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Abstract: Breast cancer is the leading cause of cancer-related deaths in women worldwide. In the
United States, even with earlier diagnosis and treatment improvements, the decline in mortality has
stagnated in recent years. More research is needed to provide better diagnostic, prognostic, and
therapeutic tools for these patients. Long non-coding RNAs are newly described molecules that have
extensive roles in breast cancer. Emerging reports have shown that there is a strong link between
these RNAs and the hypoxic response of breast cancer cells, which may be an important factor for
enhanced tumoral progression. In this review, we summarize the role of hypoxia-associated lncRNAs
in the classic cancer hallmarks, describing their effects on the upstream and downstream hypoxia
signaling pathway and the use of them as diagnostic and prognostic tools.
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1. Introduction

Breast cancer is the leading cause of cancer-related deaths in women worldwide. Its
incidence has been increasing 0.5% per year since the last decade, mainly due to the decline
in fertility rate and the increase in body weight among young women [1]. In the United
States, even with earlier diagnosis and treatment improvements, the decline in mortality has
stagnated in recent years, from a reported 3% to a 1% annually [2], so we need renovated
research efforts to address this.

One of the most important mechanisms that drive breast cancer progression is hypoxia—a
decrease in the microenvironment oxygen tension. Hypoxia in tumors results from the growth
of aberrant new blood vessels developed during cancer progression, which cannot sustain an
adequate blood supply. Tumor cells located more than 180 µm away from a vessel become
anoxic and die by necrosis [3]. Cells in the immediate vicinity can survive in a chronic hypoxic
condition by eliciting a strong cellular hypoxic response [4]. This response induces several
local and distant physiological mechanisms, including a shift from aerobic to anaerobic cellular
respiration, production of growth factors, pH regulation, proliferation, induction of distant
production of erythropoietin from the kidney and local neo-angiogenesis.

2. Hypoxia Signaling Pathway
2.1. Canonical Hypoxia Signaling Pathway

Cells respond to hypoxia by a concerted physiological and sometimes pathological
responses by activating the Hypoxia Signaling Pathway (HSP), which is centrally guided
by a group of related proteins termed Hypoxia-Inducible-Factors (HIF). The HIF family
is a conserved group of transcription factors that act as a heterodimer of alpha and beta
subunits. In humans there are three alpha (HIF-1α, HIF-2α/EPAS and HIF-3α) and two
beta paralogs (ARNT, ARNT2) [5]. In normoxic conditions, the canonical HIFα subunit,
HIF-1α is bound to the von Hippel-Lindau (VHL) protein, allowing the activation of the
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ubiquitin ligase system, which renders it susceptible to its degradation by the proteaso-
mal degradation complex (Figure 1). To bind VHL, HIF-1α proline residues need to be
hydroxylated, a process that depends on several hydroxylases, including α-ketoglutarate-
dependent dioxygenases and the prolyl hydroxylases (PHD). In addition, hydroxylation of
an asparagine in the C-terminal transactivation domain by the asparaginyl hydroxylase
(factor-inhibiting HIF (FIH)) prevents its interaction with the p300 coactivator and thus
HIF transcriptional activity [6,7]. An oxygen level decrease inhibits the PHD and FIH,
leading to a reduction in hydroxylation and thus, HIF-1α stabilization. Higher levels of
this unit allow it to dimerize with the HIF-1β subunit, which induces their translocation to
the nucleus. There, the dimer recruits additional co-activators such as CREB and p300 and
acts as a transcription factor that binds to E-box-like hypoxia response elements (HREs) (5′-
RCGTG-3′) in a diverse array of hypoxia-inducible promoters in at least a couple hundred
genes, as described by integrative approaches [8]. The products of these genes not only
regulate various biological processes, including cellular metabolism, growth, apoptosis,
and migration, but also include several oncogenes and tumor suppressor genes. Since
these same processes and genes are involved during carcinogenesis, it is not surprising that
hypoxia is a key tumoral micro-ambient factor involved in cancer progression.
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Figure 1. HIF-dependent hypoxia signaling pathway. In normoxia, prolyl-hydrolyses (PHD) and
Factor-inhibiting hypoxia-inducible factor (FIH) hydroxylate HIF-α. Hydroxylation from the latter
impairs HIF transactivation of target genes, whereas the former allows dimerization with the Von
Hippel Lindau (VHL) protein, which directs HIF to ubiquitination and degradation by the proteasome.
Hypoxic conditions stabilize HIF-α after PHD and FIH inactivation, allowing dimerization with
HIF-ß subunits, translocation to the nucleus and association with coactivators, such as p300/CBP to
regulate gene expression.

