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Abstract

Background

Stem-end rot, caused by Lasiodiplodia theobromae (Pat.) Griffon & Maubl is a serious post-

harvest disease in mango. In China, a high prevalence of the QoI fungicides resistance has

been reported in the last decade. The study aimed to discuss factors determining rapid

development of pyraclostrobin-resistance and its resistance mechanisms.

Methods

To determine the resistance stability and fitness of pyraclostrobin resistance in L. theobro-

mae, three phenotypes of pyraclostrobin resistance were compared and analyzed for the

EC50 values, mycelial growth, virulence and temperature sensitivity and osmotic stress sen-

sitivity. The relative conductivity and enzyme activities of different phenotypes were com-

pared under fungicide stress to explore possible biochemical mechanisms of pyraclostrobin

resistance in L. theobromae. The Cytb gene sequences of different phenotypes were

analysed.

Results

All isolates retained their original resistance phenotypes during the 10 subcultures on a fun-

gicide-free PDA, factor of sensitivity change (FSC) was approximately equal to 1. The resis-

tance-pyraclostrobin of the field isolates should be relatively stable. Two pyraclostrobin-

resistant phenotypes shared similar mycelial growth, virulence and temperature sensitivity

with pyraclostrobin-sensitive phenotype. After treated by pyraclostrobin, the relative con-

ductivity of the sensitive phenotype was significantly increased. The time of Pyr-R and Pyr-

HR reached the most conductivity was about 8–10 times than that of Pyr-S, the time for the

maximum value appearance showed significant differences between sensitive and resistant

phenotypes. The activities of Glutathione S-transferase (GST), catalase (CAT) and
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peroxidase (POD) of Pyr-HR were 1.78, 5.45 and 1.65 times respectively, significantly

higher than that of Pyr-S after treated by 200 mg/l pyraclostrobin.

Conclusion

The results showed that the pyraclostrobin-resistant phenotypes displayed high fitness and

high-risk. The nucleotide sequences were identical among all pyraclostrobin-resistant and

-sensitive isolates. The pyraclostrobin resistance was not attributable to Cytb gene alter-

ations, there may be some of other resistance mechanisms. Differential response of

enzyme activity and cell membrane permeability were observed in resistant- and sensitive-

isolates suggesting a mechanism of metabolic resistance.

Introduction

Mango (Mangifera indica L.) is one of the most important fruit crops in the tropical and sub-

tropical regions. China is the second largest mango acreage in the world. In 2019, mango

planting area in Hainan has exceeded 56,900 hectares and 675,805 tons. Stem-end rot (SER)

of mango is a serious postharvest disease of mango [1–3]. Fruit infections start in the field at

weak spots around the fruit stalk attachment where moisture accumulates and persists at

first. After harvest, SER begins to develop with the advancement of fruit ripening, and may

result in significant fruit decay and yield loss, the incidences of fruit disease are 10%-40% [4].

In Hainan province, SER is mostly caused by Lasiodiplodia theobromae Pat. (= Botryodiploda
theobromae Pat.) [5, 6]. Furthermore, L. theobromae can cause more than 500 other plant

diseases [7]. However, due to the lack of a resistant variety, chemical control is the most reli-

able prevention method available to mango farmers in China. Fungicide applications are

the primary method of postharvest disease control in mango. Traditionally, synthetic fungi-

cides are frequently used to control diseases (SER, anthracnose, powdery mildew, etc.) in the

preharvest and postharvest periods. The field isolates of L. theobromae from mango have

become resistant to benzimidazole fungicide carbendazim due to the long-term and exten-

sive application [8–10]. Carbendazim-resistant isolates have become widespread in Hainan

Province. Currently, both the quinone outside inhibitor (QoI) and sterol demethylation

inhibitor (DMI) fungicides are used to control diseases of mango. To delay or avoid the

development of fungicide resistance, the most widely adopted anti-resistance strategies are

using mixtures of fungicides with different modes of action. QoI fungicides (such as azoxy-

strobin and pyraclostrobin) are the most important class of agricultural fungicides. Pyraclos-

trobin is among the newer members of QoI, possesses an extremely broad spectrum of

activity. The mechanism of action is inhibition of electron transport between cytochrome b

and cytochrome c1 in the mitochondrial respiratory chain, leading to disruption in the pro-

duction of ATP [11]. Due to its single mode of action, QoI fungicides have a high risk of

selection of resistance in phytopathogenic fungi, and field resistance to QoI fungicides has

been reported in more than 30 species [12, 13]. There is known resistance to pyraclostrobin

in various fungal species and also cross-resistance to other QoI fungicides. The Fungicide

