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Colorectal cancer (CRC) is the third most common cancer worldwide. Its incidence is still

increasing, and the mortality rate is high. New therapeutic and prognostic strategies are

urgently needed. It became increasingly recognized that the gut microbiota composition

differs significantly between healthy people and CRC patients. Thus, identifying the

difference between gut microbiota of the healthy people and CRC patients is fundamental

to understand these microbes’ functional roles in the development of CRC. We studied

the microbial community structure of a CRC metagenomic dataset of 156 patients

and healthy controls, and analyzed the diversity, differentially abundant bacteria, and

co-occurrence networks. We applied a modified zero-inflated lognormal (ZIL) model

for estimating the relative abundance. We found that the abundance of genera:

Anaerostipes, Bilophila, Catenibacterium, Coprococcus, Desulfovibrio, Flavonifractor,

Porphyromonas, Pseudoflavonifractor, and Weissella was significantly different between

the healthy and CRC groups. We also found that bacteria such as Streptococcus,

Parvimonas, Collinsella, and Citrobacter were uniquely co-occurring within the CRC

patients. In addition, we found that the microbial diversity of healthy controls is

significantly higher than that of the CRC patients, which indicated a significant negative

correlation between gut microbiota diversity and the stage of CRC. Collectively, our

results strengthened the view that individual microbes as well as the overall structure

of gut microbiota were co-evolving with CRC.

Keywords: gut microbiota, colorectal cancer, zero-inflated lognormal model, association network,

microbial diversity

INTRODUCTION

A large number of microbes colonize the human body. They form a complexmicrobial community,
or microbiota (Tringe et al., 2005; Zhao et al., 2013; Liao et al., 2015). Among them, the gut
microbiota is the most diverse, with more than 1,000 species (Kostic et al., 2012; Li et al., 2012;
Ahn et al., 2013). Those microbes are involved in maintaining intestinal homeostasis, through
physiological processes such as metabolism, immune responses, and inflammation, all of which are
essential for human health. Previous studies revealed a deliciated and dynamic balance between the
microbial community and the host, which is likely the result of long term co-evolution. However,
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studies also observed that pathogenic changes in the structure,
composition, and function of gut microbiota can lead
to various diseases, often by causing the production of
abnormal metabolites (Chen et al., 2016a; Huang et al.,
2017a,b). Those diseases and conditions include irritable
bowel syndrome (Kipanyula et al., 2013), Crohn’s disease
(Sommer and Bäckhed, 2013), and colorectal cancer
(CRC) (Zackular et al., 2014; Rea et al., 2018).

The mechanisms by which gut microbes influence the
CRC tumorigenesis (Iacob et al., 2017) were actively under
study. For examples, researchers have recently learned that
the gut microbiota plays a regulatory role in the tumor
microenvironment and thus in tissue carcinogenesis (Sohn et al.,
2015; Nagy-Szakal et al., 2017; Morgillo et al., 2018). Guo
et al. also found that the microbiota structure and microbial
metabolites can affect the body’s susceptibility to CRC by directly
inducing pathological conditions, such as adenoma (Guo et al.,
2015). However, to further understand such interactions, it
is essential to characterize and compare the gut microbiota
structure of healthy controls and cancer patients. And based
on that, specific microbiota patterns or strain types need to
be identified to provide new targets and strategies for cancer
prevention and treatment (Hu et al., 2017, 2018; Zhao et al.,
2018a,b,c). Therefore, in this paper, we aim to determine the
microbes that are associated with CRC using a large-scale
metagenomic data set.

While the metagenomics research has provided enormous
scientific data for investigating the role of the gut microbiota in
the context of cancer development and progression (Zhang et al.,
2014), appropriate bioinformatics and statistical analyses are
also required to accurately identifying the differential microbes.
Several algorithms using either parametric or non-parametric
tests have been proposed to determine such species. For
examples, Abusleme et al. (2013) combined the Kruskal-Wallis
test with the Wilcoxon rank-sum test to analyze periodontitis
data and used linear discriminant analysis to identify the species
with significant differences between periodontitis patients and
healthy controls. Nagy-Szakal et al. used the non-parametric
Mann-Whitney U test with Benjamini-Hochberg correction to
show that the microbial composition in the intestines of patients
with chronic fatigue syndrome differed significantly from that of
healthy individuals (Nagy-Szakal et al., 2017). And Peng et al.
conducted beta regression on the abundance of microbes to
obtain regression coefficients (Peng et al., 2016).