2.2. The Hypoxia Signaling Pathway and Breast Cancer

Most solid tumors have a hypoxic environment, which correlates with poor clinical
outcomes. Early reports by Hockey et al. demonstrated that low oxygen in tumors was
associated with increased metastasis and lower survival in patients with breast cancer [9].
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Indeed, it has been estimated that 40% of all breast tumors and 50% of locally advanced
breast cancers have hypoxic regions at the time of diagnosis [10], which add to the role of
hypoxia during the early tumor progression. In common with other tumors, breast cancer
tissues present higher levels of HIF-1α and hypoxia, which correlates with poor prognosis,
including early relapse and metastatic disease [11]. As expected by the oxygen diffusion
ability, breast precursor lesions such as ductal carcinoma in situ (DCIS) and early stage
breast cancer already present HIF-1α overexpression [12].

The HSP is key to two main cancer progression processes: angiogenesis and metabolic
reprogramming. As stated before, oxygen diffusion is limited to 180 µm, so tumoral growth
is restricted to masses not larger than 1–2 mm before becoming hypoxic [13]. After reaching
that volume, the HSP induces a complex stress response aimed mainly at supporting neo-
angiogenesis and metabolic reprogramming [14]. This process is not straight-forward, since
most of the new vessels are disorganized and leaky, which further increases hypoxic areas.
Neo-angiogenesis relies heavily in the HSP, mediated by classical angiogenic inducers such
as VEGF and Angiopoietin-like factors and angiogenesis receptors (e.g., VEGFR, ANGPTR)
and microenvironment matrix elements that act not only in the tumor cells themselves,
but also in the tumor endothelial cells [15]. In breast cancer, several reports [16–18] have
shown that a complex interplay between tumor and stromal cells create a pro-angiogenic
environment in which the HSP mediated by HIF members is the key regulator, as shown
by loss-of-function experiments [19].

The second important oncogenic process regulated by the HSP is metabolic reprogram-
ming, which includes carbohydrates, amino acids, and lipids. The main example is the
modulation of the cellular energetic metabolism by hypoxia. In this case, HIF-1α induces a
shift from mitochondrial respiration to glycolytic-dependent metabolism. This is achieved
through up-regulation of glycolytic enzymes and pyruvate redistribution toward lactate
production by several coupled mechanisms [20]. In parallel, hypoxia induces a concurrent
increase in production and secretion of lactate, which acidifies the extracellular milieu [21].
Increases in glycogen synthesis and glucose uptake also accompanied this change, which
add to a chemoresistance phenotype of breast cancer cells [22]. Accumulation of extracel-
lular lactate and consequent acidification contribute to an important immunosuppressive
microenvironment in breast tumors [23]. The principal actors in these changes are the HIF-
responsive carbonic anhydrase 9 and monocarboxylate transporters (MCT) 1 and 4 [23,24].
The former catalyzes the conversion of CO2 and water to HCO3- and H+, whereas the latter
mediates the lactate and H+ efflux from breast cancer cells [21,25]. Since most of the pyru-
vate in cancer cells is redirected away from the Krebs cycle, hypoxic cells require additional
sources of Krebs cycle intermediates, such as cysteine and glutamine. This is achieved
by an up regulation of several amino acid importers, such as SNAT2, SLC1A5, ASCT2,
SLC7A11 and SLC7A5, all of which are HIF-responsive genes [26] and by an increase in
the enzyme glutaminase, which converts glutamine to glutamate [27]. Cancer cells require
fatty acids and lipids to support key ongoing oncogenic processes such as metabolism,
signaling, intracellular oxidative adaptation and growth [28]. HIF proteins represses fatty
acid oxidation and up regulates their synthesis by transactivating the genes of several
enzymes involved in this process, such as the fatty acid synthase, lipin 1 and acetyl-CoA
carboxylase (ACC). Simultaneously, the HSP is involved in an important increase in fatty
acid uptake by up regulating fatty acid-binding proteins [29].

