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Perceptual confidence judgments reflect self-consistency
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Each perceptual decision is commonly attached to a
judgment of confidence in the uncertainty of that
decision. Confidence is classically defined as the
estimate of the posterior probability of the decision to
be correct, given the evidence. Here we argue that
correctness is neither a valid normative statement of
what observers should be doing after their perceptual
decision nor a proper descriptive statement of what
they actually do. Instead, we propose that perceivers
aim at being self-consistent with themselves. We
present behavioral evidence obtained in two separate
psychophysical experiments that human observers
achieve that aim. In one experiment adaptation led to
aftereffects, and in the other prior stimulus occurrences
were manipulated. We show that confidence judgments
perfectly follow changes in perceptual reports and
response times, regardless of the nature of the bias.
Although observers are able to judge the validity of their
percepts, they are oblivious to how biased these
percepts are. Focusing on self-consistency rather than
correctness leads us to interpret confidence as an
estimate of the reliability of one’s perceptual decision
rather than a distance to an unattainable truth.

Introduction
An observer trying to perceive objects in her

environment must infer them from noisy sensory
measurements (Mamassian, Landy, & Maloney, 2002).
This perceptual inference is informed by a combination
of noisy measurements in an environment that can
fluctuate (for example, because of differences in
illumination at noon and dusk) and by some prior
beliefs of the observer that sometimes can be updated
(Gold & Stocker, 2017; Knill & Richards, 1996;
Mamassian et al., 2002; Weiss, Simoncelli, & Adelson,
2002). The observer can subsequently make decisions
by applying a decision rule on the inferred variables.
These decisions are—at least in humans—accompanied
by a sense of uncertainty called confidence. It remains
unclear how this sense of confidence is computed and

how it relates to the fluctuations of the environment and
to prior beliefs. Confidence is classically defined as the
posterior probability of a decision to be correct, given
the evidence (Drugowitsch, Moreno-Bote, & Pouget,
2014; Hangya, Sanders, & Kepecs, 2016; Meyniel,
Sigman, & Mainen, 2015; Pouget, Drugowitsch, &
Kepecs, 2016; Sanders, Hangya, & Kepecs, 2016).
Here, we argue that this definition cannot withstand
close examination. Correctness implies agreement
with the true state of the world—which observers
do not know—thus dismissing inherent biases of the
perceptual system and the role of prior beliefs.

If the observer cannot use the true state of the world
as the reference against which she is trying to compare
her perceptual decision, what can she use? It might be
tempting to replace the objective truth by the subjective
percept of the observer, but this leads to circular
reasoning. It is indeed rare that an observer dismisses a
decision she just took, because if she thinks her decision
is wrong, why did she take it in the first place? One way
out of this circularity is to assume that the observer is
considering not just the interpretation corresponding to
her percept but also multiple alternative interpretations.
Although one interpretation is eventually chosen, the
observer may also have access to some information
about alternative interpretations that have been
discarded. The clearest description of such a theory
is the balance of evidence model proposed by Vickers
(1979). In this model, each possible interpretation is
described by a race (i.e., an accumulation of sensory
evidence), the perceptual decision is the winning race,
and the balance of evidence is the evidence of the
losing race at the time of the perceptual decision.
Although this model is very powerful to account for
experiments run in the laboratory where the number of
alternative interpretations is usually small and known
to the observer, it is more difficult to see how it could
generalize to more natural situations where the number
of possible interpretations each time we glance around
is literally infinite.

Instead of considering that confidence refers to
the distance to the true state of the world, or that
the observer has access to multiple interpretations
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compatible with some sensory evidence, we propose
here that perceptual confidence is a measure of the
stability of the perceptual decision given the sensory
evidence. More specifically, we hypothesize that
confidence judgments reflect an evaluation of the
extent to which the current perceptual decision is
self-consistent with other decisions the observer could
have taken, previously or in the future, in the same
conditions. In other words, self-consistency is a measure
of reproducibility of perceptual decisions. If the same
stimulus was presented to an observer in the exact
same experimental conditions, high self-consistency
corresponds to large probability of perceiving the
same thing. In contrast, correctness is a measure of
matching of perceptual decisions with the true state of
the world. Self-consistency departs from correctness
as soon as observers adopt a subjective sensory
criterion that differs from the objective criterion that
separates physical object categories (Figure 1; see also
Supplementary Material S1).

As an illustration, Figure 1 shows a simulated
experiment where one of five oriented stimuli can
be presented to an observer. Her task is to estimate
whether the presented stimulus is tilted to the right or
to the left. To do so, she might rely on some sensory
evidence extracted from the presented stimulus and
use an internal criterion to decide whether the sensory
evidence is more likely coming from a right- or left-tilted
stimulus. An optimal observer would place her sensory
criterion at 0 (vertical), but the observer might be
biased in setting her criterion (Figure 1A). If the
observer is using the same sensory evidence to estimate
her confidence about the validity of her perceptual
decision (for alternative models, see Mamassian & de
Gardelle, 2021), two confidence criteria can be placed
on either side of the sensory criterion so as to generate
confidence ratings on two levels (low when the evidence
is close to the sensory criterion and high otherwise). A
biased sensory criterion to the right of vertical creates
an inflation of left orientation decisions (Figure 1B).
As a consequence, the trials where the sensory evidence
lies in between the objective sensory criterion (at 0) and
the subjective criterion (at θ s) are likely to be incorrect
(Figure 1C). In contrast, these trials will still be mostly
self-consistent with past similar trials (Figure 1D). This
difference between correctness and self-consistency
has an impact on the estimated confidence sensitivity.
Confidence sensitivity can be measured as the area
under the Type II receiving operating characteristic
(ROC) curve that plots the Type II hit against false
alarm rates. The Type II hit rate is usually defined as the
conditional probability of reporting a high-confidence
judgment given that the perceptual decision was
correct, and the Type II false alarm rate is the
conditional probability of reporting a high-confidence
judgment given that the perceptual decision was
incorrect (Figure 1E). Replacing correctness by