Resistance Action Committee (FRAC) has designated the QoI fungicides as being at a high

risk of resistance development [14]. Fungicide resistance development is dependent mainly

on mutations in the field and the inheritance of the new traits [15, 16]. Many studies indi-

cated that the molecular mechanisms of resistance to QoI fungicide in various fungi are cor-

related with point mutations of Cytb gene [17, 18]. Furthermore, resistance stability, fitness,
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and competitive ability of field-resistant isolates are extremely important factors regarding

the risk for the development of resistance [19, 20]. Many studies showed that a few of field

isolates, particularly laboratory mutants are associated with fungicide resistance may con-

comitantly exert fitness costs. These resistant isolates suffered significant fitness penalties in

mycelial growth, conidial germination, sclerotia production, virulence, or temperature sensi-

tivity, and were less competitive than the sensitive isolates [21, 22].

Our previous studies indicated that the L. theobromae isolates of mango in Hainan province

of China had high levels of resistance to QoI fungicides pyraclostrobin [9]. However, the resis-

tance fitness costs, resistance mechanisms of L. theobromae to QoI remain unknown. There-

fore, the objectives of this study were to compare the characteristics between pyraclostrobin-

resistant and -sensitive isolates of L. theobromae to evaluate the resistance fitness and to reveal

the resistance characteristics and mechanisms. The studies were to: (i) determine the fitness of

pyraclostrobin-sensitive and -resistant L. theobromae isolates in order to assess the resistance

risk by comparing the mycelial growth, virulence, temperature sensitivity and osmotic sensi-

tivity; (ii) determine the role of biochemical mechanisms of pyraclostrobin resistance by com-

paring the cell membrane permeability, protein content and enzyme activities in isolates;

(iii) analyse the Cytb gene sequence of pyraclostrobin-sensitive and -resistant L. theobromae
isolates.

Materials and methods

Isolates of Lasiodiplodia theobromae
In our earlier lab study, Lasiodiplodia theobromae isolates were collected during a monitoring

program to determine the sensitivity to the QoI fungicides. All isolates were isolated from dis-

eased mango fruits in Hainan Province of China in 2014 and 2016, and 59% isolates were pyra-

clostrobin resistance. Details on the isolation procedure and the determination of sensitivity to

fungicides have previously been described [9]. To study the fitness and biochemical properties

of these isolates, 30 isolates were selected to test in the current study, including 5 sensitive iso-

lates (Pyr-S, EC50 < 10 mg/l), 9 resistant isolates (Pyr-R, 10 mg/l� EC50 < 100 mg/l) and 16

highly resistant isolates (Pyr-HR, EC50� 100 mg/l). The isolates were stored on potato dex-

trose agar (PDA) slants at 4˚C until use.

Determination of resistance stability

Pyraclostrobin technical (96% a.i., Hainan Zhengye Zhongnong High Technology Co., Ltd.,

Haikou, China) was dissolved in acetone to obtain 2.5×104mg/l solutions and stored at 4˚C.

Salycyl hydroxamic acid (SHAM, 99% a.i., Shanghai Macklin Biochemical Co., Ltd., Shanghai,

China) was dissolved in acetone to obtain 1×104 mg/l solutions and stored at 4˚C.

A 5-mm-diameter mycelia disc was excised from the edge of a 3-days-old colony and placed

on a PDA plate without pyraclostrobin. After subcultured for 10 times, the EC50 values of 30

isolates to pyraclostrobin were calculated by probit analysis. The final concentration of pyra-

clostrobinin the PDA were adjusted to 0.69, 2.06, 6.17, 18.52, 55.56, 166.67 and 500 mg/l, and

SHAM (the alternative oxidase inhibitor) was added to PDA at 100 mg/ml including controls

without fungicide. The inhibition rates were converted to the probability values, and pyraclos-

trobin concentrations were log-transformed before use in a regression model. All isolates were

incubated at 28˚C for 36 h. Each isolate was cultured on three replicate plates per treatment.

The experiment was performed independently three times. The stability of resistance was rep-

resented by the FSC value (factor of sensitivity change): FSC: the EC50 values of the 10th trans-

fer divided by the EC50 values of the 1st transfer [15].
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Mycelial growth assay

A mycelia disc (5-mm diameter) was taken from the edge of a 3-day-old colony and placed on

PDA plate, with three replicates per isolate. After incubation for 36 h in the dark at 28˚C, the

radial growth of the mycelial colonies was measured for each plate. The experiment was per-

formed independently three times.

Virulence assay

The virulence of each isolate with different pyraclostrobin-resistance phenotypes were evalu-

ated on mango fruits. Fresh green unripe mango fruits of similar size (cultivar Guifei) were

used for the evaluation purposes. The fruit surface was disinfested in 1% v/v sodium hypochlo-

rite (NaOCl) solution for 1 min, rinsed three times with sterile distilled water, and air dried.

