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Abstract: Wound dressings have become a crucial treatment for wound healing due to their con-
venience, low cost, and prolonged wound management. As cutting-edge biomaterials, marine
polysaccharides are divided from most marine organisms. It possesses various bioactivities, which
allowing them to be processed into various forms of wound dressings. Therefore, a comprehensive
understanding of the application of marine polysaccharides in wound dressings is particularly impor-
tant for the studies of wound therapy. In this review, we first introduce the wound healing process
and describe the characteristics of modern commonly used dressings. Then, the properties of various
marine polysaccharides and their application in wound dressing development are outlined. Finally,
strategies for developing and enhancing marine polysaccharide wound dressings are described, and
an outlook of these dressings is given. The diverse bioactivities of marine polysaccharides including
antibacterial, anti-inflammatory, haemostatic properties, etc., providing excellent wound manage-
ment and accelerate wound healing. Meanwhile, these biomaterials have higher biocompatibility
and biodegradability compared to synthetic ones. On the other hand, marine polysaccharides can
be combined with copolymers and active substances to prepare various forms of dressings. Among
them, emerging types of dressings such as nanofibers, smart hydrogels and injectable hydrogels
are at the research frontier of their development. Therefore, marine polysaccharides are essential
materials in wound dressings fabrication and have a promising future.

Keywords: biopolymers; biomaterials; wound dressing; wound healing; chitosan; alginate; fucoidan;
agar; carrageenan; ulvan

1. Introduction

Skin, being the largest organ of the human body, is the first immune barrier against
external damage and invasion [1]. As a result, it is also one of the most frequently injured
organs in the body [2]. There are two types of skin wounds: acute wounds and chronic
wounds. Acute wounds usually heal within 1–12 weeks [3]. While chronic wounds are
more susceptible to infection and require more healing time, bringing challenges for wound
management. The degree of tissue damage and the organism’s tissue regeneration ability
determine the repair mode and time. Wound healing is a complex process involving four
steps: haemostasis, inflammation, proliferation and remodelling [4,5], as illustrated in
Figure 1. Wound dressings have become a major wound healing treatment [6–9]. The ideal
wound dressings should have the following characteristics: (1) to prevent further physical
damage to the wound as a barrier to microbial invasion; (2) to ensure a certain degree of
moisture on the contact surface between the dressing and the wound, providing a suitable
environment for healing process; (3) to clear wound in time; (4) low adhesion to the wound
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to avoid secondary damage during dismantling; (5) good elasticity and gas permeability;
(6) biocompatible, non-toxic and non-allergenic; (7) good haemostatic function, etc. [10–14].
Table 1 lists the advantages, disadvantages, and the suitable conditions of commonly
used dressings.

Figure 1. The four processes of wound healing.

Table 1. Advantages, disadvantages, and the suitable conditions of dressing forms in modern medicine.

Dressing Types Advantages Disadvantages Suitable Conditions Refs

Hydrogels

Good absorption of exudate
Good moisturizing properties

Have a cleansing effect
No reoccurring mechanical damage

Self-adhesive
Concealed appearance

Good antibacterial properties
Accelerated wound healing

Poor ability to absorb exudate
Higher costs

Possible allergic reaction

Pressure ulcers
Surgical wounds

Burns
Radiation dermatitis
Diabetic foot ulcer

[15,16]

Nanofibre mats

Good antibacterial properties
Effective control of local wound

infection
Good absorption of exudate
Accelerated wound healing

Cytotoxic risk
Prone to allergic reactions

Higher production cost

Burns and scald
Localized trauma infection [17,18]

Films
Good antibacterial properties
Good moisturizing properties

Self-adhesive

Poor mechanical properties
Higher costs

Epithelializing wounds and
superficial wounds with limited

exudate
Chronic venous ulcer
Radiation dermatitis

[19]

Membranes

Good haemostatic effect
Promotes granulation tissue formation

and self-decomposition of necrotic
tissue

Good antibacterial property

Poor ability to absorb ooze
Higher production cost

Chronic venous ulcer
All kinds of dermatitis and eczema [20,21]

Sponge

Good absorption of exudate
Low permeability

Good antibacterial properties
Thermal insulation

Excessive absorption
Higher costs

Inconvenient to observe

Infected wounds
Diabetic foot ulcer

Medium to heavily exuding
wounds

Venous ulcers

[22,23]

Conventional dressings (e.g., gauze, bandages) could simply cover and protect the
wound while failing to maintain a moist environment at the wound site. They have no
direct effect on the wound with poor biocompatibility and may cause secondary injury
when replaced or removed. Thus, they are believed unconducive to wound healing [13,24].
Comparatively, modern dressings interact with the wound and subsequently provide
a more suitable environment for wound healing. Various polymeric wound dressings
and coatings, such as polyurethane foam films and graphene dressings, have been well
developed and widely utilized [25–28]. Nevertheless, the bioactivities and biocompatibility
of these polymeric excipients are limited, which restricts their development. Therefore,
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natural polymers (e.g., polysaccharides, proteins) with good biocompatibility, biodegrad-
ability and similarity to the extracellular matrix (ECM) are widely advanced in wound
dressings [29,30].

Polysaccharides are natural biopolymers that exist in various organisms. As a kind
of essential macromolecular in life activities, polysaccharides are closely related to all
types of biochemical metabolism [31]. Polysaccharide-based materials are widely used in
wound dressings because they are non-toxic and biodegradable with colossal storage and
good biocompatibility. The hydrophilic groups (carboxylic, amino, hydroxyl, and sulphate
groups) in their structure can form non-covalent bonds with growth factors (GFs) to support
bioadhesion. It is worth noting that many wound dressings with multiple activities can
be prepared by simply processing the polysaccharide, for instance, by adding active
substances, pairing copolymers, chemical modification, etc. Thus, natural polysaccharides
have shown great application potential in wound management [32–34].

According to primary biological sources, polysaccharides can be classified into two main
types: terrestrial polysaccharides (TPs) and marine polysaccharides (MPs) (Figure 2). MPs are
one of the main components of all living marine organisms. Compared to TPs, MPs possess
various properties that can be used for dressing development, such as antibacterial, antioxidant,
anti-inflammatory, and so on [35]. In addition, most MPs have good histocompatibility, do
not carry pathogens pathogenic to humans. With the advancement of biotechnology, the yield
of MPs has increased dramatically, and the cost of extraction has decreased [36,37]. They are
widely used to produce pure or complex polysaccharide-based biological preparations, such as
hydrogels, membranes, and sponges. Moreover, they can also be used to make nanomaterials
such as nanofibres and nanoparticles [35–38]. Therefore, MPs are promising biomaterials for
the fabrication of wound dressings.

Figure 2. Classification of polysaccharides according to the source of extraction.

In this review, we focus on an overview of the application and enhancement strategies
of marine polysaccharides in wound dressings. We first collected and analysed data
from recent and ongoing studies to explain and illustrate the current research status
of the development of marine polysaccharides. Subsequently, strategies for enhancing
marine polysaccharide wound dressings are outlined, providing valuable information for
wound dressings research. Lastly, we also discuss the research hotspots, intrinsic links,
and development trends of MPs in wound dressings, and put forward the outlook for
future research.
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2. MPs for Wound Dressings

MPs meet the requirements for wound dressings materials, most of which are low-cost
and easily accessible. Their highly biocompatible properties allow them to adhere to the
skin without concern and be used in vivo. Moreover, they exhibit unique wound-healing
activities. MPs can be divided into three main categories depending on the organism they
originated from: marine animal polysaccharides (e.g., chitin, chitosan, marine glycosamino-
glycans), marine algae polysaccharides (e.g., alginate, fucoidan, carrageenan) and marine
microbial polysaccharides (Figure 3). The development of MPs wound dressings with
different functions has become a hotspot. This paragraph elaborated the categorisation of
MPs and the characteristics of the different MPs in wound dressings development.

Figure 3. Classification of marine polysaccharides.

2.1. Chitosan

Chitin (Figure 4A), the second most abundant biopolymer in nature after cellulose,
is a long and unbranched polysaccharide biopolymer composed of β-(1,4)-n-acetylamino
glucose (GlcNAc). Chitin is mainly derived from the exoskeletons of marine crustaceans,
such as shrimps and crabs [39,40]. Chitin is poorly water-soluble and not easily processed,
whereas its derivative chitosan (CS) has a much wider application. CS is the only cationic
polysaccharide among natural polysaccharides found so far (Figure 4B). CS can be formed
by partial deacetylation of chitin under alkaline conditions [41]. When the degree of
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deacetylation reaches about 50%, CS dissolves in acidic aqueous solutions. After disso-
lution, the side chain amino groups of CS are transformed into cations that interact with
other molecules. This is the reason why CS generates stable biomaterials with negatively
charged polymers [42]. On the other hand, CS has a diverse range of modified derivatives.
These derivatives have better solubility and bioactivities. Table 2 shows the most common
CS derivatives.

Figure 4. Chemical structure of chitin (A) and chitosan (B) fragments.

Table 2. The most common CS derivatives used in biotechnology development.

