to leverage an under-
standing of protective and deleterious responses and
what constitutes each (i.e., target epitopes);

(8) Exploring, in a prospective manner, immune corre-
lates or surrogates of protection and risk should be
a Sponsor priority, and will likely require collecting
baseline blood samples on all trial participants,
lengthening the duration of active surveillance, and
having secondary efficacy endpoints assessing various
time points remote from the vaccination; and

(9) Use of experimental human infection models should
be considered to assist with early development deci-
sions (i.e., antigen selection, dose, and schedule),
gaining an early understanding of a vaccine candi-
date’s potential for clinical benefit prior to large clin-
ical endpoint studies, and potentially adding to a data
package supporting pursuit of a specific indication
(example – fillings gaps in knowledge from field
efficacy studies).

Conclusion

The development and licensure of Dengvaxia® spanned more
than 20 years and cost more than 1.5 billion U.S. dollars. The
breadth and depth of the pre-clinical and clinical development

pathways addressed a variety of real and theoretical risks
inherent to all vaccine development efforts and some which
were dengue-specific. Although two large phase 3 efficacy
trials met primary efficacy endpoints, long-term follow-up
revealed a very concerning safety signal in seronegative vac-
cine recipients. Additional data generation and analyses con-
firmed the signal, resulting in a modification of the requested
indication from the Sponsor, WHO recommendations for use,
and approvals from regulatory agencies. The current storm of
political, legal, and community fall-out continues without
a clear understanding of the final outcome.
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