Then, each fruit was lightly wounded at three places with a sterile needle, and mycelia discs

(5-mm diameter) taken from 3-day-old PDA plates were placed on the wound sites. All fruits

were incubated at 30 ± 2˚C and 70 to 90% relative humidity. Five fruits per isolate were used,

incubated with three mycelia discs per fruit. The lesion diameter was recorded every day.

Based on the lesion diameter after incubated for 5 days, the field isolates were subsequently

classified as: highly virulent isolates (lesions� 30 mm), moderately virulent isolates (15

mm� lesion < 30 mm) and weakly virulent isolates (lesions <15 mm).

Temperature sensitivity assay

To determine the temperature sensitivity of L. theobromae with different pyraclostrobin-resis-

tance phenotypes, a 5-mm mycelial plug was taken from the edge of a 3-day-old colony, trans-

ferred onto PDA plates and incubated separately at 5, 10, 15, 20, 25, 30, 35, or 40˚C for 36 h in

thermostatic incubators. The colony size was measured as previously described. Each isolate

was cultured on three replicate plates per treatment. The experiment was performed indepen-

dently twice.

Osmotic sensitivity assay

To test the sensitivity to osmotic stress, a mycelial plug (5-mm diameter) was taken from the

edge of a 3-day-old colony and transferred onto PDA plates containing 5, 10, 20, 40, 80, 100,

or 150 g/l glucose, separately. In addition, the sodium chloride (NaCl) concentration in PDA

was 0, 1.25, 2.5, 5, 10, 20, 40 or 80 g/l. Three plates of each treatment were incubated at 28˚C

for 36 h, and the colony size was measured as previously described. The experiment was per-

formed independently twice.

Test of cell membrane permeability

Cell membrane permeability of mycelia was represented by the relative conductivity [23]. For

each isolate, mycelial plugs (5 mm diameter) from the margins of 3-day-old colonies on PDA

were placed in 250 ml flasks (5 plugs per flask) containing 100 ml of PD broth and cultured at

120 rpm for 48 h. The mycelia of each isolate were collected on double gauze and rinsed twice

with double-distilled water. After filtration in vacuum for 30 min, 1 g of mycelia per sample

was suspended in 20 ml of double-distilled water containing pyraclostrobin at 100 mg/l. After

0, 5, 10, 20, 40, 80, or 120 min at 25˚C, the electrical conductivity was measured with a conduc-

tivity meter to assess the extent of leaching of cell contents through cell membranes. After 120

min, the mycelia were boiled for 5 min, and final conductivity was measured. All tests had
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three replicates. The relative conductivity of mycelia was calculated as:

Relative conductivity %ð Þ ¼ Conductivity=Final conductivity � 100:

Determination of protein content and enzyme activity

Preparation of tissue homogenate: Mycelia discs (5-mm diameter) from the margins of 3-day-

old colonies on PDA were placed on new PDA plates containing 2, 20 or 200 mg/l pyraclostro-

bin. Control medium was not amended with fungicides. The mycelia grew substantially over

the entire PDA plate after culturing at 28˚C for 4 days. The mycelia were then scraped from

the PDA and homogenized using nine volumes (1:9 w/v) of saline. Cell debris was removed by

centrifuging at 4,000 rpm for 10 min, and the supernatant was used to assay the protein con-

tent and enzymatic activities.

Total protein content was determined using a Bradford protein assay kit (Nanjing Jian-

cheng Bioengineering Institute, Nanjing, Jiangsu, China). Total soluble protein was estimated

by a dye-binding assay and monitored at 595 nm.

Enzyme activity was determined according to the kit instructions (Nanjing Institute of Bio-

engineering). The absorbance values of the respective tubes were measured by a spectropho-

tometer at room temperature, and the activity values of the relevant enzymes were calculated

according to the formulae. Glutathione S transferase (GST) catalyzes the reduction of glutathi-

one (GSH) to 1-chloro-2,4-dinitrobenzene. During the reaction time, the level of GST activity

has a linear relationship with the change in GSH concentration before and after the reaction.

The change in absorbance at 420 nm was measured to determine the amount of GSH. GST

activity, as a measure of the reaction in which the concentration of GSH decreases by 1 μM per

minute at 37˚C, was expressed as units per milligram of total protein.

The reaction of catalase (CAT) to decompose hydrogen peroxide can be quickly stopped by

adding ammonium molybdate. The remaining hydrogen peroxide reacts with ammonium

molybdate to produce paleyellow complex, which is measured at 405 nm on a spectrophotom-

eter. One unit of CAT was defined as the quantity of enzyme that liberated 1 mM hydrogen

peroxide (H2O2) per minute per milligram of protein at 37˚C.

