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Biomolecular complexes are often multimers fueling the

demand for methods that allow unraveling their composition
and geometric arrangement. Pulse electron paramagnetic reso-

nance (EPR) spectroscopy is increasingly applied for retrieving
geometric information on the nanometer scale. The emerging

RIDME (relaxation-induced dipolar modulation enhancement)

technique offers improved sensitivity in distance experiments
involving metal centers (e.g. on metalloproteins or proteins la-

belled with metal ions). Here, a mixture of a spin labelled
ligand with increasing amounts of paramagnetic CuII ions al-

lowed accurate quantification of ligand-metal binding in the
model complex formed. The distance measurement was highly

accurate and critical aspects for identifying multimerization

could be identified. The potential to quantify binding in addi-
tion to the high-precision distance measurement will further

increase the scope of EPR applications.

The ever-growing complexity of structures underpinning func-
tional materials and the molecular basis of our understanding

of health and disease fuels an increasing demand for new

(bio)physical tools elucidating the composition and geometry
of large assemblies or complexes. In recent years, pulse EPR

has proven of utmost value for studying complex biological
systems and revealing topology information not accessible by

other methods. Biological targets of pulsed electron-electron
double resonance (PELDOR or DEER)[1] spectroscopy involve
cutting-edge applications in probing conformational changes

during protein translocation[2] and mechanosensation[3] as well
as identifying the role of non-coding RNAs in protein seques-
tration, storage and release.[4] The impact of pulse EPR on
structural research has sparked a renaissance of EPR methodol-

ogy involving new hardware,[5] pulse sequences[6] and compu-
tational tools.[7] Relaxation-induced dipolar modulation en-

hancement (RIDME)[8] is particularly useful when measuring dis-
tances to paramagnetic metal centers[9] and the introduction

of a dead-time free sequence[6c] combined with rigorous exper-
imental benchmarking have led to a multiplication of applica-
tions.[6c, 10] These embrace chemical model systems[8, 9b, 11] as well

as model proteins.[6c, 10a, c] In both RIDME and PELDOR, a set of
spins (A) is detected while an inversion of a second set of

spins (B) selectively introduces the dipolar spin-spin interaction

between A and B spins (wdd). Varying the timing (t) of the B
spin inversion causes the A spin signal to oscillate with the in-

teraction frequency (coswddt, Figure 1, panel A, left) that enco-
des the distance between the spins parameter-free. In RIDME

the excitation of B spins is based on stochastic spin relaxation
(longitudinal relaxation, T1) rather than caused by a microwave

pulse as in PELDOR. The RIDME ‘mixing time’ (Tmix) defines the

time interval that permits for stochastic B spin relaxation. For
very broad spectra that metal ions often display the fraction of

inverted B spins (l) can be much larger in a relaxation driven
RIDME experiment hence boosting sensitivity.[10b, 12]

The excitation of forbidden electron–nuclear spin transitions
can result in ESEEM (electron spin echo envelope modulation)

and obscure the desired dipolar modulation. This is especially

Figure 1. A) Schematic of a dipolar oscillation encoding the dipolar coupling
frequency (wdd) and information on number of coupled spins in the modula-
tion depth D (left) and the expected trend of bound L to CuII ions with in-
creasing CuII/L ratios (right). B) The chemical species formed upon addition
of CuII ions to the spin-labelled ligand (L) solution.
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relevant in deuterated systems. However, deuteration allows
substantially extending the spin-spin distance range and sup-

pressing the unwanted background signal decay.[12] Several
methods for ESEEM suppression and removal have been repor-

ted.[10a, b, 12] Keeping these challenges under control, RIDME is a
very appealing alternative to the established PELDOR

method.[1]

In PELDOR the number of electron spins per nano-object
can be retrieved from the depth of the dipolar oscillations (D,

Figure 1, panel A, left).[13] Assessing multimerization degrees in
a similar fashion via relaxation-based pulse EPR would be a val-
uable addition to the distance information in the data. Here,
we seek to experimentally test whether RIDME allows probing
the degree of ligand binding to a paramagnetic metal ion tem-
plate. Scenarios where the quantification of binding might be

adding significant insight include the uptake of a paramagnet-

ic cofactor by a spin-labelled protein allowing at the same
time to measure the distance as well as loading with paramag-

netic metal ions. Especially when diamagnetic ions are substi-
tuted this might be useful as binding constant might differ.