Derivatives Structures Properties Refs

Carboxymethyl
chitosan

Better and more controlled water
solubility

Inhibits scarring
[43]

Alkylation chitosan
Better water solubility

Enhanced haemostatic efficacy
Better mechanical stability

[44,45]

Trimethyl chitosan
ammonium

Water-soluble over a wide pH range
Good flocculation and antistatic

properties
Better antibacterial properties

[46]

CS and its derivatives are widely developed in wound dressings due to their ease
of processing and multiple bioactivities. They are good gelling agents, and their cationic
properties make them suitable for mixing with anionic copolymers to form hydrogels.
Their good solubility and stability make them suitable for casting films, membranes and
electrospinning into nanofibres when miscible with other compounds [47–49]. Furthermore,
numerous amine groups of CS confer pH-dependent solubility, and its functional groups
are suitable for Schiff base reactions and iminium reactions. This property provides CS
with an advantage over other biomaterials for developing Smart hydrogels/injectable
hydrogels/self-healing hydrogels [50–52]. Wound dressings using CS as starting materials
have good physical properties for drug delivery. Many studies have shown that CS-based
dressings can achieve sustained release and promote wound healing effectively [53–55].
Moreover, CS and its derivatives exhibit bioactivities that favour wound healing, such
as antimicrobial, analgesic, antioxidant, anti-inflammatory, haemostasis, and promoting
tissue regeneration. Table 3 shows the mechanism and characteristics of the bioactivities
of CS for wound healing [56–59]. In addition, the hydrophilic group of CS allows their
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dressings to provide a moist healing environment for wounds [60]. These properties lead
to CS dressings being a major part of MPs wound dressings.

Table 3. Bioactivities of CS that facilitate wound healing and their mechanisms.

Bioactivities Mechanisms and Hypotheses

Antibacterial

No definitive conclusion yet. The main hypotheses include:
(1) adheres to and electrostatically disrupts bacterial cell walls and cell membranes,
(2) chelates trace metal cations leading to potential imbalance,
(3) interaction with intracellular targets to inhibit protein synthesis,
(4) deposits on bacteria and affects metabolism

Anti-inflammatory Induces increased levels of anti-inflammatory cytokines such as IL-10, TGF-β1 and
decreased levels of pro-inflammatory cytokines.

Antioxidant It is achieved by donating hydrogen atoms.
The amino and carboxyl groups of CS stabilize free radicals.

Promotes tissue regeneration Modulates growth factors to: promote macrophage transfer to wounds; promote fibroblast
proliferation; promote proteoglycan and collagen synthesis; promote angiogenesis.

Haemostasis Promotes the aggregation of platelets and red blood cells and their adhesion to tissues to
form clots

Scar-free
Dependent on its cationic properties. CS inhibits the production of type I collagen in
wounds, promotes the production of granulation and epithelial tissue, as well as reducing
wound contraction, thereby reducing scarring.

Active agents carried by CS wound dressings could show a synergistic wound-healing
effect with CS. This is due to the bioactivities of CS, which is dependent on cationicity
(deacetylation degree) and its unique side chains structure, which has a mechanism that
distinguishes it from other active substances [56,61]. The long-lasting bioactivities of CS can
provide antibacterial properties at the end of the sustained release of loaded agents to pre-
vent the recurrence of bacterial infections [62,63]. Furthermore, after the antibacterial/anti-
inflammatory/antioxidant agents in the CS dressing improved the wound healing envi-
ronment, CS regulates GFs to promote tissue regeneration and angiogenesis, effectively
promoting wound healing [64,65]. Therefore, CS wound dressings can consistently opti-
mise the four stages of wound healing synergistically with loaded agents, which is beyond
the reach of most drugs and commercially available dressings [66].

Besides being a structural component for wound dressings, CS can also be added
as an active agent. CS NPs are biocompatible and degradable. Their larger surface area
allows for better use of the bioactivities of CS. They can be used as active agents directly
embedded in hydrogels, membranes, and films, or as drug carriers for active agents
to enhance activity [67]. The CS NPs embedded in the wound dressings allow for a
double sustained release to reduce the cytotoxicity and resistance of the encapsulated
drug while achieving sustained healing. In addition, due to the enhanced permeability of
nanoparticles for superficial diffusion, CS NPs can treat infected wounds on a large scale
and promote scar-free wound healing [68–72]. Another instance of using CS as an active
agent is the CS coatings, which provided additional antibacterial, pro-healing activity
to the dressing [73–75]. Therefore, the CS coating is also an approach for developing
asymmetric membranes/multi-layer membranes dressings. Research has demonstrated
that CS coatings provided antibacterial activity without affecting the structure of the
original dressing and enhanced the overall mechanical properties of the dressing [76].

A large number of CS-based wound dressings have been commercialised, such as
Celox™ [77], Chitopack C®, Chitoflex® [78], Tegasorb® [79], etc. The main forms of dress-
ings include membranes, sponges, and hydrogels. These highly biocompatible dressings
can be used for the management of acute/chronic wounds and, therefore, show great
medical value [80].

Despite the fact that the development and productisation of CS wound dressings are
now well advanced, a series of factors still hamper its development. A significant issue is
the lack of prospective clinical trials. CS has been shown to be non-cytotoxic. However,
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its metabolic pathway in vivo is unknown, and there is a risk of cumulative toxicity [81].
Many recent studies have selected its derivative CMC to develop Injectable hydrogels as
in vivo wound dressings [82,83]. The water-soluble CMC is free from cumulative and acute
toxicity [84]. Most applications of CMC are still in the laboratory stage due to the difficulty
of processing, but it has the potential to replace CS in the preparation of in vivo wound
dressings in the future.

2.2. Marine Glycosaminoglycans

Glycosaminoglycans (GAGs) are biopolymers consisting of repeating chains of O-
linked disaccharide units commonly found in the ECM and on the cell surface of animal
tissues (Figure 5) [85]. GAGs can be sulphated (chondroitin sulphate, skin-sulphate,
heparin/heparin sulphate and dermatan sulfate) or not (hyaluronic acid) [86]. Hyaluronic
acid (HA), widely found in the extracellular matrix, is a naturally occurring acidic GAG.
HA plays an essential role in inflammation, angiogenesis, and tumour microenvironment
formation, which is therefore widely used in tissue engineering, soft tissue fillers, wound
dressings, and other biomedical applications [87–91]. Sulphated GAGs, such as chondroitin
sulphate, heparan sulphate, are found in the tissues of terrestrial and marine animals (e.g.,
intestinal mucosa, lungs, blood vessel walls, skin, bones, etc.) [92,93]. GAGs of terrestrial
origin have been extensively studied. In particular, heparan sulphate and chondroitin
sulphate of terrestrial mammalian origin have important applications in wound dressings
as pro-regenerative substances [94–96]. However, sulphated GAGs in marine animals have
been shown to differ in composition, sulphation level and properties from those identified
in terrestrial animals. Representative sources and characteristics of marine GAGs in recent
years are shown in Table 4.

Marine GAGs have qualities that can be utilised in wound management. Compared
to terrestrial GAGs, marine GAGs have no risk of spreading prions, making them more
biosafe [97]. These MPs have bioactivities such as anti-inflammatory, antioxidant, tissue
regenerating, etc. [98–100]. Furthermore, marine heparins have weakened anticoagulant
activity, making them more suitable for wound dressings [85]. A few studies have also
demonstrated the potential of marine GAGs to develop wound dressing scaffolds [101].
However, the different extraction sources did not result in significant differences in the
bioactivities favouring wound healing. Due to the difficulty of extraction, GAGs used
in wound dressings are mainly of terrestrial origin [102–104]. In the future, finding easy
extraction methods and inexpensive sources is prominent in developing marine GAGs for
wound dressings [105,106].

Table 4. Sources and characteristics of representative marine GAGs found in recent years.

GAGs Types Sources Properties and Applications Refs

Heparan sulfate Amussium pleuronectus Anti-thrombin
A more bio-safe source of heparan sulphate [107]

Heparan sulphate Portunus pelagicus Highly attenuated anticoagulant activity
Treatment of Alzheimer’s disease [108]

Heparan sulfate Ascidian Phallusia nigra Low anticoagulant and antithrombotic activity
Effective in preventing metastasis of cancerous tissue [109]

Chondroitin sulfate Ludwigothurea grisea Anti-inflammatory
Blocking cancer metastasis [110]

Chondroitin sulfate Oncorhynch Promotes collagen fibre formation
Anti-ageing [99]

Chondroitin sulfate Raja clavata Cheap raw material cost [111]
Chondroitin sulfate Echinodermata Ophiuroidea Promoting fibroblast growth factor 2-induced cell signalling [112]

Dermatan sulfate Echinodermata Ophiuroidea Promoting fibroblast growth factor 2-induced cell signalling [112]
Dermatan sulfate Mitsukurina owstoniPrionace glauca Neurite outgrowth-promoting [100]
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Figure 5. Chemical structures of common GAGs fragments.

2.3. Alginate

Alginate (Figure 6) is a natural anionic biopolymer. It is a salt of alginic acid. Its
molecule consists of different ratios of β-D-mannuronic acid (M) and α-L-glutamic acid
(G), which determines its physical properties [2,113,114]. It is found mainly in the cell
walls and intercellular mucus of brown algae and is also a source in some bacteria such
as Pseudomonas aeruginosa and nitrogen-fixing bacteria. Due to its rheological properties,
alginate has the advantage of thickening, stabilising, gel-forming, film-forming, fibre
spinning, etc. [115,116].