Peroxidase (POD) activity detection method was based on the principle ofH2O2 reaction

catalyzed by POD, and determined by an increase in absorbance at 420 nm with a spectropho-

tometer. One unit of POD was defined as the amount of enzyme that hydrolyzed 1 mg of sub-

strate per minute per milligram of protein at 37˚C.

Phenylalanine ammonia lyase (PAL) catalyzes the deamination reaction of phenylalanine,

which releases NH3 to form trans-cinnamic acid. The change in absorbance at 290 nm caused

by differential concentration of trans-cinnamic acid determines the activity of PAL. PAL activ-

ity of was expressed as units per mg of soluble protein.

Nucleotide sequence analysis of the Cytb gene

The different pyraclostrobin-resistant phenotypes were used to analysis the Cytb gene. To

extract the genomic DNA, each isolate was cultured on PDA at 28˚C for 3 days. Mycelia

were harvested and powdered under liquid nitrogen. The genomic DNA was extracted using

MiniBEST plant genomic DNA extraction Kit (TaKaRa Bio inc., Dalian, China). Two primer

pairs F 5’- TTATGGGTCATACAGAGC-3’ and R 5’-TACAATAGCAGGCGGAGT-3’ was

adopted to amplify the Ctyb gene fragment containing the codon129, 137 and 143. All of the

PCRs were performed in 20 μl volumes contained 10 μl of 2× Taq Master Mix, 1 μL of template

DNA, 0.5 μL of each primer and 8 μL of ddH2O. The PCR conditions were 95˚C for 3 min

and then 35 cycles (95˚C for 15 s, 55˚C for 40 s, 72˚C for 90 s), a final extension stage of 5 min
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at 72 ˚C. An approximately 500 bp single PCR fragment was amplified using this pair of prim-

ers. The PCR products were separated in 1.0% agarose gels in 1× TAE, and purified by using a

DNA Purification Kit (Takara Bio Inc., Dalian, China). All PCR products were sequenced by

Sangon Biotech (Shanghai, China) Co., Ltd. The sequences were subjected to using the BLAST

and compared with those in the NCBI/ GenBank1 database. The sequences were annotated

using BioEdit software (version 7.0.9) for manual editing and translation.

Statistical analysis

Statistical analyses were performed with SPSS (SPSS Statistics 24.0, IBM, USA). Experimental

data were checked for homogeneity of variances using Levene’s test, then the mean

values ± standard deviations were calculated. In order to assess differences in mycelial growth,

the relative conductivity or enzyme activity, the data were analyzed by one-way ANOVA of

Completely Randomized design (CRD) followed by Tukey’s test (P < 0.05).

Results

Resistance stability

After 10 successive transfers on fungicide-free PDA medium, the EC50 values of Pyr-S, Pyr-R

and Pyr-HR phenotypes ranged from 2.5 to 7.6 mg/l, 19.2 to 71.1 mg/l and 123.1 to 1375.2 mg/

l, respectively. Thirty isolates retained their original resistance phenotypes during the 10 sub-

cultures on a fungicide-free PDA. The change in EC50 for all isolates ranged from 0.7 to

1.4-fold (FSC� 1, Table 1), indicating that the resistance-pyraclostrobin of L. theobromae field

isolates was relatively stable.

Mycelial growth and virulence

Thirty isolates varied in mycelial growth and virulence to mango (Table 1), there were signifi-

cantly difference among isolates (F = 7.964, P = 0.000 < 0.05). However, when compared as

phenotype groups, the mycelial growth had no significant differences in the means of mycelial

growth between resistant and sensitive phenotypes (F = 0.104, P = 0.903), with the average

mycelial growth of Pyr-HR, Pyr-R and Pyr-S being 79.8, 80.7 and 79.2 mm in diameter,

respectively.

When inoculated with L. theobromae, the brown to black lesions quickly developed on the

mango fruits, and causing a watery rot, but control fruits remained healthy (Fig 1). The fre-

quencies of highly virulent, moderately virulent and weakly virulent isolates were 63.3%, 23.3%

and 13.3%, respectively. The virulence of pyraclostrobin-resistant (Pyr-HR and Pyr-R) isolates

compared with that of pyraclostrobin-sensitive (Pyr-S) isolates did not significantly reduce.

