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ABSTRACT

Viruses are abundant, diverse and ancestral biolog-
ical entities. Their diversity is high, both in terms
of the number of different protein families encoun-
tered and in the sequence heterogeneity of each
protein family. The recent increase in sequenced
viral genomes constitutes a great opportunity to
gain new insights into this diversity and conse-
quently urges the development of annotation re-
sources to help functional and comparative analy-
sis. Here, we introduce PHROG (Prokaryotic Virus
Remote Homologous Groups), a library of viral pro-
tein families generated using a new clustering ap-
proach based on remote homology detection by HMM
profile-profile comparisons. Considering 17 473 ref-
erence (pro)viruses of prokaryotes, 868 340 of the
total 938 864 proteins were grouped into 38 880 clus-
ters that proved to be a 2-fold deeper clustering than
using a classical strategy based on BLAST-like sim-
ilarity searches, and yet to remain homogeneous.
Manual inspection of similarities to various refer-
ence sequence databases led to the annotation of
5108 clusters (containing 50.6 % of the total protein
dataset) with 705 different annotation terms, included
in 9 functional categories, specifically designed for
viruses. Hopefully, PHROG will be a useful tool to
better annotate future prokaryotic viral sequences
thus helping the scientific community to better un-
derstand the evolution and ecology of these entities.

INTRODUCTION

Viruses are key players in most ecosystems as they ac-
tively participate to the regulation of microbial communi-
ties (1) and are important vectors for horizontal gene trans-
fer (2). Viruses infecting prokaryotes out-number eukary-
otic viruses in some ecosystems (3) and represent the great
majority of the viruses found in viral metagenomes (4). Vi-
ral genomes and metagenomes highlight (i) the recurrent
presence of virus groups, especially in similar ecosystems,
recently termed ‘virus operational taxonomic units’ (vO-
TUs; 5), (ii) the large number of different vOTUs found in
most ecosystems (4) and (iii) the dominance in most vO-
TUs of genes not similar to any known genes. The growing
amount of viral sequences produced nowadays, especially
from metagenomes, calls for a need in developing resources
to help assigning functions to viral proteins in order to im-
prove functional and comparative analyses. As determining
information for newly identified genes in sequences relies
on finding an annotated homologous sequence using sim-
ilarity searches, a set of well-annotated proteins that can
be used for future work is particularly important. In or-
der to build such a reference set of proteins, a classical way
is to organize these proteins into homologous groups and
to annotate these groups. Several methods have been used
to cluster viral proteins into either homologous or orthol-
ogous groups: (i) an approach based on the identification
of genome-specific best hits that are joined to form clus-
ters of orthologs has been used for the pVOGs database
(Prokaryotic Virus Orthologous Groups; (6)), (ii) a similar
approach based on best-hit triangles has been implemented
recently in eggNOG (evolutionary genealogy of genes: non-
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supervised orthologous groups; (7)), which integrates an ad-
ditional step of in-paralogs detection and the identification
of fused genes and (iii) clustering-based approaches have
also been used to compute groups of homologous viral pro-
teins (8–10). Despite using different clustering strategies, all
these methods rely on similarity search results generated by
BLAST (11) or faster equivalent such as MMseqs (12) or
DIAMOND (13), and none integrate remote homology de-
tection. Yet, viruses are known to have distant evolutionary
relationships, resulting in distant sequence similarities not
always captured by sequence comparison tools. This can be
illustrated by the Microviridae family, whose members all
encode homologous major capsid and replication initiation
proteins in their ∼5 kb genomes. As the origin of the family
is ancient, homologs are difficult to detect using sequence
similarity search tool such as BLAST. For instance, for two
distantly related Microviridae, Spiroplasma phage 4 and En-
terobacteria phage phiX174 belonging respectively to the
Gokushovirinae and Bullavirinae sub-families respectively,
the best BLASTp hit between their capsid proteins only ex-
hibit a bit-score of 38.5 (corresponding to an E-value of 0.14
on a ∼1 million protein database) and an alignment cover-
age below 30% for the two proteins. These values are much
below any reasonable thresholds on the bit-score, E-value or
coverage to detect homology. Thus, no clustering methods
will group these two proteins together even though they are
distant yet true homologs. Recent developments in remote
homology detection software (14,15) coupled to the great
wealth of genomic sequences could help tackle the problem
of distant homology of viral proteins, yet to our knowledge,
no clustering method uses remote homology detection in an
automatic way for viral proteins.