self-consistency changes the Type II ROC curve
(Figure 1F) and therefore the estimated confidence
sensitivity. Although correctness is well defined and
controlled by the experimenter, self-consistency can
only be approximated. The experimenter does not
have access to the internal sensory criterion used by
the observer, and this criterion may also be subject to
noise and other factors such as asymmetrical rewards.
However, the experimenter has access to the Type I
results that give for each stimulus strength the fraction
of perceptual responses for each perceptual category
(here, left and right). The self-consistent decision for
any stimulus strength can then be assumed to be the
most frequent one (see Supplementary Material S1).
Therefore, from the experimenter’s perspective, one can
place as many points on the Type II ROC curve as there
are confidence criteria (1 point here for a high vs. low
confidence judgment, or 3 points for confidence judged
on a 4-point rating scale). In our simulations, using
correctness instead of self-consistency would lead the
experimenter to report a reduced confidence sensitivity.

To understand the implications of self-consistency
for confidence judgments, we conducted two
psychophysical experiments. The two experiments are
based on the same basic procedure and were designed
to test whether the relationships among observers’
sensitivity, response times, and confidence judgments
are preserved when the percepts of the observers are
systematically biased. The experiments differed in the
way these biases were generated, either at a low level
of perceptual processing with sensory adaptation and
the resulting after-effects or at a higher level with
biased prior probability of stimuli and the resulting
expectations of the observer. Rigorous measurements
of confidence judgments are notoriously difficult to
accomplish (Clarke, Birdsall, & Tanner, 1959; Fleming
& Lau, 2014). We adopted the criterion-free confidence
forced-choice procedure initiated by Barthelmé and
Mamassian (2009; de Gardelle & Mamassian, 2014). In
this procedure, observers are forced to choose which of
two perceptual decisions they just provided they believe
to be more likely to be correct. In an effort to prevent
observers from comparing the perceived intensity of
the two stimuli, instead of the correctness of their
answer, we asked observers to compare their confidence
across two different visual dimensions (orientation and
color). In previous work, we have shown that observers
can judge confidence across tasks as well as within
the same task (de Gardelle & Mamassian, 2014). On
each confidence pair trial (Figure 2), observers had to
perform a pair of perceptual decisions—an orientation
discrimination task and a color discrimination
task—and then report which one of their perceptual
decisions they thought was most likely to be correct. In
these instructions given to the participants, correctness
refers to the subjective impression of being correct, not
necessarily to the objective truth. For the confidence
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Figure 1. Difference between correctness and self-consistency. (A) Simulation of an experiment where one of five oriented stimuli can
be presented, where orientations to the right of vertical are coded as positive. Because of sensory noise, each stimulus generates an
internal representation whose uncertainty can be represented by a distribution of sensory evidence (shown as one of five Gaussian
distributions). On each trial, the observer has to make an inference on the stimulus based on a sample S from the corresponding
distribution (blue triangle). A perceptual decision is taken as to whether the stimulus is tilted to the right or to the left by comparing
this sample of sensory evidence to a subjective criterion θ s. If confidence evidence matches sensory evidence, high and low
confidence judgments can also be taken on this internal representation by comparing the evidence to two new criteria (θ+ and θ–) on
either side of the subjective criterion. (B) Fraction of chosen “right” response. The sensory evidence is binned, and dot size is
proportional to the number of trials in that bin. According to the perceptual decision rule, any value of the sensory evidence larger
than the subjective criterion leads to a “right” response (shown in blue), and any value below leads to a “left” response (red).

→
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←
(C) Probability correct. Physical stimuli were tilted to the right when their stimulus strength (indicated by the mean, µ, of the
uncertainty distribution) was positive. Probability correct is at chance when the sensory evidence is at the objective criterion (zero)
and is presenting a sharp discontinuity at the subjective criterion. (D) Probability self-consistent. Self-consistency represents the
probability of responding the same thing if the same physical stimulus is presented. Probability self-consistent is almost symmetric
about the subjective criterion (binned dots of sensory evidence and solid line) and is exactly symmetric if any stimulus strength
(instead of 5) was presented with uniform probability (dashed line). (E) Type II ROC for correctness. The Type II ROC plots the
conditional probability of reporting high confidence when the observer is correct as a function of the probability of reporting high
confidence when the observer is incorrect. The black dot corresponds to the particular choice of criteria θ+ and θ– in (A) and can be
plotted by the experimenter based on the participant’s Type I and Type II responses. The smooth curve is obtained by simulating
different confidence criteria. The area under the Type II ROC curve is a measure of confidence sensitivity. (F) Type II ROC for
self-consistency. Same as in (E) but correctness is replaced by self-consistency. The area under the curve is larger, indicating an actual
better confidence sensitivity when the perceptual bias is taken into account.

Figure 2. Depiction of a trial sequence in Experiment 1. Trials started with a 500 ms blank screen. Then, alternating from block to
block, observers started with an orientation (or color) discrimination task. An adapter stimulus was displayed for 500 ms, followed by
a 200 ms blank, followed by a 100 ms test stimulus. After another 200 ms blank, a response screen was displayed prompting
observers to report the perceived orientation (or color) of the stimulus. Following the first perceptual response, the second task
started with an identical sequence. After the observer reported the perceived color (or orientation) for the second task, a new
response screen appeared prompting them to report which of their two preceding responses they felt more confident about having
answered correctly.

judgments, each stimulus condition in one task was
compared to each stimulus condition in the other
task. This carefully controlled experimental design has
two main advantages: (1) the observers’ confidence
judgments cannot be confounded by low-level sensory
signals, as they must base their judgments on the
validity of their decision in two different tasks; and (2)
their confidence judgments are not contaminated by
confidence criterion effects.