Sensitivity to temperature

All L.theobromae isolates grew faster after incubation at 25˚C to 35˚C. No isolate could grow

on PDA at 5˚C. When cultured at 10 ˚C, only 8 isolates grew after 48 h. The mycelial growth

was significantly inhibited at 40˚C. There was significant difference in mycelial growth

between low- and high-temperature within the same phenotype groups (Table 2). When they

were compared as phenotype groups, there was no significant difference between resistant and

sensitive phenotypes in mean values of mycelial growth at 15 to 40˚C after 36 h (P> 0.05).

Sensitivity to osmotic stress

The mycelial growth of different pyraclostrobin-resistant phenotypes increased slightly with

increasing NaCl concentration from 0 to 2.5 g/l. However, the mycelial growth was significantly
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inhibited when the concentration increased above 5g/l (Fig 2a). For glucose at less than 20 g/l,

the mycelial growth of all phenotypes increased significantly with increasing glucose concentra-

tion. There was little influence on mycelial growth when the glucose concentration increased

above 20 g/l (Fig 2b). There were no significant differences among different phenotypes

when growing in PDA with 80 g/l NaCl or 150 g/l glucose (F = 0.472, P = 0.645; F = 78.505,

P = 1.000). After L. theobromae produced resistance to pyraclostrobin, the mycelial growth of

Table 1. Resistance stability, mycelial growth and virulence in vitro for isolates of Lasiodiplodia theobromae differing in fungicide resistance.

Isolates Phenotypea EC50 values (mg/l) FSCb Mycelial growthc (mm) Lesion diameterd (mm) Virulence

1st 10th

CJJH20801 Pyr-HR 119.6 125.3 1.0 82.0±3.6ab >40 high

CJTN10501 Pyr-HR 251.6 302.1 1.2 85.0±2.2a 32.4 high

CJTN30205 Pyr-HR 140.8 124.9 0.9 85.0±0a >40 high

DTN83108 Pyr-HR 342.2 302.3 0.9 85.0±1.7a 38.6 high

DZTN10104 Pyr-HR 151.1 147.7 1.0 82.3±3.7b 17.1 moderate

JH21617 Pyr-HR 270.2 330.6 1.2 75.7±8.3bc 31.4 high

HLTN50801 Pyr-HR 106.8 110.3 1.0 85.0±0a >40 high

HLTN51001 Pyr-HR 453.9 587.4 1.3 78.6±6.2bc 21.8 moderate

YCHJ80103 Pyr-HR 114.9 166.9 1.5 85.0±3.7a >40 high

YCHJ80401 Pyr-HR 133.3 123.1 0.9 62.3±4.7d 10.6 low

YCHJ90103 Pyr-HR 125.4 119.1 0.9 77.3±7.4bc >40 high

YCJH70402 Pyr-HR 641.0 573.2 0.9 78.3±3.5bc >40 high

YZHJ90301 Pyr-HR 181.5 185.7 1.0 73.6±5.1c 9.3 low

YZHJ90402 Pyr-HR 1240.5 1375.2 1.1 74.3±2.7c >40 high

YZTN10301 Pyr-HR 194.9 202.4 1.0 82.3±3.4ab >40 high

YCXY70702 Pyr-HR 259.2 230.3 0.9 85.0±0a 20.7 moderate

Isolates Phenotypea EC50 values (mg/l) FSCb Mycelial growthc (mm) Lesion diameter (mm) Virulence

1st 10th

CJJH20103 Pyr-R 88.5 71.1 0.8 85.0±0a >40 high

CJJH20505 Pyr-R 96.4 70.9 0.7 80.3±0abc 10.2 low

CJTN20301 Pyr-R 18.0 15.2 0.8 85.0±0a >40 high

CJXY30601 Pyr-R 33.5 45.7 1.4 80.3±3.4abc >40 high

HLTN10402 Pyr-R 22.2 19.2 0.9 85.0±0a >40 high

JSJH10101 Pyr-R 18.8 24.9 1.3 67.7±7.4cd 22.1 moderate

LDJH Pyr-R 31.8 30.5 1.0 75.6±6.2c 32.5 high

YCTN70103 Pyr-R 88.1 69.1 0.8 85.0±0a 32.3 high

YCXY70704 Pyr-R 31.1 37.1 1.2 82.7±2.3ab 24.7 moderate

DFTN40801 Pyr-S 3.2 2.5 0.8 64.7±4.6cd 16.2 moderate

DFTN41002 Pyr-S 4.1 3.4 0.8 85.0±2.3a >40 high

YCJH70107 Pyr-S 7.2 7.6 1.1 85.0±0a 8.8 low

YCXY70602 Pyr-S 9.3 7.2 0.8 78.6±3.5c 20.9 moderate

YZTN10503 Pyr-S 3.1 2.5 0.8 82.7±3.7ab >40 high

aS = sensitive, R = resistant, and HR = high resistant.
bFSC (factor of sensitivity change): the EC50 values of the 10th transfer divided by the EC50 values of the 1st transfe.
cValues are means (± standard deviation) of each isolate for three repetitions. Values within the same column with the same lowercase letter are not significantly

different at the 0.05 level according to the Tukey’s test.
dThe lesion diameter was measured after incubated for 5 days.

https://doi.org/10.1371/journal.pone.0253659.t001
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Pyr-HR and Pyr-R phenotypes did not significantly decrease compared with Pyr-S phenotypes

under osmotic stress.