Here, we propose such a procedure and clustered viral
proteins into homologous groups, in two steps: (i) proteins
are first gathered based on similarity search results (score
>30 and coverage >80%) and (ii) HMM profiles generated
for each protein cluster are then compared to each other and
grouped (coverage >60%, probability >90 %) into super-
clusters hereafter termed PHROGs (Prokaryotic Virus Re-
mote Homologous Groups). These PHROGs were then an-
notated using annotation transfer, coupled with a careful
manual curation. An interface has been developed, allowing
to browse the data either by PHROG or by viral genome.

MATERIALS AND METHODS

Two datasets of archaeal and bacterial viruses

First, all known sequences of viruses infecting Bacteria or
Archaea were assembled in a dataset. To this end, 2318 ref-
erence sequences of viruses infecting prokaryotes were re-
trieved in RefSeqVirus genomes (as of April 2018). Viruses
included in the pVOGs database (6) and complete virus
genomes from GenBank were also downloaded. As one
virus can be present in these three databases with differ-
ent identifiers (RefSeq, pVOGs and GenBank), all these
viruses were compared to each other using BLASTn and
viruses almost identical were removed (>99.9 identity per-
cent and coverage >97%). The resulting 4975 completely se-
quenced viruses (2315 from RefSeqVirus, 686 from pVOGs
and 1986 from GenBank) will be refered as RefVirus from

here on. To this dataset, 12 498 previously published cu-
rated viral sequences derived from cultivated microbial iso-
lates were added (9). This last dataset is composed of both
integrated proviruses (>10 kb) and circular episomes, and
is here termed ProVirus. These (pro)viruses were found in
5492 microbial genomes. In total, 496 859 proteins from
complete viral genomes (i.e. RefVirus) and 442 005 proteins
from (pro)viruses (i.e. ProVirus) were collected.

Generating the viral homologous groups or PHROGs

Protein clustering using similarity searches (Figure 1, Panel
B1 and B2). The 938 864 proteins were compared to each
other using MMseqs (12). To be further considered, a pro-
tein pair should have (i) at least a local alignment with a
bit-score >30 and (ii) >80% of the residues of each protein
should be involved in at least one alignment found between
the two proteins (i.e. coverage >80%). Using each protein
pair and the lowest E-value found in a local alignment be-
tween two proteins, the proteins were clustered with MCL
(inflation 2.0; (16)).

Grouping the protein clusters using remote homology detec-
tion (Figure 1, Panel B3 and B4). For each of the 63 673
clusters containing at least two proteins, a multiple align-
ment was built using ClustalOmega (17; 5 guide-tree/HMM
iterations) and an HMM profile was computed for each
alignment using hhmake of the HHsuite toolkit (version
2.0.16; (18)). All these profiles were then compared to each
other using the hhsearch command. The 85 024 singletons
were also compared to the 63 673 cluster profiles. To be fur-
ther considered, a cluster pair should have a hit (i) with a
probability >90%, (ii) that involves at least 60% of the two
HMM profiles (same thresholds when comparing single-
tons to clusters). Based on these rules, singletons and clus-
ters were then clustered with MCL (inflation 2.0; (16)). This
resulted in placing 868 340 of the initial 938 864 protein
sequences into 38 880 ‘super-clusters’ containing at least
two proteins, hereafter named PHROGs. Only 7.5% of the
protein dataset remained as singleton, or ORFan (70 524
proteins). Multiple sequence alignments and HMM pro-
files were computed for all the 38 880 PHROGs contain-
ing at least two proteins using ClustalOmega (17) and HH-
suite (18). Each multiple alignment was processed in order
to consider as gaps the columns made of >50% of gaps
(saved in a2m format). HMM profiles were generated for
each of the masked alignment and these profiles were com-
pared to each other using hhsearch (18). Results are acces-
sible through the website and all files are downloadable as
zipped archives.