As a preview of our results, we demonstrate that
observers’ sense of confidence matched their perceptual
reports, not the stimulus. In the first experiment, where
we induced low-level biases through sensory adaptation
and after-effects, the mapping between perceptual
reports and confidence judgments remained perfectly
identical across biases. In the second experiment, where
we induced perceptual biases by manipulating the prior
probability of occurrence of stimuli, the mapping
between confidence and perceptual reports was here
again perfectly preserved across the observers’ biases.
Overall, these results are strong evidence that observers’
sense of confidence does not match an appreciation

that their perceptual decision is correct. Instead,
confidence matches the observers’ subjective perceptual
experiences, regardless of objective truth. Therefore,
our results are in agreement with a framework where
confidence is an estimate of self-consistency.

Materials and methods
Participants and apparatus

Observers were 16 students and faculty (mean
age ± SD, 26.9 ± 4.2 years), including one author,
with normal or correct-to-normal vision. All were
experienced observers, and all but the author were naive
to the purpose of the experiment. Half of the observers
ran the “after-effect” experiment first, and half started
with the “prior” experiment. Stimuli were displayed on
a Sony Trinitron CRT GDM-F520 (Sony Corporation,
Tokyo, Japan) at 57.3 cm, with three color channels
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linearized independently with a Minolta CS-100A
Chroma Meter (Konica Minolta, Tokyo, Japan). The
monitor midpoint level on all three guns (xyY = 0.278,
0.307, 60.3) was used as a neutral gray reference after
5 minutes of adaptation. Colors were generated from a
relative Derrington–Krauskopf–Lennie (DKL) color
space (Derrington, Krauskopf, & Lennie, 1984) and
then converted to red, green, and blue (RGB) values
using standard procedures (Zaidi & Halevy, 1993).
Colors were modulated on the L–M axis (“red–green”
axis) because, unlike the other two color axes of the
DKL color space, response times are symmetrical about
the neutral point (Wool, Komban, Kremkow, Jansen,
Li, Alonso, & Zaidi, 2015). Color units are fractions
of the maximum saturation that could be displayed on
the monitor along the L–M axis (xyY = 0.320, 0.287,
59.8 and xyY = 0.207, 0.325, 55.5) while approximately
on the same equiluminant plane as the neutral gray
and with the sign indicative of the direction (such that
greens are negative). In other words, a color value of
−0.1 means that the monitor displayed a green color
that had the same luminance as the background and
had 10% of the maximum saturation that the monitor
was able to display; similarly for a value of +0.1, but
with a red hue.

Stimulus and procedure

Observers alternated between two tasks. The first
task was a grating orientation discrimination. A 10°
grating (2 cycles per degree [cpd], 44% contrast, random
phase, and Hann window) was tilted by one of seven
values between −2.1° and +2.1° (left to right) relative
to the vertical in the “after-effect” experiment. The
“prior” experiment used one of seven values ranging
from −4° to +2° relative to the vertical in the “left”
blocks and from −2 to +4 relative to the vertical
in the “right” blocks. (The spatial frequency of the
stimulus was lowered to 0.5 cpd in Figure 2 for clarity.)
Observers were instructed to report whether the top
of the grating was more to the left (counterclockwise)
or to the right (clockwise) of vertical by pressing the
left and right arrow keys on a keyboard. The second
task was a color discrimination task with a 10° color
patch of one of seven values between −0.15 and +0.15
maximum gamut (green to red, see above) surrounded
by a high-contrast black contour (7 arcmin, 97%
contrast) in the “after-effect” experiment. In the “prior”
experiment, colored stimuli consisted of pixels (16
arcmin) whose hues were normally distributed with
a standard deviation of 0.1, across a mean varying
from −0.06 to +0.03 in “green” blocks and −0.03 to
+0.06 in “red” blocks (see Supplementary Material S2,
Figure S1). Observers had to report whether the colored
patch was green or red relative to the background by

pressing the same two arrow keys as for the orientation
task.

To induce adaptation in the first experiment, a brief
adapter was displayed prior to the test stimulus. In
the orientation task, the adapter grating was oriented
−20°, 0°, or +20°, with a phase randomly changing
every 50 ms to prevent luminance adaptation. In the
color discrimination task, the adapter had a value of
−0.75, 0 or +0.75. Orientation and color adapters were
completely randomized within a block of trials (i.e., any
of the three orientation and three color adapters could
be presented in a trial within a block).

The trial sequence for the “after-effect” experiment
was as follows (see Figure 2A): After 500 ms fixation, an
adapter was displayed for 500 ms; after a 200 ms blank,
the test stimulus was displayed for 100 ms. Finally, after
another 200 ms blank, a response screen was displayed
until response. The response screen had the words
“left” and “right” displayed 8° to the right and left of
fixation in the orientation discrimination task and the
words “red” and “green” in the color discrimination
task. (These words have been enlarged in Figure 2 for
clarity.) This was to make sure the observers would not
forget the response mapping of colors and direction
arrows, but all observers reported having no difficulties
in learning that mapping after a few training trials.

After observers performed a pair of trials (one for
each task), another response screen was displayed
200 ms after their last response. This response screen
contained the words “first” and “second” at 8° above
and below fixation. Observers were instructed to report
whether they felt more confident in having answered
correctly in the first or second task of the trials pair by
pressing the up or down arrows of the keyboard. Then,
the next trial started after a 500 ms blank screen. The
trial sequence was the same in the “prior” experiment,
except that there was no adapter (500 ms fixation, 100
ms stimulus, 200 ms blank, response screen). Observers
reported no difficulties in following the trial sequence.
No feedback was provided.