More recently, several authors have found that the HSP can modulate not only transient
transcriptional responses, but also epigenetic programs. This is accomplished by changing
the methylation status of both DNA and nuclear histones [30]. Induction of histone lysine
demethylases (KDM) by the HSP is key to this process, as they stabilize HIF-1α complexes to
initiate transcription of its key target genes. In addition, several KDM are members of the 2-
oxoglutarate-dependent dioxygenase family (KDM3A, KDM2B, KDM4B, KDM5B, KDM6B
and KDM4C), so they depend on oxygen and 2-oxoglutarate to present their enzymatic
activity [30]. These enzymes act also as signal amplifiers and transcriptional facilitators
for the expression of genes downstream of HIF signaling [31] and also mediate chromatin
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rearrangements to facilitate this [32]. Similarly, hypoxia reduces the activity of the TET
demethylases, inducing DNA hyper-methylation [33]. Pediatric ependymomas underline
the importance of hypoxia-mediated epigenetic reprogramming in cancer. As many of
other pediatric tumors, these cancers have a very low number of recurrent mutations, so
an epigenetic origin has been suggested. Ependymomas arise from putative stem cells
embedded in a hypoxic compartment, in which the lack of oxygen establishes a gene
regulatory program that depends on it [34,35]. These results show the HSP ability to
regulate the epigenetic machinery to provide a stable response to hypoxia.

Several research groups have shown that a large part of what previously was consid-
ered “junk” DNA is actually transcribed [36] and at least part of it has important cellular
functions [37,38]. Among the important transcribed DNA regions, non-coding RNAs
genes have proven to be an enormous source of previously unknown regulatory elements
that take part in physiological and pathological states. Among the latter, cancer stands
out, perhaps due to the complex and profound genomic rearrangements that characterize
it [39]. We can arbitrarily separate non-coding RNAs into two groups, small non-coding
RNAs (sncRNAs) and long non-coding RNAs (lncRNAs), according to their length. Long
non-coding RNAs (lncRNAs) are transcripts longer than 200 base pairs transcribed from
intergenic or even genic regions. They are classified by its molecular function as decoy
lncRNAs, when they sequester proteins, guide lncRNAs, which can recruit chromatin
modifiers, scaffolding lncRNAs that act as protein adaptors and sponges, which act as com-
peting endogenous molecules (ceRNAs) that prevent microRNAs to interact with mRNAs
by being “sponges” and enhancer lncRNAs that stabilize chromosome loops [40]. These
molecular activities allow them to take part in almost all cellular processes explored to
date, as they converge into transcriptional and postranscriptional mechanisms, epigenetic
modulation and even signal transduction participation. As expected by these facts, there
are many reports showing deregulation of several lncRNAs in a long list of tumors [41].
Changes in lncRNAs expression have been also associated with clinical characteristics,
prompting several authors to propose the use of them as diagnostic or prognostic tools [42].
Although the study of these RNAs has escalated in recent years, we are still in the initial
steps of their understanding, due to the large number of lncRNAs, which may even exceed
the number of coding RNAs [43], and their pleiotropic activity.

In breast cancer, lncRNAs have been extensively studied, but their role seems to be
more complex that initially thought. These molecules participate in breast cancer cell pro-
liferation [44,45], invasion [46], migration [45–47], apoptosis [48], epithelial-mesenchymal
transition (EMT) [49], stem phenotype [50] and response to chemotherapeutic drugs [40,51]
and most of the described cancer hallmarks [52]. Most of the studies have focused on the
cell-autonomous effects of these RNAs, leaving the role of non-cell autonomous signaling
provided by the Tumor Microenvironment (TME) unexplored. Since there is a remark-
able intra- and inter-tumoral heterogeneity in breast cancer, more efforts are needed to
study the role of the surrounding TME in gene expression regulation. In addition, recent
reports have also shown that these non-coding RNAs can also take part in emerging cancer
hallmarks such as phenotypic plasticity and non-mutational epigenetic reprogramming
(NMER) [53]. TME is thus a key component required for full cancer progression, as it not
only provides an adequate niche for tumor development, but also interacts with cancer
cells in a bidirectional manner [54].