The relative conductivity and cell membrane permeability

The results showed that the relative conductivity of all L. theobromae was increased with time,

the relative conductivity of three phenotypes reached the maximum after 80 min of treatment

(Fig 3a). When treated by 100 mg/l pyraclostrobin, the relative conductivity of sensitive pheno-

type markedly increased in a short time (10 min), but resistant phenotypes required a longer

time (� 80min) (Fig 3b). The relative conductivity of Pyr-S was significantly higher than that

of Pyr-HR and Pyr-R after treated for 10 min (F = 50.09, P = 0.000< 0.05). Cell membrane

permeability was measured by the electrical conductivity. This means that cell membrane per-

meability of Pyr-S was markedly increased compared with that of the resistant phenotypes

after treated by pyraclostrobin.

Protein content and enzyme activity

The protein content of all phenotypes showed little variation with increasing pyraclostrobin

concentrations. There were no significant differences between the resistant and sensitive phe-

notypes (P> 0.05).

Fig 1. The virulence of Lasiodiplodia theobromae isolates at 5 d after inoculation.

https://doi.org/10.1371/journal.pone.0253659.g001

Table 2. Sensitivity of Lasiodiplodia theobromae to different pyraclostrobin resistance phenotypes under different temperature (36h).

Phenotype Growth (mm) at each Temperautre Tukey’s test

15˚C 20˚C 25˚C 30˚C 35˚C 40˚C F P
Pyr-HR 17.6±7.4a 50.8±6.2b 81.2±3.78c 82.8±3.4c 79.3±6.2c 6.7±3.7a 121.43 0.000

Pyr-R 19.2±3.6b 50.7±3.3c 80.0±5.0d 83.9±1.7d 80.5±7.1d 5.6±3.5a 183.60 0.000

Pyr-S 18.3±6.3a 47.4±9.3b 80.8±8.3c 83.2±2.3c 79.7±8.0c 5.9±3.7a 75.78 0.000

Values are means (±SD) of three experiments. Values within the same row with the same lowercase letter are not significantly different at the 0.05 level according to the

Tukey’s test. S = sensitive, R = resistant, and HR = high resistant.

https://doi.org/10.1371/journal.pone.0253659.t002
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The enzyme activities of L. theobromae isolates were measured after incubation with differ-

ent concentrations of pyraclostrobin. GST activities of all phenotypes appeared notably

decreased with an increase in fungicide treatment concentration. GST activities of the resistant

phenotypes (Pyr-HR and Pyr-R) were significantly higher than that of the Pyr-S phenotype

after treatment by pyraclostrobin (Fig 4a). Compared with that of control group, the decreas-

ing rates of GST activity of Pyr-HR, Pyr-R and Pyr-S phenotypes were, respectively, 79.92%,

75.69% and 84.17% after treated by 200 mg/l pyraclostrobin. The GST activities of Pyr-HR and

Pyr-R phenotypes were significantly higher compared with Pyr-S phenotype after treatment

by 200 mg/l pyraclostrobin (F = 9.265, P = 0.015). But for the CAT activities, the Pyr-HR phe-

notype significantly increased with an increase in fungicide treatment concentration, and the

Pyr-S phenotype displayed opposite result to Pyr-HR. (Fig 4b). The CAT activity of Pyr-HR

phenotype was significantly higher compared with Pyr-S and Pyr-R phenotypes after treated

by 200 mg/l pyraclostrobin (F = 18.623, P = 0.003). Similarly, the POD activities of Pyr-HR

phenotype significantly increased with an increase in fungicide treatment concentration (Fig

4c). The POD activitie of Pyr-HR phenotype was significantly higher compared with Pyr-S

and Pyr-R phenotypes after treatment by pyraclostrobin (F = 7.975, P = 0.02). For PAL activi-

ties, only Pyr-HR phenotype also appeared decreased with an increase in fungicide treatment

concentration (Fig 4d). The PAL activities of Pyr-S phenotype were significantly higher com-

pared with Pyr-R and Pyr-HR phenotypes after treated by 200 mg/l pyraclostrobin (F = 22.69,

p = 0.002).