The “after-effect” experiment consisted of 882
trials (each with two perceptual responses and one
confidence judgment)—one trial for each combination
of orientation adapters, orientation test angles, color
adapters, color test values, and task order (3 × 7 × 3 ×
7 × 2 = 882). The task order was kept constant within
each of the 16 blocks of 63 trials and alternated from
block to block, counterbalanced across observers. The
entire experiment lasted between 75 and 90 minutes.
The “prior” experiment consisted of 784 trials—two
trials for each combination of the two orientation
ranges of seven values, the two color ranges of seven,
and two task orders (2 × 2 × 7 × 2 × 7 × 2 = 784).
The four combinations of orientation and color ranges
(O1C1, O2C1, O1C2, O2C2) were counterbalanced
across observers using a Latin square design where the
first- and second-order probabilities were counterbal-
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anced. For each combination the observers ran two
successive blocks (eight blocks in total) of 98 trials with
different task order (orientation/color) on each block,
counterbalanced across observers.

Analyses

We recorded three behavioral variables: perceptual
reports (left/right or green/red), response times (time
of perceptual responses since stimulus onset), and
confidence judgments (higher or lower confidence than
the other trial of the pair). We fitted curves to the
data for each observer individually by finding the set
of parameters that maximized the likelihood of the
model given observed behavior. This required fitting
all three variables at the same time by combining the
likelihoods. The likelihoods of the perceptual reports
and confidence judgments are given by a binomial
distribution. Computing the likelihood of the response
times was more intricate, and to a first approximation
we assumed that it followed a normal distribution.
We estimated the variance of this distribution by
bootstrapping the response time in each condition
and used the standard deviation of the distribution of
resampled medians (which followed approximately a
normal distribution). Moreover, given the number of
fitted curves (16 observers × 2 tasks × 3 adapters × 3
metrics = 288 in total) some fits inevitably converged
poorly. To prevent bad fits, we used a quasi-Newtonian
gradient descent with reasonable constraints on the
possible parameters: Response times could not be
negative, ratios of confidence judgments could not
be greater than 1 or lower than 0, and biases and
adaptation strengths could not be greater than twice
the range of tested values.

Perceptual decisions were fitted with cumulative nor-
mal functions with three parameters (see Equation 1):
an overall bias (μp; the value of the point of subjective
equality [PSE] for the neutral adapter), the amplitude
(αp) of the after-effect (how much the PSEs are shifted,
symmetrically, by the adapter), and the standard
deviation (σ p) of sensory noise (reflecting the inverse of
observer sensitivity):

P̂ = F
(
S, μp + αpA, σ 2

p

)
(1)

where P̂ is the predicted probability to report the
stimulus as “right of vertical” or “red,” F is the
cumulative normal function, S is the stimulus value, and
A is the adapter value. To compare adaptation strengths
and biases in the PSEs across observers, stimuli,
and experiments, the amplitude of the after-effect
was normalized by the observer’s sensitivity for the
perceptual decision: α′

p = αp/σ p, and is thus expressed
in units of sigma (σ p).

Response times were fitted with scaled normal
probability density functions. These functions capture
a peak response time when the stimulus is most
ambiguous, and a gradual decrease with the intensity
of the stimulus toward a baseline. These functions have
five parameters (see Equation 2): residual latency (R0;
baseline response time), response time amplitude (RA;
difference between peak response time and baseline),
and, similarly to the perceptual decisions analysis, a
general bias (μr), an adaptation strength (αr), and a
standard deviation (σ r) corresponding to the width of
the function (how quickly response times decrease):

R̂ = R0 + (RA − R0) · f (
S, μr + αrA, σ 2

r

)
/ f

(
0, 0, σ 2

r

)
(2)

where R̂ is the predicted response time, f is the normal
probability density function, S is the stimulus value,
and A is the adapter value. The denominator is just a
constant to restrict the range of the function between
R0 and Ra. The choice of this specific function to fit
response times is arbitrary, but it captured data well.
To compare biases and after-effect amplitudes with
perceptual reports, we also normalized these parameters
by the observers’ sensitivity in the perceptual decision:
α′

r = αr/σ p.
Confidence choices were fitted by upside-down

normal probability density functions, one for the
unadapted condition and two for the adapted
conditions. Each condition in each task was compared
to all conditions in the other task. This let us define a
confidence variable as the fraction of times the observer
reported being more confident in one condition as
compared with all other conditions in the other task.
These functions had five parameters (see Equation 3):
maximum confidence (Cmax) and minimum confidence
(Cmin) to account for possible individual preferences
for one modality above the other and, similarly to
perceptual decisions and response times analyses, a
general bias (μr), an adaptation strength (αc), and a
standard deviation (σ r) corresponding to the width of
the function:

Ĉ = Cmax − (Cmax −Cmin) · f (S, μc + αcA, σc) / f (0, 0, σc) (3)

where Ĉ is the predicted probability to report the trial as
confident, f is the normal probability density function,
S is the stimulus value, and A is the adapter value. This
specific function is also arbitrary but captured data well.
Here, again, we normalized the bias and adaptation
parameters by the observer sensitivity in the perceptual
decision: α′

c = αc/σ p.
For each experiment and task, we analyzed the

similarity of the effects of adaptation on three metrics:
perceptual decisions (P), response times (R), and
confidence (C). For this analysis, we first collected
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normalized biases and adaptation terms across the 16
observers:

Ap =

⎡
⎢⎢⎢⎢⎣

α′
p1

...
α′

p16

⎤
⎥⎥⎥⎥⎦

, Ar =

⎡
⎢⎢⎢⎢⎣

α′
r1

...
α′

r16

⎤
⎥⎥⎥⎥⎦

, Ac =

⎡
⎢⎢⎢⎢⎣

α′
c1

...
α′

c16

⎤
⎥⎥⎥⎥⎦

, X = [
Ap,Ar,Ac

] (4)

where Ax is the vector of normalized adaptations for
one metric. We then computed correlations between
normalized biases and adaptation terms across the 16
observers:

ρ (x, y) =
(
Ax − Ax

)T (
Ay − Ay

)
√
Ax

TAx

√
Ay

TAy

(5)

where ρ(x,y) is the correlation between variables x and
y. We also performed a principal component analysis
and extracted the principal components and their
associated variance:

w(1) = max
{
wTXTXw

}
(6)

� = E
[
(X − E [X ]) (X − E [X ])T

]
(7)

where w(1) is the first principal component, and � is the
variance explained by this component.