Gel crosslinked by calcium, barium, and iron ions is the common form of alginate
dressing [117,118]. Alginate can be used as a highly biocompatible inert carrier, thus
exhibiting good drug delivery properties. Due to the presence of -COO-, alginate exhibits
good adhesion in the targeted drug delivery pathways [119]. In addition, due to the high
compatibility of alginate with human tissue, alginate dressings can be used as a barrier or
as a drug carrier to treat mucosal tissue injuries that require long-term and better controlled
drug delivery [119,120].

Wound dressings based on alginate are available in the form of hydrogels, films, and
foams, etc. Numerous alginate dressings have been productised, such as Algicell™ [115],
Guardix-SG® [121], SeaSorb® [121], Tromboguard® [122], etc. Compared to conventional
wound dressings, alginate dressings absorb wound fluids, form gels, maintain a physiolog-
ically moist environment, and minimize bacterial infections at the wound site.



Pharmaceutics 2021, 13, 1666 9 of 42

Right now, some commercialized wound dressings are unable to maintain a moist
environment, which is not only detrimental to wound healing, but also prone to cause
difficulty in removing the dressing. The cross-linked G-chain of alginate could form a
diamond-shaped pore containing a hydrophilic cavity, thus alginate would maintain and
create a moist environment around the wound to promote wound healing [2,123,124]. In
addition, due to its hydrophilic nature, alginate wound dressings could also rapidly absorb
wound exudate and promote tissue repair. This property prevents the accumulation of
exudate while preventing excessive dehydration of wounds. Therefore alginate dressings
are favourable for severely exuding wounds [125,126].

Figure 6. Chemical structure of alginate fragments.

Alginate also exhibits haemostatic and tissue regenerative activities. When in con-
tact with wound exudate, it could accelerate blood coagulation due to the release of
Ca2+ [127,128]. The high content of mannitic acid enabled alginate to induce cytokine
production by human monocytes, thereby promoting tissue repair and enhancing chronic
wound healing [121,129]. Furthermore, alginate dressings could promote angiogenesis,
cell proliferation, and collagen deposition on traumatized surfaces [130–132]. This makes
alginate dressings promising for developing dressings that promote tissue regeneration.

Nevertheless, there are still some limitations to the use of alginate wound dressings.
When in contact with the physiological environment, alginate may gel instantly, preventing
the bioactivities from taking effect [133]. Additionally, cations diffuse from regions of
higher concentration to inner regions during cross-linking with cations, leading to a non-
uniform distribution of alginate in the gel matrix network [134]. Thus, although alginate
has shown its significant advantages as a wound dressing, it still has a wide range of
development prospects.

2.4. Fucoidan

Fucoidan (Figure 7) is a kind of sulphated polysaccharide widely distributes in the
leaves of various types of brown algae (Laminaria, Ascophyllum, Fucus, etc.) and exoskeletons
of some marine invertebrates. Fucoidan is composed of L-fucose, mannose, and glucose
attached to a sulphate group. Its structure could be affected by harvest seasons and origins.
Fucus and Ascophyllumnodosum contain mainly α (1→3) and α (1→4) fucoidan, whereas
Laminaria contains mainly α (1→3) sulphate fucoidan [135].

Fucoidan has good antioxidant, antiviral, anticoagulant, anti-inflammation, antitu-
mour and pro-regenerative activities. Recent studies have also shown that fucoidans have
antibacterial activity, depending on their sulphation level [136–139]. Unlike CS and algi-
nate, fucoidan is mainly adopted as the added active agent in wound dressing instead of
primary substrates.

As a heparin analogue, fucoidan could modulate GFs. Early in 2004, O’Leary et al.
demonstrated the ability of fucoidan to promote wound healing by increasing the rate
of fibroblastic tissue regeneration [140]. Ozaltin et al. fabricated a modified polylactic
acid scaffold loaded with fucoidan. The presence of fucoidan significantly increased cell
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proliferation and improved the cellular phenotype [141]. Sezer et al. combined fucoidan
with CS to make a film to evaluate its therapeutic ability on burns. The results showed
that fucoidan promoted dermal papillae re-surfacing and re-epithelialisation [142]. Wound
dressings incorporating fucoidan exhibit a variety of abilities to optimise the healing
process, including promoting collagen formation, promoting follicle regeneration, reducing
inflammatory responses, reducing scar formation, and promoting angiogenesis [143–146].

Figure 7. Chemical structure of fucoidan fragments (three structural types I, II and III).

Fucoidan and its derivatives are efficient in scavenging hydroxyl radicals and DPPH,
exhibiting good antioxidant properties [147]. Park et al. found that low molecular weight
fucoidan could reduce the lipid peroxidation of inflammatory cells [148]. Zeng et al.
modified the CS with fucoidan and then combined it with alginate to form a GF-loaded
scaffold dressing. The results demonstrated that 43% of sulphated fucoidan could scavenge
DPPH and protect cells from ROS damage [149].

Since post-operative adhesions could often lead to chronic pain and various compli-
cations, developing anti-adhesive dressings on the surgical area is essential [150]. Many
studies have implicated that dressings containing fucoidan effectively prevent tissue ad-
hesions [151–153]. Fucoidan not only has anti-inflammatory properties but also antag-
onises the cytokine P-selectin, which mediates adhesion between endothelial cells and
neutrophils [154]. Considering that many injectable MPs-based gels have been used to man-
age post-operative wounds, fucoidan anti-adhesive dressings have promising prospects
for development.

Despite all these advantages, fucoidan dressings are not fully developed. This is
mainly due to the unclear metabolic pathway of fucoidan and the risk of its accumulation
in the liver and blood [155,156]. Clinical trials are already performed to test the toxicity of
fucoidan to humans [135]. In the future, when its properties are fully understood, fucoidan
may be used in a broader range of wound dressings.

2.5. Laminarin

Laminarin (Figure 8) is a polysaccharide in the cell walls of brown algae (Laminaria
japonica, Ecklonia kurome, etc.). Laminarin consists of β-glucan linked by (1,3) and (1,6)
glycosidic bonds. Depending on the reducing end of the polysaccharide polymerisation
chain, it can be divided into M-type chains with a 1-O-substituted D-Mannitol group and
G-type chains ending in a D-glucose unit. The ratio of the two types of chains is influenced
by the type of brown algae, the habitat, and the harvesting season, allowing laminarin to
show different structures and bioactivities.

Laminarin has attracted much attention in recent years. The most notable activities of
laminarin include anti-tumour, anti-inflammatory, immunostimulatory, antioxidant and
anticoagulant activities [157]. Moreover, laminarin could induce angiogenesis and mod-
ulates GFs levels to promote tissue regeneration [158,159]. The relatively low molecular
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weight of laminarin makes it soluble in water and organic solvents, allowing them easy to
process. [160]. Sellimi et al. found that creams with laminarin stimulated tissue regenera-
tion and increased blood vessel density, thus effectively promoting wound healing [161].
Another study demonstrated that the addition of laminarin promoted cell adhesion and
proliferation on the gel’s surface, enhancing the hydrogel’s wound treatment effect [162].
On the other hand, Kim et al. treated melanoma excision wounds with a dressing loaded
with laminarin. Due to the antioxidant and anti-tumour activity of laminarin, the composite
film promoted fibroblast growth, modulated apoptosis-inducing factors, and inhibited the
proliferation of tumour cells [163]. This study showed the potential of laminarin dressings
for the management of post-operative oncological wounds. These studies suggested the
potential of laminarin in the development of hydrogel dressings.

As an emerging active substance, laminarin has not been used in the development of
wound dressings yet. However, the various types of activity it has shown prove the great
potential of this category of MPs.

Figure 8. Chemical structure of laminarin fragments and two types of chains.

2.6. Carrageenan

Carrageenan (Figure 9) is a hydrophilic colloid derived from red algae seaweeds
Kiringa, Stonecrop, and Deerstalker. It is composed of alternating units of D-galactose and
3,6-anhydrogalactose (3,6-ag) linked with α-1,3 and β-1,4 glycosides. According to the
forms of sulphate binding in them, they can be classified as K-type (Kappa), I-type (Iota)
and L-type (Lambda) [164]. Carrageenan is extensively used in the pharmaceutical industry
due to its gelling, thickening, and emulsifying properties.

Figure 9. Chemical structure of carrageenan fragments ((A) Kappa; (B) Iota; (C) Lambda).

Carrageenan gel is an excellent drug-loaded dressing with high elasticity and sta-
bility [165]. Thermal treatment and ionic crosslinking are the common means to induce
carrageenan gelation. It can also cross-link with other polymers to design various hydrogel
wound dressings [166,167]. The addition of carrageenan could significantly increase the
stiffness, elasticity, and water retention of gels [168,169]. Additionally, the incorporation of
nanoparticles or polymers into carrageenan gel could enhance its ability to absorb wound
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fluids and carrying drugs [170,171]. Carrageenan as an excipient could prolong the release
of antimicrobial agents and growth factors [168,172]. The carrageenan injectable hydro-
gels could achieve continuous drug delivery to wounds [173,174]. Furthermore, other
carrageenans micro-drug delivery systems (e.g., microspheres, pellets) have also been
developed [171].