Comparing PHROGs to the standard clustering method

To estimate the performance of our procedure, the same set
of proteins were clustered using a classical approach. Se-
quence similarities were searched for all protein pairs us-
ing MMseqs and clustered using Markov clustering algo-
rithm (here the MCL software) (12,16). This clustering pro-
cedure is similar to the first step of the PHROG clustering
described above, except that a less stringent coverage thresh-
old was used (coverage ≥50 % for the two proteins). Two
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Figure 1. Overview figure of the dataset, the clustering procedure, results and website main page. (A) Protein sets of reference viruses from the NCBI
(RefVirus) and (pro)viruses detected using VirSorter (ProVirus) were collected. It should be noted that Provirus proteins (green) were not initially annotated.
(B) The four steps of the clustering procedure: (i) the protein network built from pairwise sequence similarities, each dot/vertex representing a protein (green
for ProVirus proteins, red for annotated RefVirus proteins and pink for unannotated RefVirus), linked by edges if the two proteins are similar. (ii) Protein
clusters are identified by applying MCL on to this network, and clusters are depicted as gray circle. (iii) Clusters (and singletons) are compared using protein
profiles and edges are drawn for pairs of protein clusters that are similar. (iv) This network of clusters is here again clustered into PHROGs, depicted as
dark brown and blue for unannotated and annotated PHROGs. For example, PHROG2 is made of two protein clusters and one singleton. (C) Description
of the number of annotated and unannotated PHROGs and singletons, with the number and origin of proteins involved (red and green for RefVirus and
ProVirus, respectively). (D) The PHROGs Web site main page, where users can search for PHROGs or viruses of interest.

complementary metrics were used to analyze the differences
between the two methods: the number of proteins clustered
and the size of the clusters (Figure 3), and the identity per-
cent and coverage between proteins grouped in each clus-
ter (Figure 4). To this end, multiple alignments of clusters
generated with the classical approach were also computed
using ClustalOmega. For all protein pairs inside these mul-
tiple alignments and the PHROGs, the percent identity and
the coverage were calculated as being, respectively, (i) the

number of identical amino acids in the two aligned proteins
divided by the length of the smallest of the two proteins
and (ii) the proportion of amino acids of one protein that is
aligned to any amino acid (not to a gap) of the other pro-
tein. Subsamples of 1000 values were taken to draw each
boxplot of Figure 4.

Coverage threshold values chosen for the two steps of
the clustering procedure are critical parameters, since re-
laxed values come with the risk of aggregating heteroge-
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neous functions (due to the presence of protein fusions),
and stringent values limit cluster sizes. Based on a subset
of 50 000 randomly extracted proteins, three thresholds on
coverage (80%, 50%, no coverage threshold, named respec-
tively ‘1-step C80’, ‘1-step C50’,‘1-step C0’) were tested for
the first step of the clustering procedure (the 50 threshold
corresponding to the standard procedure described above).
Then, results from the 80 % threshold on coverage were fur-
ther considered and used as a basis for the second step of
the clustering and 5 thresholds were tested for the coverage
between HMM pairs (80%, 60%, 40%, 20% and no thresh-
old, named respectively ‘2-step C80 C80’, ‘2-step C80 C60’,
‘2-step C80 C40’, ‘2-step C80 C20’, ‘2-step C80 C0’), the
combination of C80 and C60 being the ones retained for
building PHROGs.

Functional annotation of PHROGs

NCBI protein annotations (RefVirus) were first automat-
ically curated (no upper case except in gene names, cor-
rection of typos, etc.). Phages for which all protein anno-
tations was only an uninformative list (‘hypothetical pro-
tein GP1’, ‘hypothetical protein GP2’, etc.) were consid-
ered as unannotated. These protein annotations were first
combined to determine an annotation for PHROGs. To re-
fine this annotation, the 38 880 PHROGs were compared
to different databases. PHROG profiles were compared to
Pfam domains (version of jan 2018; 19) and UNICLUST
(20) and individual viral protein were compared to proteins
in KEGG Orthologous groups (KOs; version of jan 2018)
using MMseq (bit-score>50, coverage >50%). Manual cu-
ration of the collected annotations and similarities allowed
to extract a single annotation per PHROG.

Colocalization of genes according to their functions

For each pair of functional annotations, the number of their
respective proteins that are neighbors on the genomes were
determined. Neighbors were here defined as the two pro-
teins encoded right before and after the protein considered,
and only if they are on the same strand. As some annota-
tions gather many more proteins than others, a colocaliza-
tion score between two annotations was computed. The hy-
pergeometric formula was first used to calculate the proba-
bility P that two annotations (noted here annotation A and
annotation B) that each have nA and nB proteins (among the
whole dataset of n proteins), would have k pairs of proteins
that are neighbors by chance.