3. Hypoxia-Associated Long Non-Coding RNAs as Regulators of Breast Cancer

As stated previously, lncRNAs are critically involved in a bidirectional signaling circuit
between TME and cancer cells. Two TME-related factors are key to drive cancer progression
by providing important evolutionary forces involved in it: hypoxia and acidosis. In this
review, we will focus only on the hypoxic response. In breast cancer, most of the attention
has focused on the HIF-dependent or independent HSP, but new research has shown that
non-coding RNAs may be key to understand the full response of tumors to hypoxia.
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Recently, Lin et al. reported the discovery of hypoxia-regulated lncRNAs in breast can-
cer cells [55]. These authors used a RNASeq approach in MCF-7 cells exposed to normoxia,
hypoxia and re-oxygenation conditions and found 472 lncRNAs that were differentially
regulated during hypoxic conditions, validating three of them: lnc-CPN2-1, lnc-C11orf35-2
and lnc-NDRG1-1. Although not comprehensive since it was produced using only one cell
line, this report showed that the number of hypoxia-responsive lncRNAs could be counted
into the hundreds. A second article published in 2021 used two breast cancer cell lines to
perform a similar RNASeq-based analysis [56]. Here, 104 and 282 regulated lncRNAs were
found in each cell line, and only 43 were shared between them. Twenty-six RNAs were
validated, but interestingly, 17 were not. Results from this study could help to provide more
accurate network analyses and prognostic markers. For example, Gong, P. J. et al. recently
used a panel of 13 hypoxia-related lncRNAs to generate a classification or “clusters” of
breast cancer patients based on this signature [57]. The cluster with an unregulated hypoxic
signature presented a differential immune infiltration profile, with lower CD8+ and CD4+
T but higher nTreg and iTreg cells number. A more comprehensive study using several cell
lines and a more robust validation strategy, including in vivo experiments, is needed to
establish the real number of hypoxia-related lncRNAs in breast cancer or at least those that
are more important for the malignant phenotype. In addition, a study like this should help
to add new diagnostic and prognostic factors and even possible therapeutic targets.

Most of the reports that have analyzed the role of lncRNA in the HSP have focused on
RNAs that respond to hypoxia, although there are also several reports that have shown
a direct role of lncRNAs that regulate the HSP and are even able to establish a positive
signaling feedback to amplify the HSP [58,59]. Most of these reports analyzed lncRNAs
that were previously associated with hypoxia in other tissues, so a more comprehensive
discovery effort, as stated, should help to direct the efforts to the more relevant RNAs
(Table 1).

Table 1. Hypoxia-related lncRNA in breast cancer.

Year lncRNA Expression in
Breast Cancer

Regulated by
Hypoxia

Regulates
Hypoxia

Signaling
Molecular Phenotype References

2015 NEAT1 Paraspeckle formation Proliferation,
apoptosis inhibition [60]

2015 EFNA3 Induce Ephrin-A3
accumulation

Increased metastatic
potential [61]

2016 LINK-A Increased in
TNBC

Allows HIF-1α
phosphorylation and

stabilization by BRK and
LRRK2

Glycolysis [62]

2018 NDRG-OT1

Inhibition of NDRG1 by
ubiquitination-mediated
proteolysis. Inhibition of

NDRG1 promoter
activation

[55,63]

2018 H19
miRNA let-7 endogenous

competitor. HIF-1α
activator

PDK-1-mediated
Increased glycolysis [64]

2018, 2019,
2021

MALAT1,
TALAM Increased

XBP1-HIF-1α and HER2
pathway-mediated effects.

miRNA-3064-5p
endogenous competitor.
Chromatin remodeling

Proliferation and
invasion [44,65,66]

2019 HISLA
Increased in
breast cancer

TAMs

HIF-1α stabilization by
blocking PHD2

Macrophage-
mediated enhanced

glycolysis
[67]

2020 LINC00662 Increased
miR-497-5p endogenous

competitor mediated
EglN2 regulation

Proliferation and
migration [68]

2020 MIR210HG Increased HIF-1α translation
enhancement Glycolysis [69]
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Table 1. Cont.

Year lncRNA Expression in
Breast Cancer

Regulated by
Hypoxia

Regulates
Hypoxia

Signaling
Molecular Phenotype References

2020 lncMat2B Stemness [70]

2020 BRCT1 Increased
miR-1303 endogenous
competitor-mediated
stabilization of PTBP3

Proliferation,
migration, increased
metastatic potential

[71]

2020 HOTAIR Increased
miR-204 endogenous

competitor-mediated FAK
induction

Migration [72]

2020 RAB11B-
AS1 Increased

Induces the expression of
VEGFA and ANGPTL4 by

recruitment of RNA
polymerase II

Migration, invasion,
and angiogenesis [73]

2021 LncIHAT Promotes expression of
PDK1 and ITGA6

Tumor growth and
metastasis [56]

2021 MTORT1

miR-26a-5p endogenous
competitor-mediated

CREB1 and STK4
regulation

Proliferation and
migration [74]