The similarity of the sulfated backbone structure of carrageenan to that of mammalian
GAGs makes carrageenan-based wound dressings effective in promoting wound heal-
ing [170]. Carrageenan can change the porosity of the dressing, allowing nutrient transport
and gas exchange across the wound healing site, activates the adhesion, diffusion, and
proliferation of fibroblasts, enhances their differentiation capacity, promotes cellular trans-
port to the injured skin, forms neovascularization, accelerates wound tissue repair and
makes a significant contribution to wound healing [173,175,176]. The presence of many
functional groups (such as hydroxyl and sulfate) in carrageenan, and its strong anionic
properties make it easy to complex with other cations. The ion-carrageenan complex
could promote the balance of anticoagulants and coagulation factors in the blood, making
carrageenan an ideal material for promoting hemostasis [167,177]. Furthermore, oxidized
carrageenan could inhibit the growth of Gram-positive and Gram-negative bacteria by
disrupting bacterial cell walls and cytoplasmic membranes. [178,179].

On the other hand, too-high sulfate groups in carrageenan molecules might cause some
detrimental effects on coagulation and the immune system [174]. Adjusting the sulfate
groups through chemical modification, crosslinking, or incorporating biomolecules are the
measures to enhance carrageenan safety. Therefore, carrageenan has a great potential for
development in the preparation of wound dressings.

2.7. Agar

Agar is a kind of phycocolloid extracted mainly from red algae (such as Lithospermum
and the Gracilaria) consisting of agarose and agaropectin (Figure 10). Agarose is an excellent
gel-forming substance, which is responsible for the excellent physicochemical properties
of agar gels. It consists of a disaccharide repeating unit consisting of 3-D-galactose and
4-linked 3,6-anhydro-1-galactose residues, with possible methoxy, sulphate, and other
substituents in the polysaccharide chain. One of the features of agar is the significant
temperature difference between its freezing and melting points. It needs to be heated to
95 ◦C before it starts to melt, and down to 40 ◦C before solidifying. This property makes
adding active substances to agar gels easier than with other biomaterials [180,181]. Agar
gels dressings are characterised by high-temperature resistance, high mechanical strength,
and reversibility [182].

Figure 10. Chemical structure of agar (A) and agarose (B) fragments.

The gels prepared from agar are 2–10 times stronger than carrageenan, and the chem-
ically modified ones have even higher mechanical strength [183]. The agar gel structure
and properties are significantly dependent on its concentration. Guo et al. demonstrated
that in composite membranes incorporating agar, the amount of agar is the main factor
determining the physical properties of the membrane [184]. The highly absorbent feature of
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agar allows this composite hydrogel to absorb moisture to create a moist environment and
promote wound healing [185]. On the other hand, agarose is almost entirely free of charged
groups, which causes minimal denaturation and adsorption of sensitive biomolecules [186].
Additionally, the gel formation process of agarose is highly controllable [187]. The presence
of agar/agarose would supply gels with high controllability of physical and chemical
properties [188–190].

Agar-based gels are a promising drug delivery system because of their high and
controlled drug loading capacity. The neutral surface charge and structural variability
of agar gels make them efficient drug-loaded wound dressings [186]. Rivadeneira et al.
adopted soy protein and agar to fabricate a composite membrane-embedded ciprofloxacin
hydrochloride. The drug was released abruptly within the first 2 h, followed by a slow-
release period of 2 weeks. Furthermore, the diffusive release period and amount of drug
could be controlled by adjusting the agar content [191]. Agar gels also achieve high drug
loading capacity while meeting proper mechanical strength and biocompatibility [192].

A small number of agar-based wound dressings are now commercially available, such
as AgniGel®. Agar gels are highly biosafe and are used as inert carriers in most commercial
dressings. Moreover, the biocompatibility and non-toxicity make agar an advantage
over other materials used in the development of injectable hydrogels for in vivo wound
management. Although the research is still in its infancy, the dressings that have been
developed exhibit promising responsiveness and mechanical properties, demonstrating
the great potential of this technology [193].

2.8. Ulvan

Ulvan (Figure 11) is a water-soluble sulphate heteropolysaccharide mainly found
in the cell wall of Ulva genus green algae. It consists of rhamnose 3-sulphate, xylose-2-
sulphate, glucuronic acid, and other polysaccharides. The ratio of these monosaccharide
molecules in ulvan is highly variable and affects its physical and chemical properties [194].
The structure of the ulvan is influenced by the origin and season of collections. In addition,
factors such as habitat and extraction conditions can also affect the fabric of the resulting
ulvan. The bioactivities of ulvan depend mainly on its molecular weight, monosaccharide
composition, and the content of sulfate and glyoxylate [195].

Figure 11. Chemical structure of ulvan fragments ((I) β-D-glucuronic acid (1->4) type; (II) α-D-glucuronic acid (1->4) type).

Rhamnose in ulvan modulates wound biosynthetic pathways and promotes tissue
regeneration [195]. Since ulvan-gel is thermo-reversible, it could undertake controlled drug
delivery. However, the water solubility of ulvan and the low mechanical strength of its gel
limit the development of wound dressings [196].

Hydrophobic modification of ulvan is mostly utilized. Alves et al. modified ulvan by
crosslinking it with 1,4-butanediol diglycidyl ether. The membrane has a significant water
absorption capacity with suitable mechanical properties. In addition, the ulvan composite
membrane achieves a burst-release of dexamethasone over 8 h and a sustained-release
over a long period of 14 days [197]. This demonstrates the great potential of ulvan-based
drug-loaded dressings. In the study by Chen et al., the hydrophobicity of ulvan was
achieved by aromatization modifications. The modified ulvan was photocrosslinked to
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form a hydrogel. Ulvan’s activities allowed the hydrogel to improve cell survival and
promote tissue regeneration [198].

In order to improve the poor mechanical properties, the preparation of ionic gels
via the interaction of ulvan with cationic compounds is an effective method. CS-ulvan
hydrogels were prepared by Mariia et al. using a lyophilization method. The cations
of the CS side chains were able to react with the anions of the ulvan moiety to enhance
stability. This composite hydrogel has good mechanical properties and provides a long-
period sustained-release to promote wound healing [199]. Another way to improve the
mechanical properties of ulvan dressings is to prepare ulvan nanofibres. The study by
Kikionis et al. demonstrated the possibility of developing nanofibres by pairing ulvan with
other polymers. These nanofibres are tough and have a long life span [200].

Green algae polysaccharides are not sufficiently developed for use in wound dressings.
The difficulty of processing ulvan and its highly individual variability limit its application.
Furthermore, clinical trials of ulvan are lacking [194]. However, modified ulvan still has
great potential for wound dressings development. The search for an optimised carrier
technology or an efficient way of chemical modification may be the method to develop
ulvan further.

2.9. Marine Microorganisms Exopolysaccharides

Microbial polysaccharides are mainly water-soluble biopolymers, which can be di-
vided into intracellular polysaccharides, structural polysaccharides, and exopolysaccha-
rides (EPS). Compared with the first two, EPS have broader applications, as well as more
comprehensive approaches to extract and process [201–203]. Many Gram-positive and
Gram-negative bacteria, fungi and some algae could produce EPS [204]. The harsh envi-
ronment of the ocean (an average depth of 3.8 km, pressure of 38 MPa, temperature of
2 ◦C, and other many extreme habitats) could induce marine microorganisms to produce
unique EPS [205]. They could support microorganisms to tolerate biotic (e.g., competi-
tion) and abiotic stress factors (e.g., temperature, light intensity, pH, and salinity) [206].
Most EPS from marine microorganisms are heteropolysaccharides composed of various
monosaccharides (including glucose, galactose, glucuronic acid, pyruvate, etc.) in a specific
ratio [205,207–210].

Marine bacterial EPS have received a great deal of attention in recent years. EPS
extracted from different microorganisms varied a lot [211]. Marine EPS have far more
complex and diverse bioactivities than terrestrial EPS [201,205]. According to the pre-
vious research, EPS exhibit many properties that can be used in wound management,
including antibacterial [212–214], antioxidant [215–217], anti-inflammatory [218,219], gel-
forming [220], etc. In addition, several studies have reported that some marine microbial
EPS could regulate wound cell metabolism to promote tissue regeneration and wound
healing [215,221,222]. Table 5 presents several representative EPS.

Table 5. Sources and characteristics of representative marine EPS.

Sources of EPS Habitat Functions and Applications Refs

Sphingobium yanoikuyae BBL01 Coast
Gelling agent

Metal-complexion
Antioxidant

[220]

Vibrio alginolyticus 364 deep-sea Anti-tumour [223]

Rhodothermus marinus DSM 4252T Shallow marine hot springs
Antioxidant

Anti-haemolytic
Anti-thrombotic

[224]

Winogradsky sp. CAL384
and

Shewanella sp. CAL606
Antarctic Ocean Emulsifier

Chelates heavy metals [225]

Pseudomonas sp. BGI-2 Glacier ice Antioxidant
Low temperature protection [226]

Paenibacillus sp. TKU042 Marine chitinous materials
Antioxidant

Anti-inflammatory
Alpha-glucosidase inhibitor

[227]

Bacillus subtilis SH1 Marine surface sediment
Antiviral

Antibacterial
Antioxidant

[228]

Bacillus vallismortis WF4 Coast Anti-fungal
Anti-itch [229]
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Even though marine microorganisms EPS could provide various bioactivities, their
utilization in wound dressings is still limited [230]. It could be mainly attributed to three
main reasons. (1) The culturing, screening, and exploring specific marine microorganisms
for EPS is a long-period study [231]. (2) The species diversity of marine EPS makes it
challenging to process and costly to develop. This makes marine EPS unsuitable for
developing wound dressings characterised by convenience and affordability [205]. (3)
The bioactivities of marine EPS are not outstanding. Most of them provide only a limited
type of wound healing activity and are no more active than other commonly used natural
active substances. This means that they have no significant advantage as additional
agents [232–234]. However, EPS such as xanthan gum can be produced commercially
in large quantities [235,236]. Marine EPS has the potential to be used in large quantities
in wound dressings if systematic production technologies can be developed for specific
EPS-producing marine microorganisms.