One particular difficulty associated with the statistical testing
of differential abundance is the under-sampling or dropout
(Hughes et al., 2001) of less abundant microbes caused by
an insufficient sequencing depth. This fact creates many zeros
in the abundance values and leads to inaccurate differential
analysis when only conventional normalization was applied.
This issue might be mitigated with the Zero-inflated Negative
Binomial modeling (ZINB) (Ridout et al., 1998). The method
is now widely adopted. For examples, Paulson et al. analyzed
the differential abundance in sparse high-throughput large-scale
microbial marker gene survey data by using a zero-inflated
Gaussian distribution mixture model with cumulative-sum
scaling normalization (Paulson et al., 2013). Zhang et al. (2016)

identified differentially abundant taxa between two or more
populations by using a ZINB regression method and estimated
the model parameters by Expectation Maximization algorithm.
Chen et al. proposed a zero-inflated Beta regression model
which included two parts: a logistic regression component and a
Beta regression component, for testing the association between
microbial abundance and clinical covariates for longitudinal
microbiome data (Chen and Li, 2016). Chen Jun et al. in
2017, proposed a robust and powerful framework of differential
analysis of microbiome data based on a zero-inflated negative
binomial (ZINB) regression model (Chen et al., 2017). They also
proposed an omnibus test of all the parameters. Omnibus test
was compared with previous methods [edgeR (Robinson et al.,
2010), RAIDA (Sohn et al., 2015), DESeq2 (Love et al., 2014), and
metagenomeSeq (Paulson et al., 2013)] by using simulated data.
RAIDA had slightly worse FDR control at a high nominal level
than omnibus test, but better FDR control than other methods.
The performance of RAIDA was close to that of the omnibus
test, and were higher than one of other methods. RAIDA is more
effective at controlling FPR than other method including the
omnibus test.

In this study, we identified the differentially abundant
gut microbes between CRC and healthy samples using the
Ratio Approach for Identifying Differential Abundance (RAIDA)
algorithm (Sohn et al., 2015). The algorithm fitted the
distribution of observed data with a modified zero-inflated
lognormal (ZIL) model and estimated the statistical significance
of abundance difference by the T-test. Furthermore, we used the
GRAMMy algorithm (Xia et al., 2011) to estimate and analyze the
relative abundance of gut microbes and diversity of the microbial
communities. Finally, we constructed and analyzed a microbial
association network based on all healthy, small adenoma, large
adenoma, and CRC samples.

MATERIALS AND METHODS

Two Metagenomics Datasets
Our first gut metagenomics dataset was downloaded from
the European Nucleotide Archive (ENA) database (accession
number ERP005534) (Table 1). The dataset (Zeller et al., 2014)
consists of 156 samples from France (61 healthy, 27 small
adenoma, 15 large adenoma, and 53 CRC samples). Samples with
an adenoma diameter smaller than 10mmwere classified as small
adenoma while those with larger than 10mm ones were classified
as large adenoma.

Our second gut metagenomics dataset was also downloaded
from the ENA database (accession number ERP008729) (Zeller
et al., 2014). The dataset included 156 samples from Austria,
including 63 healthy samples, 47 adenoma patient samples, and
46 CRC patient samples.

A Modified ZIL Model
We estimated the relative abundance of gut microbes using
the GRAMMy algorithm. We then identified differentially
abundant microbes by the RAIDA algorithm which uses
a modified ZIL model to account for ratios with zeros.
Metagenomic data are typically sparse because of undersampling
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TABLE 1 | Number of experimental samples.

Total

number

of

samples

Healthy

control

Adenoma Colorectal cancer

Small Large Early Late

(<1 cm) (>1 cm) stage stage

I II III IV

156 61 27 15 15 7 10 21

of the microbial community or insufficient sequencing depth.
The resulting abundance table is over-presented with zeros
assumed that most of those zeros is a result of insufficient
sequencing depth, i.e., the under-sampling of the microbial
community. Based on the assumption that most microbes are not
differentially abundant, the RAIDA algorithm was systematically
demonstrated to consistently identify differentially abundant
microbes. We adapted the RAIDA model for our statistical
analysis as follows.

Let γij denote the observed count for microbes i and sample
j, and let rij denote the ratio of γij to γkj, where k represents the
microbe (or a set of microbes) used as a divisor and γkj > 0 for
all j. Here, i = 1, 2, ..., n and j = 1, 2, ...,m. The abundance ratio
computed this way is denoted as Rε

ij such that:

Rε
ij ∼

{

Unif (0, ε) with probability pi
LN(µi, σ

2
i ) with probability 1− pi

(1)

In this study, we used ε = min(rij
∣

∣rij > 0) for all i and j.
The parameters θi = (αi,µi, σi) were estimated by the following
expectation-maximization (EM) algorithm. Given that a ratio R
follows a lognormal distribution, thus:

LN(r
∣

∣µ, σ 2 ) = 1

σ
√
2πr

exp

[

− (log r − µ)2

2σ 2

]

, (2)

in which, by definition, Y = logR is normally distributed with
mean µ and variance σ 2. Let yij = log rεij, zij is an unobservable

latent variable that accounts for the probability of zero coming
from the false state. Thus, the maximum-likelihood estimate of
θi for the modified ZIL model, i.e., Equation (1), can be obtained
by solving

ℓ(θi
∣

∣yij, zij ) =
m
∑

j=1
zij log

[

ηi + (1− pi)φ(yij;µi, σ
2
i )

]

+
m
∑

j=1
(1− zij) log(1− pi)

+
m
∑

j=1
(1− zij) logφ(yij;µi, σ

2
i ),

(3)

where φ is the probability density function of a
normal distribution.