For model comparisons, we fitted nested models to
the data and computed the log-likelihood (L) of each
model. To do so, we computed the likelihood of each
perceptual response, response time, and confidence
report given the predicted P̂, R̂, and Ĉ of each model
as described above. The overall log-likelihood is the
sum of the log-likelihood of each metric on each trial.
Because the models were nested, adding new parameters
should only improve the fits (in practice, fitting errors
sometimes cause a model with fewer parameters to
fit better, although very rarely). The purpose of this
analysis is to estimate whether the increase in model
complexity can be justified by the improvement in the
goodness of fit (estimated through the likelihood). We
used the Akaike Information Criterion [AIC] (Akaike,
1974) where the likelihood of the models is penalized by
the number of parameters:

AIC = 2k − 2L (8)

where k is the number of parameters, and L is the
overall log-likelihood of the model. The model with
the lowest AIC score is considered to explain the data
best. The simplest model has seven parameters: slope
of the psychometric function, width of the response
times function, response time baseline and peak, width
of the confidence function, and confidence maximum
and minimum values (μp = μr = μc = 0 and αp = αr =
αc = 0). In this model, it is assumed that the observers
have no bias and there is no effect of the adapter. The
full model has 13 parameters and is essentially identical

to the fitted functions aforementioned: the biases and
adaptation strength are assumed to be independent for
the three sets of curves (μp �= μr �= μc and αp �= αr �= αc).

To compute the role of objective and subjective
sensory distances to confidence judgments, we regressed
the observers’ confidence judgments to the difference in
objective and subjective sensory distances between the
trials of a pair. Because these metrics are correlated, we
used a multivariate probit model to isolate the effect
of each variable. We computed sensory distances as
follows:

dO,c = Sc

σc
and dS,c = Sc − μc − ac

σc
(9)

where dO,c is the objective sensory distance in the
color task, taking into account the stimulus value (Sc)
normalized by the observer’s sensitivity (σ c). Likewise,
dS,c is the subjective sensory distance, but this time
taking into account the observer’s initial bias (μc)
and adaptation strength (ac). We then computed the
difference in sensory distances for each trial pair:

�O = dO,o − dO,c and �S = dS,o − dS,c (10)

where dO,o and dO,c are the objective sensory distance in
the orientation and color tasks, respectively; similarly
for dS,o and dS,c for the subjective sensory distance.
Finally, we fitted a multivariate probit model to
the observer’s confidence choices using maximum
likelihood estimation:

p(o) = � (β0 + β1�O + β2�S ) (11)

where p(o) is the probability to report higher confidence
in the response to the orientation discrimination task
(rather than the color task), and � is the probit linking
function.

Results
Biases induced by perceptual after-effects

In the first experiment, we briefly displayed an
adapter stimulus before the test stimulus (see Figure 3),
inducing tilt after-effects in the orientation task
(Campbell & Maffei, 1971; Gibson, 1933; Sekuler &
Littlejohn, 1974) and color after-effects in the color
task (Troland, 1930; von Kries, 1970). Figure 3A plots
the proportion of stimuli perceived by one observer
as oriented to the “right” (clockwise) as a function of
stimulus orientation (abscissa) and adapter angle. When
the test stimulus was preceded by an adapter strongly
tilted to the left (−20°), the observer tended to report
the test stimulus as tilted to the right more often. For
the stimulus to be reported as tilted to the right half the
time (PSE, the physical grating orientation that appears
vertical), the stimulus had to be physically oriented
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(A)

(B)

(C)

(D)

(E)

(F)

(G)

(H)

(I)

(J)

(L)

(K)

Figure 3. Results for Experiment 1. (A–L) Results from the after-effect experiment for one observer (A–F) and for the population (G–L,
N = 16). The first column (A–C) depicts the results for the orientation task: (A) Proportion of “right” responses (markers) as a function
of grating orientation (abscissa) for the three adapter orientations (markers color) together with predictions from a model
implementing confidence as the distance between two competing accumulators (lines; see Supplementary Material S7). (B) Median
response times of the perceptual decision. (C) Proportion of perceptual decisions judged more confident than the other perceptual
decision. The second column (D–F) depicts the results for the color discrimination task in the same format (replacing “red” for “right”
decisions). Population results (G–L) are depicted in the same format as the individual observer. The solid lines represent the mean
data and the shaded areas the standard errors across observers.

to the left—that is, in the direction of the adapter
orientation. The opposite was true for the adapter
oriented to the right (+20°). Therefore, despite the
brief duration of the adapter (500 ms), this observer
exhibited a clear negative after-effect. We found similar
results in the color discrimination task (Figure 3D) and
for all observers (Figures 3G and 3J).

Figures 3B and 3E show median response times in
the orientation and color discrimination tasks for the
same observer as in Figures 3A and 3D (chronometric
functions). As expected, the observer was slower when
the test value was closer to the PSE (when the stimulus
was more difficult to discriminate). This effect around
the PSE was present for both neutral and non-neutral
adapters. Therefore, the adapter sped up responses
when it made the test stimulus perceptually more
discriminable and slowed down perceptual decisions
when it made it less discriminable, even though the test

stimuli remained physically identical. Similar effects
were found across all observers (Figures 3H and 3L).