3. Enhancement Strategies for MPs Wound Dressings

In order to enhance the therapeutic effect of MPs wound dressings and broaden
their field of application, many enhancement strategies of wound dressings have been
developed. These development strategies can be divided into two categories: (1) Enhancing
the bioactivities (haemostatic, antibacterial, anti-inflammatory, etc.) of dressings; (2) Using
the properties of different dressings or emerging dressing techniques to expand the range
of applications.

3.1. Development of Activities-Enhanced MPs Wound Dressings

Adding active agents/polymers or modifying MPs to impart/synergise the bioactivi-
ties of MPs dressings is the main way to develop activities-enhanced dressings [56,237].
These activities are primarily used to accelerate and optimise the four stages of wound
healing. Table 6 shows representative studies of activities-enhanced MPs wound dressings
in recent years.

Table 6. Summary of the raw materials and characteristics of MPs activities-enhanced wound dressings in recent years.

Bioactivities Dressing Type Structural Components Active Agents Other Features Refs

Haemostatic
Antibacterial Hydrogels Hydroxybutyl CS Dopamine

Mussel-inspired technology
High viscosity

High mechanical strength
Thermosensitive hydrogel

[238]

Haemostatic
Antibacterial Sponge CS

Graphene-silver-
polycationic

peptide
– [239]

Haemostatic Hydrogels Alginate
Pept-1

Cross-linked zinc ions
Tannic acid High physical stability [240]

Haemostatic Hydrogels
Alginate

GLE
CMC

Cross-linked zinc ions
Tannic acid Effective drug delivery [241]

Haemostatic Sponge CS Tilapia peptides – [242]
Haemostatic
Antibacterial

Anti-inflammatory Promotes
tissue regeneration

Sponge
Alginate

CS
Fucoidan

– – [144]

Haemostatic
Promotes tissue regeneration Sponge CS

PVA – For non-compression
wounds [243]

Antibacterial Hydrogels CS
PVA Ag NPs – [244]

Antibacterial
Pro-regenerative

Anti-inflammatory
Hydrogels CS AgNPs Nanocrystals High physical stability

Effective drug delivery [245]

Antibacterial Hydrogels
Alginate
CaCO3
GDL

AgNPs – [246]

Antibacterial
Anti-inflammatory Hydrogels Alginate

Gum acacia ZnNPs – [247]

Antibacterial Hydrogels CS
Gelatin Manuka honey – [248]

Antibacterial
Anti-inflammatory Hydrogels Carboxylated

Agarose
Zinc ions

Tannic acid pH-sensitive [249]

Antibacterial
Promotes tissue regeneration Film

CS
Modified bacterial

cellulose
– Self-healing

High biocompatibility [250]
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Table 6. Cont.

Bioactivities Dressing Type Structural Components Active Agents Other Features Refs

Antibacterial Film CS
Starch nanocrystals Streptomycin Sustained slow release [251]

Antibacterial Film Alginate
CaCO3

Oregano essential oil High physical stability [252]

Antibacterial Membranes CS
Gelatin Fe3O4 NPs Extremely strong mechanical

properties [253]

Antibacterial Nanofibres mats Cellulose acetate CS-Erythromycin NPs
High drug loading capacity
High water holding capacity

High porosity
[254]

Anti-inflammatory Promotes
tissue regeneration Hydrogels

QCS
Matrigel

Polyacrylamide
– Good mechanical properties

Good adhesion [255]

Anti-inflammatory Hydrogels Alginate
Polycaprolactone Doxorubicin Ibuprofen – [256]

Anti-inflammatory Films CS Cynara cardunculus
leaves extracts – [257]

Anti-inflammatory Membranes CS
PVA Ibuprofen

Prepared by supercritical
CO2 technology

Highly biocompatible
[258]

Antioxidant
Antibacterial

Promotes tissue regeneration
Hydrogels

QCS-polyaniline
Glycerol polyethylene

glycol copolymer
sebacate

–
Injectable

Self-healing Adhesive
conductive

[259]

Antioxidant
Promotes tissue regeneration

Anti-inflammatory
Hydrogels Alginate

PVA
Ag NPs

hydroxymethylfurfural – [260]

Antioxidant
Promotes tissue regeneration Hydrogels

CS
Heparin

Poly(gamma-glutamic
acid)

Superoxide dismutase Good mechanical properties
Adhesion [261]

Antioxidant
Antibacterial Membranes CS

PVA ZnO Electrospun membrane [262]

Antioxidant
Promotes tissue regeneration Nanofibres mats

Grafted CS
Polypropylene

carbonate
Curcumin Sustained release [263]

Haemostatic
Anti-inflammatory Promotes

tissue regeneration
Hydrogels CMC

PVA – Physically cross-linked
Non-adhesive [264]

Promotes tissue regeneration Hydrogels Ethylene glycol CS GF VEGF PDGF-BB Effective drug delivery
Sustained release [265]

Promotes tissue regeneration
Antioxidant
Antibacterial

Hydrogels
QCS

Poly(N-
isopropylacrylamide)

Reduced graphene
oxide

Injectable
Self-healing

Self-contracting for wound
healing Conductivity

[266]

Promotes tissue regeneration
Haemostasis Hydrogels

Alginate Adipic acid
dihydrazide

Polyglutamic acid
Bioglass High physical stability [267]

Promotes tissue regeneration Hydrogels
CS

PVA
PCL

Heparin Promotes angiogenesis [268]

Promotes tissue regeneration Hydrogels Alginate Borax – [269]

Promotes tissue regeneration
Antibacterial Membranes CS

Arginine CS Arginine CS
Similar in structure to ECM

Promotes cell adhesion
Electrospun membrane

[270]

Promotes tissue regeneration Hydrogels Alginate
Biological ceramics Biological ceramics Promotes angiogenesis

High physical stability [271]

Promotes tissue regeneration Hydrogels Alginate Exosome High physical stability
High porosity [272]

Scar-free
ntibacterial Hydrogels

CS
PVP
PEG

Tetracycline
hydrochloride Efficient drug delivery [273]

Scar-free Hydrogels CMC Aloe vera
Aloe vera synergistically

enhances the scar-inhibiting
activity of CMC

[58]

Scar-free
Promotes tissue regeneration Sponge/hydrogels Rhizo CS Platelet concentrates

Dressings healed wounds as
functional tissue instead of

scars
[274]

Scar-free
Antibacterial Membranes

CS
Dextran Nanosoy

Glycerol

Aloe vera
Manuka Honey – [275]

Scar-free Hydrogels Alginate
CS AgNPs High physical stability [276]

Haemostasis is the first stage of wound healing and a vital step in emergency medical
care. Failure to haemostasis in time might lead to a lack of oxygen supply, subsequent
damage to organs and even life-threatening conditions [277]. The haemostatic activity
of MPs dressings is usually achieved by utilising the activity of MPs and their deriva-
tives, as copolymers with other haemostatic materials, and by optimising the coagulation
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environment [60,278–280]. Some MPs, especially CS, alginate and carrageenan, have ex-
cellent haemostatic properties [173,281]. Through graft modification, the haemostatic
properties of CS and its derivatives (e.g., quaternary ammonium CS and carboxymethyl
CS) were enhanced [282,283]. CS could promote the local aggregation of clotting factors,
red blood cells and platelets as well as accelerate the adhesion of blood components to
their surface [284]. Combining with other haemostatic materials is another way of de-
veloping haemostatic dressings for MPs. The complex of gelatin-CS exhibited efficient
haemostatic ability. This is due to the synergistic effect of their bioactivities, with gelatin
increasing the number of platelets and leucocytes, while chitosan induces the release of
clotting factors from platelets [285–287]. In addition, some MPs dressings are able to
apply proper compression for the wound to enhance haemostasis property. This effect
is mainly achieved by enhancing the adhesion of the MPs dressing. Adhesive dressings
are applied tightly to the wound with compression to promote clotting, exemplified by
the mussel-inspired technology [288–290]. In recent years, with the development of smart
hydrogel technology, injectable thermosensitive MPs hydrogels have been widely explored
for in vivo wound haemostasis applications. This emerging dressing has excellent potential
for exploitation [189,291].