2021 UCA1 Increased Proliferation and
apoptosis [75]

2021 LINC00926
Regulation of PGK1 via
ubiquitination mediated

by STUB1
Glycolysis [76]

2021 VCAN-AS1 Increased
miR-106a-5p endogenous

competitor-mediated
regulation of STAT3

Proliferation,
migration, invasion,

and EMT.
[77]

2021 HCG18 Increased

miR-103a-3p endogenous
competitor-mediated

UBE2O/AMPKα2/mTORC1
activation

Proliferation,
invasion and

stemness
[58]

2021 eNEMAL Alternative splicing of
NEAT1 [78]

2021 PCAT-1 Increased
Stabilizes HIF-1α by
preventing RACK1

binding
[46]

2021 GHET1 Increased in
TNBC

Decreased
phosphorylation of LATS1

allowing YAP nuclear
translocation

Proliferation, viability,
invasion, glycolysis [79]

2021 SPRY4-IT1
STAU1 recruitment to
TCEB1, upregulating

HIF-1α
Metastasis [80]

2021 HIFAL Increased
Recruitment of PHD3 to

PKM2 to enhance HIF-1α
activity

Tumor growth [59]

2021 KB-1980E6.3 Increased
Activation of

IGF2BP1/c-Myc signaling
axis to stabilize c-Myc

Stemness [81]

2022 RBM5-AS1 Increased Activation of the Wnt
pathway

Proliferation,
migration, invasion,
EMT, and stemness

[82]

2022 LINC00649 Increased in
TNBC

Stabilization of HIF-1α
via NF90/NF45

interaction

Proliferation,
migration, and

invasion
[83]

TNBC: Triple Negative Breast Cancer; TAMs: Tumor-Associated Macrophages. Gray bars show regulation
(upstream or downstream)

The cellular processes modulated by hypoxic-associated lncRNAs are diverse, but
most authors focused on proliferation, migration and invasion, epithelial-mesenchymal
transition (EMT) and glycolysis, as these are probably the most studied hallmarks of
cancer [52] (Table 1). Additional processes, such as apoptosis, stemness, and angiogenesis,
were less studied, whereas recently described cancer hallmarks, such as non-mutational
epigenetic reprogramming or senescence, have not been explored at all. We will next
describe the role of specific hypoxia-related lncRNAs in each of these processes.

3.1. Growth

In 2015, Choudry et al. showed that hypoxia in breast cancer cells induced the for-
mation of nuclear paraspeckles (a nuclear structure responsible for adenosine-to-inosine
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edition, among other functions). This led to the nuclear retention of the F11R transcript,
due to the induction of the lncRNA NEAT1, which is part of this subcellular structure.
Paraspeckle formation was associated with an increase in proliferation, enhanced clono-
genic survival and reduced apoptosis [60]. Interestingly, the induction of NEAT1 depended
on HIF-2α, not HIF-1α. More recently, three articles have shown that MALAT1, discovered
initially in lung adenocarcinomas increase proliferation and invasion of breast cancer cells.
Several mechanisms mediate this effect, including XBP1-HIF1α signaling [44], chromatin
remodeling [65] and a ceRNA-mediated process that “sponge” the microRNA miR-3064-
5p [66]. It is interesting to note that both HIF-1α and HIF-2α upregulate MALAT1 [66].
This lncRNA is regulated by hypoxia in several human cancers, but the main mechanism of
action may vary between tumor types, as exemplified by the report showing that cytosolic
functions of MALAT1 are more important in breast cancer [66], than in other tumors [84,85].
In 2020, the group of Cheng et al. demonstrated that the non-coding RNA LINC00662
increased the proliferation of breast cancer cells by acting as a sponge on miR-497-5p [68].
This action decreased the expression of the egl-9 family hypoxia-inducible factor 2 (EglN2),
a prolyl hydroxylase that takes part in the hypoxia response. BRCT1 is a lncRNA that also
regulates the proliferation of breast cancer cells by targeting miR-1303 [71]. The decrease of
this miRNA prevents the degradation of PTBP3 mRNA, which is a breast tumor promoter.
In addition to a role downstream of the HSP, there are several examples of long non-coding
RNAs acting upstream of this signaling cascade (Table 1). VCAN-AS1 acts as a competitive
endogenous molecule of miR-106a-5p [77]. The decrease in available miR-106a-5p stabilizes
STAT3 mRNA and activates HIF-1α, inducing proliferation in breast cancer cells. Another
example is HCG18, a lncRNA that induces proliferation of breast cancer cells by sponging
miR-103a-3p, which is a regulator of the ubiquitin-conjugating enzyme W2O (UBE2O) [58].
This enzyme is part of the UBE2O/AMPKα2/mTORC1 signaling axis, which is also an
inducer of the HCG18 by promoting the activation of HIF-1α and providing a positive
feedback loop. Another example is LINC00649, which increased the stability and thus the
levels of HIF-1α mRNA by interacting with the nuclear factor 90 (NF90)/NF45 complex,
which is a signaling cascade responsive to double-stranded DNA, inducing proliferation of
breast cancer cells [83]. GHET1 is a novel lncRNA that regulates the proliferation of breast
cancer cells by decreasing HIF-1α expression by increasing the phosphorylation of LATS2
and YAP in order to inhibit the activation of the developmental Hippo pathway [79]. A
similar example of lncRNA-mediated regulation of an important development-associated
signaling pathway is mediated by RBM5-AS1, which is a lncRNA that is over expressed
in breast cancer. This lncRNA increased proliferation after being induced by the RUNX2
transcription factor, which is also regulated by hypoxia [82]. This increase activated the
Wnt pathway by preventing beta catenin degradation and stabilizing beta catenin-TCF4
transcriptional complexes. Interestingly, there are also examples of lncRNAs with a sup-
pressor phenotype. For example, the novel hypoxia-induced mitochondrial-encoded RNA,
mTORT1, reduced the proliferation of breast cancer cells by acting as a sponge for miR-26a-
5p, which in turn regulated CREB1 and STK4 expression [74]. It is important to note that
only two reports have shown that lncRNAs regulate tumor growth in vivo [56,59], so an
additional effort is required to validate the role of these molecules on cell proliferation.