P(X ≥ k) =
min(na ,nb)∑

i=k

Ci
na

Cnb−i
n−na

Cnb
n

This probability represents the statistical significance of
an observed number of neighbor protein pairs for two an-
notations. This probability was also computed consider-
ing each PHROG and not each annotation and PHROG
neighbors are reported on the Web site. To draw a graph
of the most significant relationships, all P values were then
corrected by the total number of annotations pairs T and
finally converted into a significance score : S(A,B) = −
log(P×T) (as in 21). Annotation pairs with significance

scores >1 are considered as significantly colocalized (scores
are capped to 1000). A network of neighboring annotations
was generated using the igraph library in R, in which an-
notations were joined by an edge with a weight equal to
their significance score. For visualizing purposes, only the
112 more frequently retrieved annotations (used for >650
proteins) were considered. When neighbor genes have the
same annotations, these annotations are drawn as squares.
Annotations were placed using the Fruchterman-Reingold
layout algorithm. Annotations were gathered into mod-
ules using community structure detection based on edge
betweenness.

RESULTS

Description of the dataset

All prokaryote-infecting viral sequences (complete
genomes or not) from existing sequence databases were
compiled. Overall, to the 4975 viruses infecting a prokary-
ote from the RefSeq, pVOGs and GenBank databases were
added the 12 498 high-confidence viral sequences identified
by the VirSorter tool (9,22) as proviruses or circular viral
genomes in microbial genomes. The viruses considered
here were mostly dsDNA viruses and infected 35 different
bacterial and archaeal classes and 410 genera. Yet, viruses
infecting bacteria belonging to the Proteobacteria class rep-
resented as much as 63% of the 17 473 total viral genomes
or contigs, the Escherichia genus alone representing as
much as 29% of this set (Figure 2).

Analysis of the clustering characteristics and comparison to
a standard clustering procedure

Viral proteins were clustered using either our two-step
procedure or a more classical approach (see Materials
and Methods). The main improvement provided by the
PHROGs strategy was a reduction by nearly two-fold in
the number of clusters (at least 2 proteins) compared to the
standard procedure (38 880 and 57 073, respectively) and a
concomitant increase in the average size of the protein clus-
ters (22.3 and 15.2, respectively). Unsurprisingly, the num-
ber of proteins left as singletons was comparable for the
PHROG and standard procedures (70 524 and 67 430, re-
spectively) and represented <8% of the 938 864 proteins.
The largest clusters were composed of 5879 and 2267 pro-
teins, respectively, with 19 PHROGs being >2000, whereas
only 2 clusters made with the classical approach had such a
large size. All along, highly populated protein families were
more frequent among PHROGs than traditional clusters
(see Figure 3).

Considering the classical clustering approach (Figure 4),
the average identity percent inside clusters tended to de-
crease with the cluster size, from 79.7% for small clusters
(<7 proteins) to 56.6% for large ones (>2000 proteins).
This trend was dramatically accentuated for the PHROG
procedure, as the average identity went down from 79.8 to
27.2%. The average coverage remained high for all cluster
sizes for the classical approach (98.3% in average) whereas
it dropped for the PHROG procedure from 99% to 80.7%
in average, for small and large clusters, respectively (Fig-
ure 4). This shows that more distant homologs are gath-
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Figure 2. Number of viruses considering their viral family and the class of their host (when not specified, viral families have a dsDNA genome). The size
of the balloons are proportional to the number of viruses and the color reflects the proportion of proviruses.

ered with the PHROG procedure. We verified that these
large clusters maintained a good consistency, with an ac-
ceptable average coverage: over 95.8% of the proteins inside
a large PHROG covered >50% of any other protein of the
PHROG. As expected, the percent identity were quite low
within these large clusters, with 66.8% of the protein pairs
having an amino acid percent identity <30%. Coming back
to the Microviridae protein example mentioned in the Intro-
duction, capsids of viruses of the two known sub-families,

Gokushovirinae and Bullavirinae, were grouped into two
separate clusters by the first step of our method, as well
as by the classical method. Indeed, using pairwise sequence
alignment (MMseqs), all Gokushovirinae capsid protein se-
quences were similar to each other but no similarities were
detected between these and Bullavirinae capsid sequences.
An HMM profile was built for these two groups of cap-
sids and the two HMMs were clearly identified as similar
by HHsearch (probability of 99.5, E-value of 8.4 × 10–18,
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Figure 3. Cumulated number of clustered proteins. For example, point a means that for the standard clustering procedure, ∼234 000 proteins are in clusters
that contain at least 200 proteins, whereas for the PHROG procedure, ∼390 000 proteins are in clusters >200 (point b). The inset at the top right is a zoom
of the left part of the curve. The 5 largest PHROGs are highlighted by a cross at the bottom right (the two largest PHROGs at the bottom right gather
5795 and 5879 proteins).

score of 176.8, covering >400 positions of the two HMMs).
Thus, the two clusters of capsid proteins were gathered by
the second step of our method, resulting in PHROG 514
that contains capsid protein for all members of this phage
family.