Another activity that needs to be provided from the haemostatic stage is antibacterial.
Treating acute wounds without providing a means of antibacterial can easily lead to infection,
preventing the formation of new blood vessels and tissue. This leads to an imbalance between
the regulatory molecules involved in healing and thus hinders wound healing. It is also
considered to be the most common factor affecting the deterioration of acute wounds into
chronic wounds [292]. Some MPs, such as CS, have good antibacterial properties under acidic
conditions. However, the antimicrobial properties of MPs are not sufficient as an antimicrobial
dressing. In addition to preparing their derivatives (e.g., N, N, N-trimethyl CS chloride),
another way is to add antimicrobial substances [293,294]. The most commonly added agents
in current research of MPs wound dressings are metal nanoparticles (NPs), which are safer
and more efficient than metal ions. Ag NPs are the most widely used metallic broad-spectrum
antibacterial [295,296], with the rest including Au NPs [297], Cu NPs [298], ZnO NPs [299,300],
AgSD NPs [301], CeO2 NPs [302] and TiO2 NPs [303]. These metal NPs show good inhibition
against E. coli, Pseudomonas aeruginosa, Staphylococcus aureus, etc. [304]. Moreover, some studies
have shown that metal NPs do not affect the mechanical properties of MPs dressings and can
even enhance stability through ion chelation or interaction with the matrix as a filler [253,305].
Jiang’s study showed that dressings with controlled release ability could effectively reduce the
cytotoxicity of metal NPs [306]. However, metal NPs show a weak antibacterial property at
neutral pH, and heavy metals are not degradable, posing a risk to be delivered in vivo [305].
Natural antimicrobial agents have shown the advantage of high biosafety. Honey, essential
oils, tannins, active amino acids and peptides, hesperidin, etc., have been widely used in recent
years [65,292,307–309]. Some studies reported that the addition of Manuka honey to MPs
dressings showed good antibacterial activity against Staphylococcus aureus, Streptococcus pyogenes,
Acinetobacter baumannii, Pseudomonas aeruginosa and Proteus mirabilis [248,310]. In addition,
honey could also form composite hydrogels or films with MPs exhibiting controlled physical
properties [311]. For infection-prone wounds, it is necessary to use antibiotic-loaded dressings to
provide strong antimicrobial properties. Antibiotics commonly used in MPs dressings include
gentamicin, mupirocin, minocycline, vancomycin and lidocaine [53,312–315]. To avoid drug
resistance, the provision of a controlled release hydrogel carrier is necessary. Thanks to the high
processability and the structural properties of MPs hydrogels, MPs-based antibiotic hydrogels
could achieve a stable and slow release [316,317].

Inflammation is the second stage of wound healing. Failure to reduce inflammation
promptly might lead to the deterioration of chronic wounds [318]. The most common
method to enhance the anti-inflammatory properties of MPs dressings is the addition of
active substances. Representative substances include: curcumin, tannins, essential oils, leaf
extracts etc. [257,257,319–321]. Curcumin is a polyphenolic substance extracted from plant
turmeric. Several studies have demonstrated that curcumin could advance the expression
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of the anti-inflammatory factor such as IL-10, inhibit the expression of pro-inflammatory
factors such as TNF-α and reduce the level of inflammation in wounds without affecting
the properties and activities of MPs [322,323].

Timely removal of oxygen species reactive (ROS) from the wound surface is vital for
the inflammatory stage. Moderate ROS could facilitate wound healing by stimulating cell
migration and angiogenesis, but excess ROS would exacerbate the inflammatory response
and impede wound healing, especially in chronic wounds [324,325]. Grafting of reducing
chemical components for modification is a common method to improve the antioxidant
activity of MPs wound dressings. Zhao et al. grafted polyaniline onto a quaternary CS
backbone and synthesised quaternary CS-polyaniline (QCSP) with improved water sol-
ubility and antibacterial ability. A series of QCSP-based hydrogels were developed, and
these injectable self-healing hydrogels exhibited up to 84% DPPH clearance, indicating
that they have excellent antioxidant capacity [259]. Other graft modifications, including
aniline tetramers, catechol, and various phenols, were also adopted to enhance the an-
tioxidant activity of MPs [326–328]. Another way to confer antioxidant properties is to
add active agents. By incorporating them into MPs dressings, highly biosafe antioxidant
dressings could be produced. Colobatiu et al. incorporated plantain, arnica, marigold,
forsythia, calendula and calendula extracts into CS films and achieved excellent antioxidant
activity [21,329].

Proliferation is the crucial stage of wound healing and directly determines the qual-
ity of the new tissue regenerated and the integrity of the skin. In addition to providing
wound management as described above, another noteworthy means of optimising the
proliferative stage is to promote GFs such as transforming GF beta, platelet-derived GF, and
interleukin-1 to accelerate wound repair and angiogenesis [56]. MPs wound dressing deliv-
ery systems could synergistically promote wound healing by modulating GFs [198,329,330].
Furthermore, controlled-release of GFs is necessary to prevent the inactivation of GFs on
the wound surface [265]. The addition of natural active substances could synergistically
accelerate wound healing by inducing the expression of genes to regulate angiogenesis,
promote early wound granulation growth and collagen deposition. Another means of
accelerating tissue regeneration is to create a moist, breathable external environment along
with appropriate physical compression. MPs nanofibre mats have been shown to have
good breathability and. MPs/co-polymer complex scaffold could provide a moist healing
environment based on the hydrophilic moieties and structural domains [330,331]. Liu et al.
used catechol-modified CS to create a continuous production of reactive oxygen bionic film.
The continuous provision of the right amount of oxygen could induce cytokine release
and collagen synthesis [332]. In addition, similar to haemostasis, shrinkable, highly adhe-
sive MPs dressings can simultaneously promote healing through physical/physiological
pathways. One such technology with great potential is responsive self-shrinking hydro-
gels that aid wound closure at an early stage [266]. A more effective treatment for tissue
regeneration is the MPs dressing combined with stem cell exosome therapy. Exosomes
are small vesicles of membrane secreted by cells containing complex RNA and proteins.
Stem cell exosomes contain various functional proteins and cytokines that promote cell
migration, cell differentiation, and angiogenesis [333–335]. Li et al. demonstrated that
exosomes encapsulated in CS dressings promoted the migration of dermal fibroblasts and
human dermal microvascular endothelial cells by regulating signal transduction path-
ways [336]. Wounds treated with exosome-carrying CS hydrogels prepared by Nooshabadi
et al. showed 83.6% wound closure and a high degree of re-epithelialisation [337]. This
suggests that MPs dressing carrying exosomes are good skin tissue engineering for treating
severe wounds (full-thickness wounds, chronic wounds, etc.) [272,337,338].

Excessive deposition of collagen in the proliferative and remodelling stage would
lead to scar formation. Scars are aesthetically displeasing, and in severe cases, might lead
to physical deformities [339]. CS and its strongly cationic derivatives (e.g., CMC) have
excellent scar inhibition and are the biopolymers commonly used to fabric scar-free wound
dressings [58,273,340]. Moreover, Aloe vera (AV), a natural agent, is extensively applied to
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prevent scar formation by promoting cell growth and deep skin regeneration [341]. Due to
its high biocompatibility and non-irritating properties, AV is often used in combination
with MPs to develop wound dressings. Many studies have shown that MPs wound
dressings incorporating AV enhance scar inhibition by promoting wound contraction and
orderly deposition of collagen [58,275,342]. Other natural agents also have been shown to
enhance collagen repair, reduce collagen deposition and accelerate healing by impeding the
growth of gelatinous scar tissue, such as heparin, essential oils, silk etc. [343–345]. Scar-free
healing mediated by the addition of GFs is also a common approach. GFs added to MPs can
optimise the wound healing process by regulating fibroblast proliferation and migration,
collagen synthesis, and skin remodelling to achieve scar-free [276,346].

3.2. Development of Different Forms of MPs Wound Dressings

Different dressing forms are suitable for different wounds [11]. Along with enhanced
activities, selecting suitable dressing forms or applying advanced dressing technology are
also practical enhancement strategies for MPs wound dressings.

3.2.1. MPs Hydrogel

Hydrogels are three-dimensional, cross-linked network gels in which the liquid phase
is water. They could provide moisture, promote wound healing, and remove necrotic tissue.
Their high water content could reduce the temperature of wounds and relieve pain. As a soft
and pliable biomaterial, hydrogels can be used in nearly all types of tissue wounds [81,347].
MPs hydrogels for wound dressings are biomaterials that exhibit high swelling properties
and provide a moist helpful environment for wound healing [60,129]. On the other hand, the
semi-open nature of gels gives them an excellent drug-carrying capacity. Additionally, emerging
controllable or responsive hydrogels exhibit a more comprehensive range of applications.
Table 7 shows representative studies of modified/emerging MPs hydrogels in recent years.

Table 7. Summary of raw materials and characteristics of MPs hydrogels dressings in recent years.