Diversity Analysis
To analyze microbial diversity, alpha diversity was used to
measure the differences in gut microbial structure in the

following three stages: healthy, adenoma (small and large
combined), and cancer. We used the Shannon diversity index to
measure the alpha diversity of the gut community. The Shannon
index is defined as

H = −
N

∑

j=1

aj ln aj, (4)

where H represents the Shannon Index, N indicates the total
number ofmicrobial species detected, and aj indicates the relative
abundance of the j th microorganism.

RESULTS AND DISCUSSION

Alpha Diversity of Gut Microbiota Predicts
Colorectal Cancer Status
We computed the alpha diversity of gut microbes of the
healthy samples, adenoma samples and CRC samples using the
Shannon index and compared themwith the rank-sumDunn test
(Figure 1). We found that the alpha diversity was significantly
lower in the CRC samples as compared to the healthy samples
(two tailed, Dunn test, P < 0.0001) and adenoma samples (two
tailed, Dunn test, P = 0.0021). However, the alpha diversity of
the healthy and adenoma samples was not significantly different
(two tailed, Dunn test, P = 0.0571). To study the relationship
between the probability of cancer occurrence and the alpha
diversity, we performed logit regression to associate CRC status
with the Shannon index. The regression results showed that the
Shannon index is a significant predictor of CRC status (univariate

FIGURE 1 | Analysis of intestinal microbial diversity in different environments.

The three colors in the figure indicate the microbial diversity in different states:

green represents the healthy samples, yellow represents adenoma

(precancerous lesion) growth in the intestine, and red represents a sample of

colorectal cancer patients. The average value of Alpha diversity of healthy

samples was 4.0456, whereas the counterpart in the adenoma sample was

3.8957, and that in the cancer sample was 3.7161.
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FIGURE 2 | Differences in intestinal microbiome at the genus and species level among samples of different states. Green represents a healthy sample, and red

represents a colorectal cancer sample. (A) The top nine microbial genera with significant differences in abundance. (B) The top five microbial strains with significant

differences in abundance.

logistic model, P < 0.05). The fitted logistic regression model was
as follows:

P = exp(−4.563d + 17.546)

1+ exp(−4.563d+ 17.546)
, (5)

i.e., logit(P) = −4.563d + 17.546, where P is the
probability of being CRC, and d is the Shannon diversity
index. We provided the plot of the relationship of probability
of cancer occurrence and Shannon index of adenoma patients
as show in Figure S1. Our result suggested that the diversity
of the microbial species in the human intestines decreases
as colorectal malignancies grow, which was supported by
literature (Ahn et al., 2013).

Nine Genera Were Differentially Abundant
in the Colorectal Cancer Gut Environment
Using the RAIDA algorithm, we identified nine microbial
genera that were significantly different in abundance between
the CRC and the controls, which included Anaerostipes,
Coprococcus, Pseudoflavonifractor, Bilophila, Flavonifractor,
Desulfovibrio, Catenibacterium, Porphyromonas, and Weissella
(Figure 2A). We first observed that the abundance of
Coprococcus was higher in the healthy samples as compared
to the CRC patients. As a validation, Shen et al. showed
that colorectal adenomas had lower relative abundance
of Bacteroides spp. and Coprococcus spp. than controls
(Shen et al., 2010). The metabolic activity of butyrate-
producing bacteria is the major source of butyrate in
human body. Coprococcus is among the essential butyrate-
producing genera in human body, which promote colonic

health by mediating anti-inflammatory and antitumor
effects, as well as providing energy for colonocytes
(Singh et al., 2014).

Also notable in our result were the genera Fusobacterium
(Fusobacteriaceae) and Porphyromonas (Porphyromonadaceae),
which were shown highly enriched in the CRC patients. So
was the species Bibliophile wadsworthia. Those sulfidogenic
bacteria, including Desulfovibrio, Fusobacterium, and Bilophila
wadsworthia, likely participate in the development of CRC by
producing hydrogen sulfide (Ridlon et al., 2016; Dahmus et al.,
2018). Bilophila wadsworthia was additionally reported to cause
systemic inflammatory response in a preclinical mice study
(Zhou et al., 2017).