Presenting a brief adapter before a test stimulus
produced comparable effects across the psychometric,
chronometric, and confidence functions. We established
this similarity of the effects with multiple analyses. First,
we estimated the strength of adaptation (how much the
curves were shifted by the adapters) by fitting curves
to the perceptual decisions (see Equation 1), response
times (Equation 2), and confidence choices (Equation 3)
for each participant individually (see Methods for
details). In order to compare adaptation strength across
tasks and observers we then normalized all adaptation
parameters by the observers’ sensitivities (the slope
of their psychometric functions). In the orientation
task, the mean normalized adaptation strengths were
0.80, 0.95, and 0.89 for perceptual decisions, response
times, and confidence choices, respectively. In the color
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orientation task, normalized adaptation strengths were
2.14, 2.00, and 1.78, respectively. All adaptations were
significantly larger than 0 in a one-tailed t-test (see
Supplementary Material S3, Table S1) but were not
different across metrics in a paired two-tailed t-test (see
Supplementary Material S3, Tables S2 and S3).

In a second analysis, we reasoned that if adaptation
had a comparable effect on perceptual decisions,
response times, and confidence judgments, then all three
biases should be highly correlated (see Equation 5). This
is indeed the case, with pairwise correlations between
0.8 and 1.0 (see Supplementary Material S3, Figure S2
and Tables S4 and S5). This was true for both the
initial biases (PSEs for the neutral adapter condition)
and the adaptation biases (PSEs for non-neutral
adapters). A principal component analysis on all three
metrics at the same time (see Equations 6 and 7 in
Methods) showed that a main component explained
87% and 91% of the variance for the initial biases
and adaptation biases, respectively, which is extremely
high.

In a final analysis, we fitted curves to the perceptual
decisions, response times, and confidence choices with
common parameters between the curves (e.g., the same
bias in the PSE). We used model comparison on these
nested models to identify which parameters should
be included as justified by improvement in the overall
likelihood of the model (see Equation 8 in Methods and
Supplementary Material S5, Figure S4). This analysis
showed that including a common bias in the PSE and
a common adaptation parameter for all three variables
improved the fits dramatically. But, including separate
initial biases for the different variables or separate
adaptation factors did not improve fits enough to justify
making the model more complex.

In summary, in the first experiment, which used
adaption, the observers’ percepts were clearly modified
by the adapters despite their brevity. The adapters also
impacted response times and confidence judgments
despite their volatility from trial to trial. We found no
evidence of dissociation among perceptual reports,
response times, or confidence judgments. The mapping
between these variables was remarkably well preserved
across perceptual biases (after-effects), as well as biases
in the PSEs. In other words, the single best predictor for
confidence—and response times—was the perceptual
distance to the PSE.

Biases induced by prior probabilities

Short-term adaptation is not the only phenomenon
that can generate perceptual biases. In a second
experiment, we induced biases by changing the prior
probability of occurrence of stimuli in different blocks
of trials. We took advantage of the central tendency bias
(Ashourian & Loewenstein, 2011; Hollingworth, 1910;

Huttenlocher, Hedges, & Vevea, 2000; Olkkonen,
McCarthy, & Allred, 2014), where trials are reported as
closer to the mean stimulus value than they physically
are. Within blocks, stimulus intensities were sampled
from a range of values not centered on the reference
(vertical orientation or neutral gray color). The
procedure was identical to the one used in the first
experiment (Figure 2), except that no adapter stimuli
were presented before the test stimuli.

Changes in the prior probability of orientation
produced a clear bias in the orientation task
(see Figure 4). Results presented a striking similarity
with the after-effect experiment. The mean normalized
adaptations were comparable across three response
metrics and tasks. In the orientation task, mean
normalized adaptations were 0.62, 0.66, and 0.57 for
perceptual decisions, response times, and confidence
choices, respectively. In the color task, changes in
the prior probability of the stimuli did not produce
a corresponding bias. Mean normalized adaptation
were 0.08, 0.00, and −0.11 for perceptual decisions,
response times, and confidence choices, respectively.
Overall, adaptation was significant in the orientation
task but not in the color task in a one-tailed t-test (see
Supplementary Material S4, Table S6), and adaptation
strength was not significantly different across metrics in
a paired two-tailed t-test (see Supplementary Material
S4, Tables S7 and S8).

Similarly to the after-effect experiment, we computed
correlations among perceptual decisions, response
times, and confidence judgments, separately for initial
biases (mean PSEs across both prior ranges) and
response biases (PSEs for prior ranges). Pairwise
correlations between biases were all very high, between
0.6 and 1.0 (Supplementary Material S4, Figure S3 and
Tables S9 and S10). The main component in a principal
component analysis explained 90% of the variance for
the initial biases and 81% for the response biases (93%
when analyzing the orientation task alone). Finally a
model comparison analysis similar to the one run in the
first experiment led, here again, to the same conclusions
(see Supplementary Material S5, Figure S4): Modeling
biases (either the initial or the response bias) as identical
for the three variables (perceptual reports, response
times and confidence judgments) accounted for the
data just as well as when allowing different biases of the
PSEs, responses, or both.

In summary, in this second experiment using
unbalanced stimulus statistics, prior probabilities
shifted the psychometric, chronometric and confidence
functions by equal amounts. Here, again, the distance
to the PSE predicts the observers’ confidence, not the
actual stimuli. Overall, the effect of prior probabilities
seems identical in every respect to the perceptual
after-effect. In contrast to the after-effect experiment
though, where the adapter was changing from trial
to trial, here the effect of prior probabilities needs
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Figure 4. Same as Figure 3 for the second experiment based on a manipulation of the prior probability of occurrence of stimuli. Here,
symbols and line colors refer to two different testing ranges of stimuli that were presented in separate blocks of trials. In separate
blocks of trials, testing ranges were either in favor of red color or right orientation (red symbols) or in favor of green color or left
orientation (green symbols).

to be integrated over multiple trials within a block.
Therefore, it is remarkable that, in both experiments,
response times and confidence tracked so faithfully the
perceptual decisions, where these perceptual decisions
were biased quickly (at the scale of a single trial in the
after-effect experiment) or more slowly (in the prior
experiment).