Categories Structural
Components

Functional
Components Bioactivities Other Features &

Responsiveness Refs

High mechanical
properties

CMC
Waterborne

polyurethane—gelatine
hydrolysate

– Antibacterial High mechanical strength
Thermal stability [348]

High mechanical
properties

CS
Poly (acrylamide)

Carbon nanotubes
VEGF

Anti-inflammatory
Promotes tissue

regeneration

Double-network hydrogels
High mechanical strength [349]

Self-healing Alginate
Guar Gum GA Promotes tissue

regeneration
Thermal stability

High mechanical strength [350]

Smart hydrogels CS Naproxen In vivo anti-adhesion
Analgesic

Thermosensitive
Low side effects [351]

Smart hydrogels CS Methylenebisacry-
lamide

Red cabbage extract
Curcumin Not tested

pH-sensitive
Dynamic monitoring of wound pH
to assess wound recovery status by

colourimetry
Efficient drug delivery

[352]

Smart hydrogels Dodecyl modified CS Photothermolysis
Ciprofloxacin

Strong, artificially
controlled sterilisation

Anti-inflammatory
Antioxidants

Photosensitive
Adherence
Injectable

[353]

Injectable hydrogels
CMC

Chondroitin oxide
sulphate

Chondroitin oxide
sulphate

Antibacterial
Haemostatic

Longer gelation time
Low cytotoxicity

Self-healing
[291]

Injectable hydrogels
CS

Oxidized konjac
glucomannan

Ag NPs Antibacterial
Self-adaptive
Self-healing
Adhesive

[354]

Injectable hydrogels CS bFGF Ag(crosslinked)

Antibacterial
Anti-inflammatory

Promotes tissue
regeneration

Low cytotoxicity
Promotes polarization of M2

macrophages
[355]

Injectable hydrogels CS
Bacterial cellulose – Antibacterial Self-healing

Enhanced mechanical properties [356]

Injectable hydrogels Alginate
PVA CaSO4 Promotes tissue

regeneration
Effective drug delivery

High mechanical strength [357]

Mussel-inspired CS
Silk cellulose

Tannic acid
(crosslinked) Haemostasis Strong wet tissue adhesion

High mechanical strength [241]
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Table 7. Cont.

Categories Structural
Components

Functional
Components Bioactivities Other Features &

Responsiveness Refs

Mussel-inspired
CS

Silk cellulose Dopamine
reduced graphene oxide

Dopamine reduced
graphene oxide

Antioxidant
Promotes tissue

regeneration

Strong wet tissue adhesion
High mechanical strength

Conductivity
[358]

Mussel-inspired CS
Gelatin graft-dopamine

Polydopamine-coated
carbon nanotubes

Antibacterial
Antioxidant
Haemostasis

Promotes tissue
regeneration

Strong wet tissue adhesion
High mechanical strength

Conductivity
Self-healing

[359]

Mussel-inspired Alginate Dopamine Antibacterial Strong wet tissue adhesion
High mechanical strength [360]

Mussel-inspired Alginate
nHA/PLGA-Dex Schiff base

Promotes tissue
regeneration
Haemostatic

Strong wet tissue adhesion
High mechanical strength [361]

Hydrogel dressings prepared with single MP are prone to lack mechanical strength.
The lack of strong support is detrimental to the final remodelling stage of wound healing
and may lead to secondary injury and wound re-injury. Therefore, almost all MPs-based
hydrogels have incorporated copolymers to improve mechanical strength. The copolymer
could be divided into synthetic (such as PVA/PEG/PVP/PCL, etc.) and natural polymers
(such as hyaluronic acid/gelatin/pectin/cellulose/starch/dextran/konjac glucomannan
etc.) [53,268,301,330,354,362–368].

Besides enhanced mechanical properties, hydrogels dressings made from materials
with self-healing properties have the most extended service lifespan. These self-healing
properties mainly depend on the spontaneous reconstruction of internal bonds [369].
Chen et al. designed self-repairing CS-konjac glucomannan hydrogels based on Schiff base
reaction. The hydrogels repaired rapidly and showed excellent durability [370]. Ding et al.
prepared interpenetrating polymer network (IPN) hydrogels by combining acrylamide-
modified chitosan with oxidized alginate and polyvinyl alcohol (PVA) complex. The
hydrogels showed excellent mechanical properties and good self-healing ability [371].

Smart Hydrogels based on MPs are an emerging type of wound dressings. Smart
hydrogels can change their structures or chemical properties depending on intrinsic factors
(e.g., time) or external stimuli (e.g., temperature/pH/light). Smart hydrogels are cutting-
edge technology used in recent years to achieve the controlled release of agents and targeted
wound therapy [372]. The thermosensitive hydrogel could form rapidly to cover the wound
surface at body temperature makes them suitable for in vivo wound therapy. As the pH
values of wounds generally vary from normal tissue, pH-sensitive MPs hydrogels can
provide precise wound treatment. These gels release less drug in normal tissues with
neutral pH, while the gel network voids become larger at alkaline or acidic pH, accelerating
the drug release [301]. These hydrogels could achieve targeted drug delivery [249,373].
Wang et al. prepared a dodecyl-modified CS hydrogel equipped with a photothermal agent
and an antibacterial drug. The hydrogel generated a large amount of heat and released the
drug on demand under the irradiation of near-infrared light, achieving good antibacterial
and antioxidant effects [353].

Injectable hydrogels (Injectable hydrogels) is achieved by injection of gel precursor and the
aqueous solution of bioactive agents, which forms gels in the body [374]. Injectable hydrogels
are formed in situ, meaning they can be used for the precise delivery of drugs to treat irregular,
hard-to-reach wounds. Due to their biocompatibility, degradability and unique delivery method,
MPs Injectable hydrogels have received considerable research in recent years. They have been
used to treat post-operative wounds, joint wounds, full-thickness defects, and others that cannot
be treated with conventional dressings [303,375–377]. Furthermore, MPs injectable hydrogels
are excellent carriers for the sustained release of various cytokines and GFs due to the ease of
adding active substances in the sol form. Various MPs Injectable hydrogels carrying regulatory
factors such as basic fibroblast GF, stromal cell-derived factor-1 and vascular endothelial GF
have been developed. These gels could provide accurate wound coverage and achieve sustained
release, thus promoting tissue regeneration and accelerating wound healing [355,378–380].
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Mussel-inspired hydrogels have been developed to mimic the adhesion mechanism
mediated by marine mussel adhesion proteins. These hydrogels have far more powerful
wet adhesion and mechanical properties than conventional hydrogels and can be used in
a liquid environment [381,382]. Dopamine is structurally similar to mussel proteins and
is most commonly used in developing mussel-activated hydrogels because of its ability
to produce the active polymer dopamine (PDA) during oxidation [381]. Thanks to the
bioactivities of MPs, the mussel-inspired MPs hydrogel has rapid haemostatic properties
and promotes wound healing synergistically with the compression effect of the gel on the
wound. MPs’ biocompatibility allows these emerging hydrogels to be used for in vivo
wound management [238,358,359,383].

3.2.2. MPs Nanofibrous

Nanofibres are wire-like materials with a certain aspect ratio at the nanometer scale. In
recent years, electrospinning has become a core technology for the manufacture of nanofi-
bres. The presence of repulsive forces between the charged groups of MPs complicates their
electrospinning properties, while the resulting nanofibres have poor mechanical properties
and degrade rapidly [384]. Other synthetic/natural polymers should be added to improve
the stability of MPs nanofibres. Currently, the leading MPs used to develop nanofibres
are CS and alginate. A representative application of MPs nanofibres in wound dressings
is nanofibre mats (scaffolds), which can be further processed into nanofibre hydrogels,
nanofibre membranes and other nanocomposite dressings. Since nanofibres are similar to
ECM, nanofibre dressings can promote cell adhesion and proliferation, thereby facilitating
wound healing [385,386]. Furthermore, the porous nanostructure allows for a uniform and
robust distribution of the drug on the MPs nanofibrous scaffold, resulting in high drug
loading, high encapsulation rates and prolonged sustained release properties [387,388].
The porous structure also allows for good breathability, facilitating wound healing [389].
Table 8 presents a summary of MPs nanofibre dressings in recent years.

Table 8. Summary of raw materials and characteristics of MPs nanofibre dressings in recent years.

MPs
Component

Other Main
Components Active Agents Biological

Activities Other Features Refs

CS
Polyvinylidene fluoride

Polyhydroxybutyric
acid

Gentamicin Not tested
Double layer drug delivery

Efficient drug delivery
Strong mechanical properties

[390]

CS PVA
Starch – Antibacterial Promotes

tissue regeneration

High water vapour transmission
rate to provide a moist

Well-oxygenated wound healing
environment

Low cytotoxicity

[391]

QCS
Collagen

PCL
PVA

–

Haemostatic,
antibacterial

Anti-inflammatory
Promotes tissue

regeneration

– [392]

CS PCL
Human granulocyte
colony-stimulating

factor-loaded CS NPs

Anti-inflammatory
Promotes tissue

regeneration

The stent promotes stem cell
adhesion and proliferation,

sustained slow release
[393]

CS
PCL
PVA

Polycaprolactone
Melatonin

Anti-inflammatory
Promotes tissue

regeneration

Three layers of nanofibres
Hydrophilic effect [394]

CS
PVA

Carbopol
Polycaprolactone

Curcumin
Mesenchymal stem cells – Promotes tissue regeneration [395]

Alginate WPU
CaCl – Not test Effective drug delivery

High mechanical strength [396]

Alginate
CS Gentamicin – Antibacterial Effective drug delivery

Promotes tissue regeneration [397]

Alginate PUL PL Anti-inflammatory High mechanical strength [398]
Alginate TOBC Zn2+ Antibacterial High mechanical strength [399]

Alginate PVA Spider silks Anti-inflammatory Effective drug delivery
Promotes tissue regeneration [400]

Alginate
CS

PCL
Lumi Doxycycline, PEO Not test

Strong wet tissue adhesion
High mechanical strength

Effective drug delivery
[401]

Alginate
CS

Glutaraldehyde
polylysine – Promotes tissue

regeneration

High water vapour transmission
rate to provide a moist environment

Effective drug delivery
[388]
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3.2.3. MPs Film/Membrane

Compared to 3D-structured hydrogels, films are often considered as 2D dressings,
covering wounds flat and more acceptable to the patient. MPs-based membranes can be
divided into traditional and nanofibre membranes (electrospun membranes). Traditional
membrane dressings are thick and usually made through the casting process [402,403].
While electrospun membranes are thin and prepared by shaping nanofibre mats. Table 9
presents a summary of MPS-based membranes dressings in recent years.