Similarly, RIDME in electron transfer systems might quantify
the amount of charge transfer as only the oxidized (or re-

duced) species might be paramagnetic. The quantification of

multiple binding sites could indeed be helpful for quantifying
metal loading (e.g. for metal-metal distance measurements in

both biological systems and inorganic supramolecules).
As a model binding equilibrium between a nitroxide (NO)

spin carrying ligand and a paramagnetic metal ion bearing
template, a NO-labelled 2,2’:6’,2’’-terpyridine ligand (L)[13a] and

paramagnetic CuII ions (electron spin S = 1=2) were employed.

The CuII/L ratio was varied systematically from 0.0 to 1.0 in
steps of 0.1 while keeping the absolute ligand concentration

constant (Figure 1, panel A, right).[13a] The hypothesis to be
tested assumes: 1) L not bound to CuII (Figure 1, panels A and

B L) will not experience RIDME and just display a background
signal, while 2) L bound to CuII (Figure 1, panels A and B

[CuLXn]2 + and [CuL2]2 + , with Xn representing n solvent mole-

cules filling the CuII coordination sphere) will show RIDME.
If the signal is the linear superposition of contributions from

bound and unbound L, the depth of the dipolar modulations
D will report the fraction of ligand bound to a metal ion. The

CuII/L ratio 0.0 will correspond to pure background signal
while from 0.1 to 0.5, 20 % to 100 % of L will be bound in the

dimer species [CuL2]2 + with any residual L being free in solu-
tion. Depending on the cooperativity of binding,[13a] addition
of further metal leads to either the coexistence of [CuL2]2 + and

solvated CuII or their comproportionation to [CuLXn]2+ . In
either case, for CuII/L ratios 0.5 to 1.0, D should stay constant

as all L will be bound to a fast-relaxing metal center. It is im-
portant to note that a second L binding to the CuII ion after

the first is not expected to alter the CuII-NO RIDME modulation

depth. Based on the crystal structure of L[13a] we expect the
CuII-NO distance distribution to peak at 2.6 nm.[11a]

Measurements at Q-band frequencies (&34 GHz) in deuter-
ated matrix to maximize sensitivity showed substantial ESEEM

and made it essential to minimize these unwanted contribu-
tions.[10a, b] Suppression by increasing the pulse lengths proved

unsuitable for quantification of modulation depths (see Sup-
porting Information, SI). ESEEM removal by deconvolution (de-
liberately forfeiting the dipolar modulation in a reference ex-
periment still containing ESEEM and subsequent division; see

SI for details) were tested using a second experiment reducing
the temperature from 30 K to 15 K (Figure 2, left and SI) or re-

ducing Tmix from 200 ms to 5 ms (Figure 2, right and SI).

Both deconvolution methods yielded visually ESEEM-free

RIDME data and Tikhonov regularization[7b] resulted in distance
distributions showing sharp peaks at the expected 2.6 nm dis-

tance. For the temperature-based method no dipolar modula-
tion could be recovered for ratio 0.1. Importantly, neither

method showed the expected trend in the modulation depths
(a linear increase to a plateau from 0.5 on, Figure 2, bottom,
blue triangles), but a continuous increase of the CuII-NO modu-

lation depth from 0.0 up to 1.0 CuII/L ratios was observed. Fit-
ting the experimental modulation depths to expected trend

with D as free parameter leads to root mean square deviation
(rmsd) to the fit of 25 % of D for temperature and 16 % of D

for Tmix deconvolution (Figure 2, blue triangles and SI). This

large deviation is attributed to the coexistence of [CuL2]2 + and
[CuLXn]2+ for ratios between 0.5 and 1.0 (Figure 1, panel A,

right). Both species having different longitudinal relaxation
times (SI) the deconvolution experiment will have the dipolar

coupling suppressed differently between samples and this will
lead to partial removal of modulation depth by the division.