Confidence is associated with better
performance

High confidence is usually associated with better
sensitivity of the observers (Barthelmé & Mamassian,
2009; De Martino, Fleming, Garrett, & Dolan, 2013;
Mamassian, 2016; Peirce & Jastrow, 1885) and faster
response times (Kiani, Corthell, & Shadlen, 2014;
Vickers, 1979). We checked that this was indeed the case
in our experiments. In our confidence forced-choice
paradigm, participants had to choose which one of two
perceptual decisions seemed more likely to be valid.
We fitted separate psychometric and chronometric
functions (see Methods) for the perceptual decisions

that were chosen as the confident ones and for those
that were declined in the confidence choice (in this
latter case, the observer was more confident in the
other perceptual decision of the confidence pair).
The slope of the psychometric functions was steeper
(higher sensitivity) for the confident trials than for the
non-confident trials (see Figures 5A to 5C). Therefore,
as expected, if observers had metacognition, confidence
was associated with a higher discriminability of the
stimulus. We estimated this effect by taking the log-ratio
of the sensitivities (ψ) between the confident and
non-confident trials. Here, sensitivity (ψ) is the inverse
of the standard deviation of the cumulative normal
used to fit the data (i.e., 1/σ ). This log-ratio was greater
than 0, indicating higher sensitivity in the confident
trials. This effect was significant for both tasks and
both experiments (see Supplementary Material S6,
Table S11).

Similarly, we computed the log-ratios of the
chronometric function amplitudes A between confident
and non-confident trials for both the after-effect and
prior experiments (Figures 5D to 5F). Here, amplitude
A describes how much the median response time



Journal of Vision (2021) 21(12):8, 1–15 Caziot & Mamassian 11

Figure 5. Relationship between confidence judgments and perceptual decisions (sensitivity and response times). (A) Perceptual
reports plotted separately for confident (filled markers) and not confident (empty markers) trials and associated psychometric
functions (solid and dashed lines) for the orientation task for the same observer as Figure 2. (B) Sensory thresholds in confident trials
as a function of sensory thresholds in non-confident trials. Points below the diagonal indicate that observers were better (higher
sensitivity) in the confident trials than in the non-confident trials. (C) Same as (B) for the “prior” experiment. (D) Same as (A) for the
chronometric functions. (E) Chronometric functions amplitude (maximum response time of the distribution shown in panel D) in
confident trials as a function of amplitude in non-confident trials. Points below the diagonal indicate that observers were faster
(lower peak response times) in the confident trials than in the non-confident trials. (F) Same as (E) for the “prior” experiment.

increased relative to the baseline at the PSE. This
log-ratio was smaller than 0, indicating faster responses
in the confident trials. This effect was significant (see
Supplementary Material S6, Table S11) for both tasks
in the after-effect experiment and for the color task
in the prior experiment, but not the orientation task
(although it did become significant when one outlier
was removed).

Confidence judgments reflect self-consistency

We have shown that the observers’ confidence
judgments are consistent with their perceptual reports
and response times: They are the least likely to
be confident in their answer around the subjective
criterion, where they are also slowest. But what
information are the observers using to compute their
confidence choices? We consider two possible decision
variables, one based on the sensory distance of the
stimulus to the objective criterion (physical categorical
boundary) and the other on the sensory distance
to the observer’s subjective criterion (the observer’s
PSE). These objective and subjective sensory distances
are in units of sensory noise (i.e., the distance is

normalized by the standard deviation of the Gaussian
distribution underlying their perceptual psychometric
functions; see Equation 9). Objective and subjective
distances differ because each observer has some small
idiosyncratic initial bias and large biases induced by
perceptual adaptation in the first experiment and prior
probabilities in the second experiment. We computed
the difference in objective sensory distances between
each stimulus of a confidence trial, where one stimulus
was judged for its color and the other for its orientation,
and repeated this for the subjective sensory distances
(see Equation 10). Figure 6A plots the probability that
one observer (the same as in Figures 3A to 3F) reported
being more confident in the orientation decision than
the color decision as a function of the difference in
objective and subjective sensory distances. Figure 6B
shows the average across observers, and Figures 6D
and 6E show the same information for the prior
probability experiment. In both experiments, confidence
judgments were strongly modulated by the subjective
sensory distance (abscissa), not the objective sensory
distance (ordinate).

To quantify the effect of objective and subjective
sensory distances, we fitted a multivariate probit model
to the observers’ confidence judgments (see Equation 11
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Figure 6. Effects of self-consistency on confidence judgments. (A) The probability to report higher confidence in the orientation than
the color decision is plotted as a function of the difference in sensory distances to the subjective criterion (abscissa) and to the
objective criterion (ordinates) for the same observer as Figure 2. Sensory distance to the subjective criterion reflects self-consistency,
and sensory distance to the objective criterion reflects correctness. (B) Same as (A) averaged across observers. (C, D) Same as (A) and
(B) for the prior probability experiment. (E) Two predictions of probit models where observers rely on the subjective sensory distance
only (top) or objective sensory distance only (bottom). Regression weights associated with these two examples are plotted for
reference in (G), where the purple and green circles represent the subjective and objective models, respectively. (F–G) Probit
regression weights of confidence judgments. Observers’ confidence judgments reflect self-consistency (sensory distance to the
subjective criterion), not correctness (sensory distance to the objective criterion).

in Methods). The intercept term was not significantly
different from 0 in a two-tailed t-test in both
experiments, t(15) = 1.29 and 1.62, p = 0.22 and 0.13,
indicating that observers did not tend to report either
task as more confident. In both experiments, regression
weights on the difference in subjective sensory distance
were significantly greater than 0 in a one-tailed t-test,
t(15) = 11.59 and 7.51, p < 0.001, and higher than
regression weights on the difference in objective sensory
distance, t(15) = 3.75 and 4.97, p = 0.002 and p <
0.001). However, and importantly, regression weights
on the difference in objective sensory distance were not
significantly different from 0, t(15) = 1.48 and 0.27, p =
0.21 and 0.79. In other words, the observers’ confidence
judgments were entirely based on the subjective sensory
distance of the stimuli (distance to the observer’s own
PSE, in units of the observer’s sensitivity) and not by
the objective sensory distance (distance to the physical
categorical boundary).