We further studied the effect of coverage thresholds on
clusters and found that all procedures based on only one
clustering step gave comparable results, regardless of the
coverage threshold (Supplementary Figure S1A). This pa-
rameter however had a major impact on the second cluster-
ing step (Supplementary Figure S1A). Indeed, for ‘1-step
C80’, ‘1-step C50’ and ‘1-step C0’, the largest clusters were
of 71, 77 and 90 proteins respectively, whereas the 2-step
procedures built clusters composed of 151, 164, 269, 465
and 343 proteins when coverage thresholds of the second
step were decreased from 80% to 0, by 20% steps, using
a coverage of 80% in the first step. Considering the aver-
age identity percent for protein pairs inside clusters, the use
of HMM comparisons allowed to group proteins with sig-
nificantly more remote homology (Supplementary Figure

S1B). Yet, procedures involving thresholds lower than 50 %
on the first or second step (‘1-step C0’, ‘2-step C80 C40’,
‘2-step C80 C20’ and ‘2-step C80 C0’) of course resulted in
the non negligible presence of protein pairs that cover each
other <50% inside clusters (Supplementary Figure S1C).
Thus, the combination of a threshold of 80% and 60% on
coverage for the two steps of the clustering allows to detect
remote homologies (<30 id%) and to build large clusters
without grouping proteins that do not cover themselves sig-
nificantly.

The whole protein dataset, when compared by a
sequence-to-sequence comparison tool (MMseqs, bit-
score>50), resulted in 238.3 millions of protein pairs. Con-
sidering only the 195.7 million pairs with a coverage >50%,
the standard method built 57 073 clusters (178.5 millions of
protein pairs inside these clusters). The 38 880 PHROGs
created by our clustering strategy resulted in 463.1 mil-
lions of protein pairs inside these PHROGs, so over twice
as much the number of pairs identified by BLAST-like
searches.
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Figure 4. Identity percent (A) and coverage (B) for protein pairs in the same clusters. The clusters were separated according to interval of size, the first
value �3� representing clusters that contain 3, 4, 5 or 6 proteins, �7� being clusters containing between 7 and 19 proteins, and the last interval �2000�
being clusters >2000 proteins. Using the multiple alignments of each cluster, (i) the identity percent between two proteins is the number of amino acids
that are identical in the two aligned proteins divided by the length of the smallest of the two proteins, and (ii) the coverage is the proportion of amino acids
of one protein that is aligned to any amino acid (not to a gap) of the other protein. Subsamples of 1000 values where taken to draw each boxplot.

Functional annotation of PHROGs

To determine a putative function for each PHROG, pro-
tein annotation from NCBI complete viral genomes (Re-
fVirus) inside each PHROG were confronted, harmonized
and transferred. At the onset, as many as 20 872 different
annotations were found for the 496 859 proteins from Re-
fVirus. For example, PHROG 2 is made of proteins anno-
tated under 107 different designations such as ‘terminase
large subunit’, ‘terminase’, ‘terminase DNA packaging en-
zyme large subunit’, ‘phage terminase large subunit’, ‘large
terminase protein’, ‘large terminase subunit’, ‘TerL’, ‘termi-
nase, large subunit’, ‘large subunit terminase’, ‘large termi-
nase’, (etc. . . ) as well as some ‘hypothetical protein’. This
PHROG was then annotated as ‘terminase large subunit’.
To further improve these annotations, different sources of
information were collected and manually inspected to re-
fine each PHROG annotation: (i) 11 810 PHROGs con-
tain at least one Pfam domain, (ii) 6710 PHROGs were
attributed at least one GO term via a similarity to UNI-
CLUST proteins, (iii) 1788 PHROGs were similar to at
least one KEGG Ortholog group (KO). Presence of proteins
annotated unambiguously in the ACLAME database (23)
were also retrieved. Finally, 5108 of the 38 880 PHROGs
were functionally annotated using a set of 705 annota-
tions. Nine functional categories were then defined to cover
these 705 annotations : ‘head and packaging’, ‘connector’,
‘tail’, ‘DNA, RNA and nucleotide metabolism’, ‘integra-