Figure 2. Background corrected traces (top), CuII–NO distance distributions
(middle) and modulation depths (bottom) from experiment (black squares),
simulation (grey crosses, see text for details) and model (blue triangles)
versus CuII/L ratios for the deconvoluted RIDME measurements performed in
deuterated matrix at 15 K and 30 K (left) and using a Tmix of 5 ms and a Tmix

of 200 ms (right).

ChemPhysChem 2017, 18, 2318 – 2321 www.chemphyschem.org T 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim2319

Communications

http://www.chemphyschem.org


The experimental trend in modulation depth can be simulated
as a function of T1 and Tmix (Figure 2, grey crosses and SI).

As this hampers the robustness of deconvolution methods
for quantitative modulation depths without a priori knowledge

of components and their relaxation times, experiments avoid-
ing deconvolution were tested. Owing to the high 1H Larmor
frequency (&52 MHz at 1.2 T) ESEEM is not visible in protonat-
ed samples and pronounced RIDME oscillations are observed
(data in SI). Here, the RIDME modulation depth encodes the

ratio of the radical bound to the paramagnetic metal ion. For
ratios 0.0 to 0.5 the CuII-NO modulation depth increases with
the fraction of metal-bound ligand and for ratios 0.5 to 0.9 D

stays virtually constant, as all ligands are tethered to metal

ions. Ratio 1.0 showing an outlier that could be due to the
specific sample or experiment. Nevertheless, there is good

agreement with the model (rmsd between data and fit 8 % of

D). The expected 2.6 nm distance was found (see SI).
While the quantification of RIDME modulation depths be-

comes feasible, protonated samples severely limit the achieva-
ble maximum distance and resolution. Fortunately, during the

investigation reported here, Yulikov and co-workers published
the successful averaging of unwanted ESEEM modulations[12]

abolishing the need for deconvolution and allowing to use

deuterated samples leading to clearly superior results (Figure 3
and SI). Notably, an apparent modulation depth is already re-

trieved from artifacts present in a sample without any added
metal. Thus, small modulation depths should be interpreted

with caution.

The RIDME modulation depth increases from ratios 0.0 to 0.5

while after that ratio and up to 1.0 D was largely constant
(rmsd to modelled modulation depths 7 % of D). The expected

2.6 nm CuII-NO distance was found also here.
The results were confirmed by performing X-band measure-

ments in protonated and deuterated matrix averaging 1H and
2H ESEEM respectively (data in SI). Although 2H ESEEM modula-

tions could not be completely diminished by averaging at

9 GHz, the measurements could follow the percentage of
ligand bound to CuII ions (SI).

This work demonstrates that the RIDME modulation depth
does encode the number of radicals tethered to fast relaxing

paramagnetic centers with spin 1=2 and thus allows quantifica-
tion. Even in a system with weaker binding affinity D will re-

flect the fraction of ligand with bound metal ; however, this
will not necessarily be all metal added. As the free metal only
contributes to background the modulation depth quantifies
bound metal and thus, the binding constant when the total
metal ion concentration is known. Quantifying complex forma-
tion from modulation depths in systems with varying relaxa-
tion times via deconvolution methods has been found to be
unsatisfactory. Here, the choice of mixing time and tempera-

ture will alter the weights of contributions of the individual
species. Avoiding deconvolution methods and using sufficient-
ly long mixing times, quantification becomes practical as dem-
onstrated here. The suppression of ESEEM by averaging[12] has
been instrumental in resolving distances and measuring rela-

tive percentage of the spin pair from a single RIDME experi-
ment. As deuteration is a prerequisite for reliably resolving

long distances and the complications caused by variations in

relaxation times of the paramagnetic metals complicate decon-
volution methods, reliable interpretation of D values from Q-

band RIDME should be pursued in deuterated matrix using the
nuclear modulation averaging approach with a sufficiently

long mixing time.
The research data supporting this publication can be ac-

cessed at https://doi.org/10.17630/8a0dc118-48b0-46a0-bc9f-

a6bbc3f970fb
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