Fig 2. Osmotic stress sensitivity of Lasiodiplodia theobromae to different pyraclostrobin resistance phenotypes.

(a) Sensitivity to NaCl. (b) Sensitivity to glucose. Bars denote the stand error of three experiments. S = sensitive,

R = resistant, and HR = highly resistant.

https://doi.org/10.1371/journal.pone.0253659.g002
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In summary, GST, CAT and POD activities of Pyr-HR phenotype of L. theobromae were

significantly higher compared with Pyr-S phenotype in the high concentration pyraclostrobin

that are contrary to PAL activity. The activities of GST, CAT and POD of Pyr-HR were 1.78,

5.45 and 1.65 times than that of Pyr-S, respectively.

Cytb gene sequence

Partial fragments were obtained from Cytb gene of L. theobromae isolates with 490 bp in length

(Fig 5). BLAST search of the nucleotide sequence in GenBank showed 100% identity with Cytb
gene in L. theobromae MCC2345 (GenBank: MH880818.1). The orthologous protein positions

were aa 62 to 224. The sequenced fragment of the Cytb gene of L. theobromae includes the

mutation positions known to affect the resistance of the pathogens to QoIs fungicides. There

was no mutation observed in pyraclostrobin-resistant isolates. The results showed that all L.

theobromae isolates had identical partial sequences, resistance to pyraclostrobin was not attrib-

utable to Cytb gene alterations.

Discussion

It was reported that the wide occurrence of carbendazim and pyrazoxystrobin resistant isolates

of L. theobromae in the Hainan mango growing region [4, 8, 9]. Resistance to site-specific

Fig 3. The relative conductivity of Lasiodiplodia theobromae to different pyraclostrobin resistance phenotypes. (a)

Treated with no fungicede. (b) Treated with 100 mg/l pyraclostrobin. Bars denote the stand error of three experiments.

S = sensitive, R = resistant, and HR = highly resistant.

https://doi.org/10.1371/journal.pone.0253659.g003
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fungicides has become a limitation to the sustained control of stem-end rot caused by L. theo-
bromae. Knowledge of fungicide resistance is important in securing sustainable disease man-

agement in agricultural systems.

According to our previous study, QoI fungicide resistance can quickly develop in L. theo-
bromae populations. In this study, the stability and fitness of pyrazoxystrobin-resistant isolates

Fig 4. The enzyme activities in the mycelia of Lasiodiplodia theobromae phenotypes under fungicide stress. (a-d)

The activities of GST, CAT, POD and PAL respectively. Bars denote the stand error of three experiments. S = sensitive,

R = resistant, and HR = highly resistant.

https://doi.org/10.1371/journal.pone.0253659.g004

Fig 5. An alignment of the Cytb gene sequences compared with similar gene from other fungi. MCC2345:

Lasiodiplodia theobromae isolate from papaya (GenBank: MH880818.1). YZHJ90402: pyraclostrobin resistance isolate

of L. theobromae from mango.

https://doi.org/10.1371/journal.pone.0253659.g005
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were analyzed to evaluate the risk of fungicide resistance. The results demonstrated that the

pyraclostrobin-resistant isolates retained the same levels of EC50 values of pyraclostrobin as

their initial generations after successive subculturing on PDA. It showed that pyraclostrobin

resistance of L. theobromae was stable in the absence of the fungicide. However, there could be

a difference between fields-resistant isolates and laboratory UV-induced mutants, the labora-

tory-induced mutants of B. cinerea almost completely lost pyraclostrobin resistance after 7

transfers on fungicide-free PDA [21]. Previous reports showed that some fungicide-resistant

pathogen have sufficient fitness to compete with sensitive pathogen in the field [19, 20]. By

contrary, some fungicide-resistant isolates may exert fitness costs, such as the carbendazim-

resistant isolates were sensitive under low or high temperature conditions [22], the fludioxo-

nil-resistant mutants were sensitive to osmotic stress [24], the pyraclostrobin-resistant mutants

were less virulent than their sensitive wild parents [25]. In our study, the obvious difference of

fitness was observed among isolates within the same phenotype groups, but there were no sig-

nificant differences in the means among different phenotype groups. Two pyraclostrobin-

resistant phenotypes shared similar mycelial growth, virulence and temperature sensitivity

with pyraclostrobin-sensitive phenotype. And there were no significant differences among dif-

ferent phenotypes when grown in the presence of high NaCl and glucose concentration. These

results showed that L. theobromae field isolates have no obvious fitness costs associated with

pyraclostrobin resistance. There is a quite high and potential resistance risk of L. theobromae
to pyraclostrobin. A similar pattern of results was obtained in carbendazim resistant isolates