tion and excision’, ‘lysis’, ‘transcription regulation’, ‘mo-
ron, auxiliary metabolic gene and host takeover’, ‘other’
(Table 1 and Figure 5). Even though the number of anno-
tated PHROG seems low (5108 of the 38 880 PHROGs),
large PHROGs are more often annotated than small ones
and thus, these 5108 annotated PHROGs contain 475 493
proteins (50.6% of the total protein dataset, including sin-
gletons) (Table 1). These annotated PHROGs contain as
many as 68 478 ‘hypothetical protein’ from RefVirus that
can now be annotated with their PHROG’s annotation. On
the contrary, 11 660 RefVirus proteins initially considered
as annotated have lost there annotation (i.e. are in unanno-
tated PHROGs; Figure 1C). This is due to PHROGs (i) con-
taining only uninformative protein annotations (e.g. protein
annotations such as ‘prophage Lp1 protein 30’, ‘DUF1642
domain containing protein’, ‘similar to P2 orf80’, etc. . . ) or
(ii) containing protein with non congruent annotations and
in both cases, information collected using KEGG, UNI-
CLUST or Pfam did not help to define an annotation.
For example, PHROG 358 contains RefVirus proteins an-
notated as ‘virion structural protein’, ‘virulence associated
protein’, ‘baseplate protein’, ‘neck protein’, ‘tail protein’
(etc.), has no similarity with KEGG or UNICLUST pro-
teins, is only similar to a Pfam domain of unknown function
(DUF4815) and is similar to five unannotated PHROGs
and to one ‘virion structural protein’ PHROG but on a very
small portion. Thus, this PHROG was attributed to ‘un-
known function’.
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Table 1. Number of PHROGs (and proteins inside these PHROGs) annotated in the nine functional categories. The first line represent the whole dataset
and the hierarchy in the following lines is represented by indentations. A color was attributed to each of the nine functional category

Further gaining some functional clues using (often short) sim-
ilarities between PHROGs

We then performed iterative HMM alignments, with re-
laxed parameters, to extend annotation possibilities. For
this, columns of the multiple sequence alignments with
>50% gaps were considered as insertion states, allowing to
get rid of spurious ends and insertions present in only a
handful of proteins. A total of 26 177 new connections were
detected between 12 791 PHROGs (E-value < 0.001 and
no threshold on the coverage), and in 25% of cases, non
annotated PHROGs were joined to annotated ones. These
PHROGs were not clustered together in the first place, for
several reasons. First, similarities had to cover at least 60%
of the two initial protein clusters (Figure 1B(iii)) to build
PHROGs and thus, local similarities existing between pro-
tein clusters were considered insufficient for aggregation.
Moreover, MCL clustering (Figure 1B(iii)) implies the pres-
ence of more edges within members of PHROGs than be-
tween different PHROGs, but links between clusters (and
thus PHROGs) exist. Finally, PHROGs are larger and more
informative than the protein clusters they are built upon
and thus homologies even more distant can be detected
when comparing PHROGs than when comparing initial
clusters. In any case, similarities between PHROGs can
provide hints, especially for unannotated PHROGs simi-
lar to annotated ones. Among annotated PHROGs, 3409
different PHROGs were similar to at least one other an-
notated PHROG and 52.5% of the 10 752 similarities in-
volved PHROGs with the same annotation (83.4% with
the same functional category). Moreover, among the 824
similarities for which the two PHROGs reciprocally cov-
ered each other by >60% of their length, 64.7% were in-
volving PHROGs with the same annotation. This suggests
that information provided by these more distant links could
be of relevance for exploring the function of unannotated
PHROGs. Indeed, among PHROGs of ‘unknown func-
tion’, for which gaining some information is essential, 3037
(48 704 proteins) were linked to annotated PHROGs (8179

links). These information are indicated in the lower right
panel of each PHROG individual page on the Web page.