Interestingly, we also observed that the abundance of
Eubacterium hallii, Anaerostipes hadrus, and Eubacterium
ventriosum (Figure 2B) were significantly higher in the healthy
samples than in the CRC samples. E. hallii and A. hadrus can
utilize the glucose and fermentation intermediates acetate and
lactate to form butyrate and hydrogen, which were considered
important microbes in maintaining intestinal metabolic balance
(Christina et al., 2016).

We also found that Flavonifractor was higher in the
healthy samples than that in the CRC samples, which was
in agreement with Anand et al. (2016). We also observed
that Anaerostipes had a significantly lower abundance in
the CRC samples, which agreed with previous studies
(Peters et al., 2016; Mori et al., 2018). We found that no
Catenibacterium and Gardnerella (Bifidobacteriaceae) were
present in CRC patient samples, which was supported by
Chen et al. (2012).

We tested if the nine differentially abundant genera are viable
biomarkers to distinguish healthy individuals fromCRC patients.
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FIGURE 3 | The association network of intestinal microbiome in different states. Each circle represents the average relative abundance of a microbial species in that

state. The higher the average relative abundance, the larger the area of the circle. The solid gray line between the circles indicates a positive Spearman correlation

between the two groups, and the solid red line indicates a negative Spearman correlation between the two groups. (A–D) The association network of intestinal

microbiome in healthy, small adenoma, large adenoma and cancer samples.

We trained a random forest classifier using a 5-fold cross-
validation (rotative using 80% data as the training set the rest
20% as the testing set) using the first metagenomic dataset. The
classifier achieved an Area Under Curve (AUC) of 0.9333.

Microbial Co-occurrence Network Evolves
With CRC Development
Sophie Weiss et al. compared 8 methods of establishing
association networks, they recommend filtering out extremely
rare OTUs prior to network construction (Weiss et al., 2016).
According to Figure 7 in this paper, SparCC should be used when
the inverse simpson neff of microbes < 13, SparCC maintain
high precision compared with predictions on abundance tables
with low neff. But the inverse simpson neff of microbes is
27.9 (>13) in our paper, abundance of OTUs are more than

50% sparse. So we calculated the correlation between species
by Pearson correlation coefficient (Pearson, 1909). We further
conducted an association network analysis to identify the co-
occurring intestinal microbes under different CRC states. All
significant co-occurrences (PCC > 0.5) were found to be within
the same genera, such as Bifidobacterium, Bacteroides, and
Bilophila (Figure 3). Furthermore, both Bifidobacterium and
Bacteroides were previously identified by us to have significant
differences in abundance between healthy controls and CRC
patients (Figure 3A). It is thus reasonable to assess that these
bacteria were pathogenic as a group because the change of
abundance in one them can result in changes of abundance in
the entire clique. Our observation supported the theory that CRC
ensues an interrupted balance between these bacteria (Brennan
and Garrett, 2016; Yazici et al., 2017).
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Co-occurrence was also found among species of the genus
Prevotella in the healthy, small adenoma, and large adenoma
environments (Figures 3A–C), however, such co-occurrence
was missing in the CRC environment (Figure 3D). Conversely,
several species of the genera Streptococcus, Parvimonas,
Collinsella, and Citrobacter were only co-occurring in the
cancer environment. Overall, we observed fewer microbial
co-occurrences the healthy environment. While, in the adenoma
environments, we found an increase of co-occurring pathogenic
microbes. The number of co-occurring microbes was then
reduced in the CRC environment. The total number of co-
occurrence is relatively close between the healthy and the CRC
environment, however, the microbes involved were distinct.
The number of total co-occurrence might have peaked at
the adenoma environments because of the co-existence of
competing homeostatic and pathogenic microbial interactions in
the intermediacy stage.

CONCLUSIONS

We analyzed the alpha diversity of the gut microbial community
of 156 healthy, adenoma and CRC samples. We found the alpha
diversity was significantly higher in healthy samples as compared
to the CRC samples. We applied a modified ZIL model and
identified nine significantly different genera between the healthy
and CRC groups, i.e., Anaerostipes, Bilophila, Catenibacterium,
Coprococcus, Desulfovibrio, Flavonifractor, Porphyromonas,
Pseudoflavonifractor, and Weissella. We used these nine genera
as input features for a random forest classifier and successfully
predicted the CRC status with a high AUC score of 0.9333. Our
results suggested that the community member and the overall
structure of the gut microbiota are potential effective biomarkers
of CRC stages. This avenue is being actively pursued by us and
other computational researchers (Chen and Yan, 2013; Chen
et al., 2016b,c, 2018a,b,c; Chen and Huang, 2017), who may

bring in novel strategies for preventing and curing CRC in the
near future.
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