Table 9. Summary of raw materials and characteristics of MPs membranes dressings in recent years.

Categories Structural
Components

Functional
Components Bioactivities Other Features Refs

Electrospun membranes CS
PCL – Promotes tissue

regeneration

The ECM-like structure facilitates
cell adhesion and penetration

Promotes compartmentalization
and prevents initial cell migration

[404]

Electrospun membranes
CS

Cellulose Polyethylene
oxide

Graphene Antibacterial Good water vapour transmission
and breathability [405]

Asymmetric
membranes

CS
PVP

Nanocellulose
Stearic acid (coating) Antibacterial

Unilateral hydrophobic
Low cytotoxicity

High biocompatibility
[406]

Asymmetric
membranes

CS
Gelatin methacrylate

Polycaprolactone
Polylactic acid (dense

layer)

Promotes tissue
regeneration

Good mechanical properties
Provide a moist environment for

the wound healing
Promotes cell adhesion

Electrospun membranes

[407]

Asymmetric
membranes

CS
Aloe vera

Polycaprolactone(dense
layer)

Promotes tissue
regeneration

Good mechanical properties
Promotes cell adhesion

Electrospun membranes
[408]

Multi-layer membranes

CS
Gelatine
Poly(N-

isopropylacrylamide)-
grafted

polyurethane

– Promotes tissue
regeneration

Provide a moist healing
environment for the wound healing [409]

Multi-layer membranes Alginate
CS PMMA

Antibacterial
Promotes tissue

regeneration
Efficient drug delivery [410]

Multi-layer membranes Alginate
CS Genipin Antioxidant

Good mechanical properties
High water vapour transmission

rate to provide a moist
[411]

Multi-layer membranes Alginate OBC Antibacterial Efficient drug delivery [412]

The electrospun membrane has good mechanical properties and tissue regeneration
ability. MPs electrospun membranes are porous and highly hydrophilic, thus could pro-
mote the adhesion and proliferation ability of fibroblasts. This could accelerate tissue
regeneration and wound healing significantly [270,413]. Simultaneously, MPs nanofibre
membranes exhibit appropriate water vapour transport and exudate absorption capacity,
providing a suitable healing environment for the wound [405,414].

The planarized form of MPs-based membrane provides the multilayer design possibil-
ity. Asymmetric and multilayer membrane-based techniques are the most commonly used
for MPs-based membrane dressings. Both types of technology provide better results by
mimicking the natural skin structure. The outer side of the MPs-based asymmetric mem-
brane generally provides protection, and the inner side provides bioactivities. This unique
configuration gives it a better healing effect and offers therapeutic potential for wounds in
complicated environments [415,416]. Hydrophobic substances could provide a hydropho-
bic and asymmetric outer surface for MPs membranes. The resulting membrane exhibits
water-repellent protective, antibacterial and healing-promoting properties. This feature en-
sured the efficiency of the membrane dressing in wet and adverse environments [406,408].
The asymmetric membrane covered with a dense layer, on the other hand, has extremely
high mechanical properties and achieves better resilience. The inner active layer can pro-
vide constant and stable wound treatment in an unaffected environment [390,417]. MPs
multilayer films are considered to be the dressing that enables versatile and efficient drug
delivery. Furthermore, the spatially designed structure of the multilayer membrane op-
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timises the function of the components and provides a more suitable microenvironment,
giving them a better wound healing capacity [412,418].

3.2.4. MPs Sponge

MPs sponge is biodegradable and has good swelling properties to absorb wound
exudate effectively. The porous and fluffy structure of the MPs sponge is ideal for acute
and haemorrhagic wounds [419,420]. Wang et al. found that sponges had better water
absorption, breathability, haemostatic properties and more remarkable pro-healing ability
than hydrogels and membranes of the same composition (CMC) [421]. It is worth mention-
ing that CS-based sponge dressings are the efficient and widely adaptable biomaterial for
haemostasis. This is since the sponge dressing has good blood-absorbing properties and
fills the wound when swollen. The compression provided by the sponge works synergisti-
cally with the bioactivity of CS to haemostasis and effectively manage acute wounds [243].
Table 10 presented a summary of MPs-based sponge dressings in recent years.

Table 10. Summary of raw materials and characteristics of MPs-based sponge dressings in recent years.

MPs
Composition Other Main Components Bioactivities Other Features Refs

CS
Hydroxybutyl

CS
– Promotes tissue regeneration

Antibacterial
Non-cytotoxic

Highly absorbent [422]

CS HA, andrographolide lipid
nanocarriers

Promotes tissue regeneration
Scar-free

High encapsulation rate
Slow release [423]

CS AgSD NPs Antibacterial Low cytotoxicity [424]

CS
HA

VEGF-loaded fibrin
nanoparticles

Haemostasis
Promote tissue regeneration Proper mechanical properties [425]

CS GAGs
Tranexamic acid

Haemostasis
Promote tissue regeneration Highly synergistic haemostatic [426]

CS Ag NPs
Stearic acid (coating)

Antibacterial
Promotes tissue regeneration

The presence of a hydrophobic
An anti-adhesive surface allows the

inside of the sponge to retain its
water-absorbing capacity for a long time

[427]

Alginate AV Antibacterial High degree of swelling [428]

Alginate
1-ethyl-3-dimethyl

aminopropyl carbon diimine
hydrochloride

Promotes tissue regeneration Good mechanical properties
Considerable water vapour transmittance [429]

Alginate Graphene oxide Promotes tissue regeneration High flexibility and mechanical strength
High water absorption [430]

Alginate
Fucoidan

CS
–

Haemostasis
Antibacterial

Anti-inflammatory

Excellent elasticity
Good mechanical properties [144]

3.2.5. Other Types of MPs Dressings

Microspheres are organic or inorganic spherical free-flowing particles with diameters
from 1 to 1000 µm that could encapsulate drugs [431]. Microspheres enable targeted
drug delivery, controlled release and prolonged drug delivery. MPs microspheres dry
powder can be used for wound management as it can indirectly act as a wound dressing
by forming a hydrogel with absorbed wound exudate [67,432]. Romic et al. demonstrated
that MPs microspheres have a sustained-release effect and inhibit common bacteria [433].
On the other hand, MPs microspheres can also be embedded in dressings as drug carriers
providing sustained-release properties. Hydrogels carrying AgSD-loaded CS microspheres
can effectively treat infected full-thickness wounds [434]. Alginate microspheres showed
good loading efficiency and could improve wound healing [435].

Aerogel is a porous, ultra-lightweight material with high mechanical strength [436,437].
The large specific surface area of aerogels allows for better utilisation of the bioactivities of MPs
molecules [438]. Recent studies have shown that CS-based aerogels have excellent haemostatic,
antibacterial and growth-promoting activities [439–441]. Alginate based aerogels have high
exudate absorption and the ability to bind therapeutic substances to promote wound healing,
allowing for effective drug delivery to the wound [442,443]. The aerogel dressings are also
patient-friendly, with less pressure and discomfort on the wound.
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4. Conclusions

Marine polysaccharides are novel biological sources for wound dressings. The excel-
lent biocompatibility and biodegradability make them suitable for tightly fitting to the skin.
The diverse bioactivities provide excellent wound management and accelerate wound
healing. Meanwhile, their low price is in line with the requirements of wound dressings.

Chitosan and alginate are two of the most important marine polysaccharides widely
used in wound dressings. They can be used as starting materials, combined with other poly-
mers or active agents, then processed into wound dressings such as hydrogels, membranes,
films, nanofibres and sponge. In order to improve the effectiveness of wound therapy,
various enhancement strategies have been used to develop these dressings with enhanced
antibacterial, antioxidant, anti-inflammatory, pro-regenerative, scar-free activities. On
the other hand, advanced and emerging dressing technologies have expanded the range
of applications for these wound dressings, with technologies such as smart hydrogels,
asymmetric/multi-layer films and nanofibre mats widely appearing at the forefront of
marine polysaccharide wound dressing discovery. Although the number of studies on
fucoidan, carrageenan, agar and ulvan is small, the dressings developed from them have
interesting activities and can treat specific wounds. Some marine polysaccharides, such
as laminarin, marine glycosaminoglycans and marine microbial EPS, are currently not or
rarely used for wound management. However, these polysaccharides have also shown the
ability to promote wound healing, suggesting that they have the potential to be developed
into wound dressings.

Over the past few decades, the value of these natural macromolecules, once regarded
as waste, has been gradually recognised. Research in the biomedical field based on marine
polysaccharides has also become a hotspot. As clinical trials are improved, dressing tech-
nology is enhanced, and the extraction process is optimised, various marine polysaccharide
wound dressings can be used in a broader range of medical applications.
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