Further gaining some functional clues using colocalization of
annotations

To further help in the annotation of PHROGs, a score of
colocalization was computed and was significant for 1731
annotation pairs. For example, the 5122 and 13 119 genes in
PHROGs annotated as ‘head scaffolding protein’ and ‘ma-
jor head protein’ were adjacent 4690 times on the differ-
ent viral genomes and the link had the maximum weight of
1000. Colocalized annotation terms often involved annota-
tions from the same functional category (Figure 6). Some
of them corresponded to known functional interactions,
such as ‘integrase’ and ‘excisionase’ (24), ‘SbcC-like sub-
unit of palindrome specific endonuclease’ and ‘SbcD-like
subunit of palindrome specific endonuclease’ (25), ‘RecT-
like ssDNA annealing protein’ and ‘exonuclease’ (for a re-
view see 26) or ‘Sak4-like ssDNA annealing protein’ and
‘single strand DNA binding protein’ (27). Other, less ex-
pected colocalizations, such as ‘UvsX-like recombinase’
and ‘2OG-Fe(II) oxygenase’ or ‘gam-like host nuclease in-
hibitor’ and ‘Kil protein for bacterial septation inhibition’,
might suggest new avenues of investigations.

DISCUSSION

No ORFans anymore?

The PHROG database includes 17 473 genomes (or genome
fragments) of viruses infecting a broad range of prokaryotic
hosts (410 prokaryotic genera). The great majority of the
938 864 proteins encoded within these genomes could be
assigned to a PHROG, and only 7.5% of them remained as
singletons. In accordance with previous studies, these 70 524
ORFans were shorter than the other proteins, with an aver-
age length of 125.3 amino acids compared to 216.1 for all
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Figure 5. For each annotation term, the number of PHROGs with this annotation and the number of proteins in these PHROGs, each term being colored
according to its functional category.

proteins. It should be noted that our cutoffs for PHROG in-
clusion were stringent, in particular in terms of alignment
coverage (>60%), and lowering this threshold would have
allowed to affiliate 23 937 more of these 70 524 singletons.
These singletons similar to a PHROG might correspond to
protein fusions or to proteins for which the gene prediction
software wrongly predicted the beginning or end. For the
remaining 46 587 proteins (4.96% of the whole dataset), a
non-negligible fraction of these ORFans might not be bona
fide genes but false predictions, sometimes due to errors in
genomes, as single nucleotide insertions or deletions lead
to spurious gene calling. Moreover, for the viruses found
in RefSeq and GenBank (RefVirus), various gene predic-
tion programs were used to annotate their genomes over the
years and these programs display small differences in the
genes they predict for a given genome. Thus, <5% of the
proteins can be considered as real ORFans, a value much
lower than what is usually described. Their great number in
genomes are often described as being a specificity of viruses,
with approximately 30% of a phage proteins being described

to be such ORFans (28). As already mentioned, the viruses
considered here were not randomly sampled, as for example
viruses infecting Escherichia represent 29% of the current
dataset. Yet, 25 viral families infecting 410 prokarotic gen-
era were present and we can thus assume that ORFans are
rare in viruses and that their over-representation in newly
described viruses is only due to a lack of closely related
reference in databases. This proportion of ORFans much
smaller than previously thought helps to draw this picture
on the genetic diversity in prokaryotic viruses: viral protein
families are numerous and internally genetically diverse, yet
these families are conserved in related viruses.

The two steps of the clustering procedure and the search for
remote homology

The standard procedure usually implemented to build pro-
tein clusters consists in comparing all proteins using a se-
quence similarity search tool and then applying a Markov
clustering algorithm to define groups (9,16). As many as
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Figure 6. Each vertex represents an annotation and two annotations are linked if considered as significantly colocalized (see Materials and Methods
section). Edges were attributed a weight equal to their significance score. Only the 112 most frequent annotations (used for >650 proteins) are displayed.
Annotations for which genes were colocalized with genes having the same annotation are drawn as squares. Among these 112, the 21 annotations not
significantly colocalized to any other are displayed on the right.