Discussion
In the present study, we measured how observers

adjust their confidence judgments when their percepts
fluctuate. In two different experimental paradigms,
we induced small controlled perceptual errors while

keeping the physical stimuli the same. The two
paradigms relied on either after-effects that followed a
brief adaptation or on the biases induced by the prior
statistics of presented stimuli. These two paradigms can
be seen as two different ways to induce a perceptual
bias, more low level for the adaptation and more
high level for the statistical manipulation. We found
that confidence followed perception in the adaptation
experiment, which was to be expected if confidence is
based on the same sensory evidence that is leading to
the perceptual decision (see, for example, Gallagher,
Suddendorf, & Arnold, 2019). More surprisingly, we
found that confidence also followed perception in the
prior manipulation experiment. This result is interesting
because we could have thought that observers were
biased to respond one way in their perceptual decision
but could still sense that their percept was subject to
a relatively obvious manipulation of the experimenter
(for a study where priors did not always shift confidence
judgments, see, for example, Locke, Gaffin-Cahn,
Hosseinizaveh, Mamassian, & Landy, 2020). This
type of error correction occurs sometimes, such as
in the Stroop effect, where participants feel an urge
to read a color word rather than reporting the color
of the font as instructed (Stroop, 1935), and in these
special cases participants can easily detect their errors.
This type of error correction did not take place here
where perceptual biases were induced by the prior
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statistics of presented stimuli, indicating that the priors
induce genuine changes in what is perceived. In other
words, biased percepts induced by prior statistics are
qualitatively no different than biased percepts induced
by adaptation or correct percepts (those that match the
physical stimulus). This effect of the prior statistics is
unlikely to be due to potential confounding factors such
as adaptation from prior stimuli or sequential response
effects, as the observers had to alternate between two
different perceptual tasks before providing confidence
judgments.

The interpretation of the results of our two
experiments is that confidence judgments cannot be
used as an internal error signal that our perceptions do
not reflect the true state of the world. This is important
because the accepted definition of confidence as an
estimate of being correct corresponds to a computation
relative to an unreachable truth. What matters for the
observer is whether she is certain of her perceptual
experience, irrespective of objective truth. Instead of
being framed as an objective probability on a property
of the physical stimulus, we believe that confidence
should be appreciated as a subjective reliability of an
internal representation of the percept. This change in
definition renders the concept of correctness moot.
As the notion of subjective correctness is tautological,
we propose that confidence is better described as an
estimate of the stability of our decision, an estimate
of self-consistency. If an observer were asked to judge
multiple times the same stimulus, she would be highly
confident if she feels that she would give the exact
same decision again and again for the same stimulus.
Conversely, she would not be confident if she feels
her decision was almost random and she could have
equally well reached the opposite perceptual decision.
This alternative definition of confidence makes testable
predictions. For example, confidence should be
modulated by the volatility of a percept, or by the
number of alternative interpretations. It also fits better
with our intuition: When I am looking at a classical
visual illusion such the vertical–horizontal illusion, I am
reporting that the vertical segment is longer than the
horizontal one, and I am confident in what I perceive,
even if somebody shows me that I am wrong with a
ruler. The importance of self-consistency for confidence
was also pointed out by Koriat (for a review, see
Koriat, 2011), although in that work, self-consistency
was measured across time (an “experience-based”
approach). In contrast, we have shown that observers’
sense of confidence tracks perfectly their perceptual
reports and response times even when these latter
fluctuate from trial to trial, suggesting that an observer’s
sense of confidence is contained within the current
representation of the stimulus (a “direct-access”
approach).

Does the refinement of the definition of confidence
with reference to self-consistency rather than
correctness require that we also change our view on

how confidence is computed? One popular model that
has been shown to account for accuracy, response times,
and confidence judgments is the balance of evidence
model (De Martino et al., 2013; Kiani et al., 2014;
Mamassian, 2016; Vickers, 1979). In this model, two
accumulators representing two perceptual alternatives
are racing toward a decision boundary. The first
accumulator to reach the boundary wins the decision.
This model predicts jointly perceptual decisions,
response time (the time at which the boundary is
crossed), and confidence as the distance of the losing
accumulator to the boundary (the balance of evidence).
We have fitted this sequential sampling model to our
data (see Supplementary Material S7). We found that
this model could reproduce all the effects described
in the Results section (see Figures 3 and 4), including
higher precision and faster responses in confident trials
than non-confident trials. The good match between our
results and the model indicates that accuracy, response
times, and confidence judgments are generated by a
unified mechanism. Put differently, this popular class
of models functionally implements something akin
to the representation of perceptual stability we have
described here, at least in the case where there are only
two well defined stimulus categories. At this stage, one
can only speculate about the nature of the confidence
evidence at the neural level. One possibility for inferring
a self-consistency estimate might be to implement a way
to resample the sensory evidence using, for example,
the bootstrapping procedure (Efron, 1979). In any
case, as pointed out by Pouget et al. (2016), finding
the neural code for confidence will require a “rigorous
computational estimate of confidence.” Our results
stress the importance of considering this neural code as
an estimate of the stability of the perceptual decision.

In conclusion, we have shown that observers treat
identically biased and unbiased perceptual decisions. A
unified framework, based on the principle of a balance
of evidence, can account for the perceptual decisions,
biased or not, the time at which these decisions
are taken, and confidence about the uncertainty of
these decisions. Therefore, a definition of perceptual
confidence that gives prominence to correctness
seems misleading. Instead, we have proposed that
confidence should be considered as an estimate that
one’s perceptual decision is self-consistent.

Keywords: confidence, decisions, response times,
perceptual biases, after-effects, priors
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