of L. theobromae [10]. It is further proved that L. theobromae is a kind of fungus with “high

risk” for fungicide resistance development. Reduced sensitivity of fungicide target-sites and

enhanced metabolic detoxification are the two major mechanisms in resistance development,

such as the target gene point mutations [15–18], ATP-binding cassette transporters (ABC)

overexpression [26], or changes of the activity of metabolic enzymes [27]. Recent studies have

shown that fungicides could lead to cell membrane damage and mycelium electrolyte leakage

increase in Sclerotinia sclerotiorum [28], and the fungicede-resistant isolates of S. sclerotiorum
had a significant increase in relative conductivity [23, 29]. According to our study, the time

that corresponds the maximal relative conductivity significantly differed among three pheno-

type groups after treated by pyraclostrobin; the time of Pyr-R and Pyr-HR reached the most

conductivity was about 8–10 times than Pyr-S. There was significant difference between sensi-

tive and resistant phenotypes when treated for 10 min. In summary, the relative electrical con-

ductivity had a strong correlation with cell membrane permeability, so pyraclostrobin could

lead to increased leakage from mycelium of sensitive isolates in a short time, but resistant iso-

lates required a longer time. Therefore, it is speculated that the altered cell membrane perme-

ability of the resistant isolates may be linked to fungicides resistance.

Numerous studies have demonstrated enzyme activities may play a role in the resistance of

pesticides [30]. An increase in the enzyme activities was observed in fungicide-resistant iso-

lates, which enhanced metabolic detoxification [31, 32]. Recent studies have reported that GST

is the major enzyme classes involved in cell detoxification processes, it may be responsible for

the carbendazim resistance of Fusarium graminearum [27]. Moreover, POD activity was sig-

nificantly higher in the dimethachlone-resistant compared to the sensitive isolates of S. sclero-
tiorum [29]. In our study, GST activities of the resistant phenotypes in the untreated control

group were not significantly different from that of the sensitive isolates. GST activities in the

three phenotypes appeared to decrease with increasing pyraclostrobin concentration, but such

a decrease in GST activity was obviously less in the resistant- than the sensitive-phenotypes.

However, CAT activity of resistant isolates increased with an increase in the fungicide treat-

ment concentration. The results indicated that changing rules on several enzymes activities of

the resistant L. theobromae were different after treated with pyraclostrobin. It is important to
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note, no matter enzymes activities are increased or decreased with the increasing of pyraclos-

trobin concentration, the end result is that GST, CAT and POD activities of the resistant phe-

notype groups (especially Pyr-HR) were significantly higher than that of Pyr-S. Thus, it can be

reasonably speculated that enzyme activities might have been linked to the QoI fungicides

resistance mechanism in L. theobromae.
The primary mechanism of fungicide-resistance in phytopathogenic fungi is target gene

mutations. The QoI fungicides resistance generally associated with point mutations in Cytb
gene at codons 129,137 and 143 in many phytopathogens [12, 13, 33]. Others have shown that

Cytb gene mutation was not also detected in few pathogens, such as reduced sensitivity to

azoxystrobin L. theobromae isolates [34], low and moderate resistant Colletotrichum gloeospor-
ioides isolates [35], moderate and high resistant Microdochium majus isolates [36]. Though L.

theobromae from mango has high level resistance to pyraclostrobin, but no point mutation

was detected in pyraclostrobin-resistant isolates in this study. Our results indicated that the

resistance mechanism to pyraclostrobin is not based on Cytb gene modifications, there may be

some of other resistance mechanisms in L. theobromae.
The present study provided the important reference data for assessment of resistance risk

and resistance mechanisms of L. theobromae. The high fitness of the pyraclostrobin-resistant

L. theobromae populations present serious obstacles for management of QoI fungicides resis-

tance. Field resistance to both benzimidazole and QoI fungicides are distributed widely in the

mango growing regions of Hainan province. The present results highlight the need for strate-

gies to reduce the risk. Furthermore, it is necessary to strengthen the research on the resistance

mechanisms. The results indicated that pyraclostrobin resistance for L. theobromae was not

attributable to Cytb gene alterations. This study also provides some evidence that L. theobro-
mae can escape from fungicide inhibition not only by detoxification, but also by other resis-

tance mechanisms. In conclusion, it would appear that the metabolic resistance may play key

roles in fungicide resistance. However, metabolic resistance is poorly understood in the field

of fungicides. Consequently, more metabolic resistance studies (e.g. key metabolic enzymes

and related genes, ABC transporter genes) will be conducted to confirm the mechanism of

QoI fungicides resistance in L. theobromae field isolates in future.
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