47% more clusters were defined by such a classically used
procedure, compared to PHROG, which leads to an over-
estimation of the number of viral protein families and thus
of viral genetic diversity. The clusters delineated by the stan-
dard procedure being of a smaller size than PHROGs, the
average protein coverage and identity percent inside clus-
ters were greater for this classical procedure. Most protein
pairs inside large PHROGs (>2000 proteins) had an iden-
tity percent below 30%, a threshold described as the twi-
light zone under which protein pairs are historically con-
sidered to have non-similar structure (29). Yet, the cover-
age percentages inside PHROGs were high, even for large
PHROGs, and combined to the threshold of 90% on the
probability of HHsearch, indicate that protein inside these
PHROGs are bona fide homologs. The low amino acid per-
centages likely reflect the high diversity of each viral protein
family and not the fact that the grouped protein have a non
similar structure. Indeed, studies on particular viral protein
families have shown that some proteins sharing as little as
10% amino acid identity still belonged to the same func-
tional category (30). Thus, PHROGs are larger than tra-
ditional clusters and the coverage between proteins inside
each PHROG is still good. To explain this result, we be-
lieve that the first step of the PHROG procedure, although
similar to the standard clustering procedure, builds very ho-

mogeneous protein clusters as the very stringent threshold
(80% of coverage for the two proteins) prevents transitiv-
ity issues. Then, the second step based on the detection of
distant homologies, allows to securely connect remote ho-
mologs.

More viral proteins are now annotated thanks to the annota-
tion of PHROGs

About 13.8% of the RefVirus proteins that were ‘hypotheti-
cal protein’ are now in annotated PHROGs. Even more pro-
teins are newly annotated thanks to PHROGs, as a not neg-
ligible (but difficult to estimate) fraction of proteins consid-
ered as annotated in RefVirus are not informative (e.g. ‘sim-
ilar to P2 orf80’). These proteins were not detected by our
script as ‘hypothetical protein’ even though no real informa-
tion on their putative function is known. Another positive
improvement (also difficult to quantify) is the correction of
existing annotations, that could be misleading, partial or
wrong. For example, 3 proteins in PHROG 2, annotated as
‘terminase large subunit’, were initially annotated as ‘type I
secretion target domain-containing protein’ or ‘Mu portal
protein gp28 TerL’ and annotating these 3 proteins as ‘ter-
minase large subunit’ feels more informative and legitimate.
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Furthermore, 263 777 proteins of the ProVirus set are now
annotated in a uniform way.

Hints for unannotated PHROGs similar to annotated ones

At present, PHROG annotations are not transferred to
unannotated PHROGs that are collected when an addi-
tional HHsearch comparison of PHROG profiles is run (no
threshold on coverage). However, these results are shown on
each PHROG web page and should provide valuable hints.
Indeed, more than half of the time, annotated PHROGs
similar to other annotated PHROGs have the same an-
notations. The two most frequent cases are PHROGs ‘tail
length tape measure protein’ similar to PHROGs with the
same annotation (1044 different PHROG pairs) and ‘tail
fiber protein’ PHROGs similar to other ‘tail fiber protein’
PHROGs (929 cases). These two cases are coherent as (i)
‘tape measure’ have different lengths by nature and (ii) ‘tail
fiber proteins’ being the point of contact with bacteria, they
are prone to natural selection, and therefore highly vari-
able in essence. For PHROGs similar to a PHROG with
a different annotation, the annotations are often coherent,
one being more specific than the other such as ‘tail protein’
PHROGs similar to ‘tail fiber protein’ PHROGs (433 cases).
Some PHROGs from different categories are also linked be-
cause they share a functional domain, such as ‘tail length
tape measure protein’ (‘tail’ category) and ‘endolysin’ (‘ly-
sis’ category) (65 cases). These similarity results should help
predict in the future the function of the 3037 unannotated
PHROGs (48 704 proteins) that are similar to an annotated
PHROG.

CONCLUSION

Due to the ancient origin of viruses, their gene families have
a long evolutionary history and often encompass distant
homologs not detected by standard sequence comparison
tools such as BLAST. To be able to identify these distant
homologs, our clustering strategy involved the use of HMM
comparison tools as these are much more sensitive. The
clusters built here proved to be larger while remaining co-
hesive, leading to an increase in annotated proteins. In ad-
dition, a special effort was made to standardize these anno-
tations. Annotations of PHROG families were performed
based on Refseq and several other databases, and manu-
ally curated by experts, adding a real value to the PHROG
database. These annotations will be updated in the future,
as new phage functions are discovered, or when experts pro-
vide ‘Suggestions’ through the dedicated page of the web
site. Hopefully, PHROG will constitute a useful tool for
scientists to better characterize new viral sequences, espe-
cially the millions of proteins derived from metagenomes,
bringing useful insights on the nature of viruses infecting
microbes.
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