3.2. Migration, Invasion and Metastasis

Most of the reports that studied the role of hypoxia-associated lncRNAs in breast
cancer proliferation also analyzed the effects of these molecules on migration, invasion, and
metastasis [58,60,66,71,74,75,77,79,82,83,86–88]. Although this is an apparent bias caused
by the researchers’ selection of analyzed phenotypes, there is indeed a biological basis for
the shared cellular phenotype elicited by the lncRNAs, since most of the signaling cascades
analyzed are oncogenic, which tend to have pleiotropic network effects. A clear example
of this is the previously mentioned report the activation of the Wnt pathway by RBM5-
AS1 [82], which induces not only proliferation but also migration, invasion, epithelial-
mesenchymal transition (EMT) and stemness, all of which are cellular behaviors expected
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from the reported role of Wnt on development and carcinogenesis [89]. Nevertheless, there
are three reports in the literature that analyzed only the role of hypoxia-related lncRNAs
on migration, invasion, or metastasis.

The first of them is the analysis of the role of long non-coding RNAs expressed from
the EFNA3 (Ephrin-A3) locus after hypoxia on the metastatic phenotype of breast cancer
cells [61]. This effect was mediated by the increase of EFNA3 protein expression by an
unknown mechanism. Since EFNA3 is a key cell surface protein required for efficient
migration, invasion and metastasis of cancer cells, the induction of these lncRNAs could
be one of the mechanisms associated with the effects of hypoxia on metastasis [90]. The
second report involves the description of the effects of the well-known HOTAIR lncRNA.
HOTAIR is highly expressed in breast cancer metastasis, inducing the overexpression of
the HER2 oncogene through sequestration of miR-331-3p [91]. This lncRNA is induced
by hypoxia in breast cancer cells where it acted as a competitive endogenous molecule
toward miR-204, stimulating FAK1 mRNA degradation [72]. The third report showed
that the intronic-derived SPRY4-IT1 increased breast cancer cell metastasis [80]. This
lncRNA was shown to bind to the transcription elongation factor B subunit 1 (TCEB1)
mRNA, increasing its stability, which in turn increased HIF-1α expression. Nevertheless,
the molecular mechanism uncovered by these authors was described in colon cancer cells,
so further corroboration of breast tumors is needed.

3.3. Glycolysis

Glycolysis is also one of the most studied metabolic pathways, so there are several re-
ports of its modulation by hypoxia-related lncRNAs in breast cancer. The first analysis was
reported by Lin et al., who found that LINK-A (long intergenic non-coding RNA for kinase
activation) promoted the phosphorylation of HIF-1α by BRK and LRRK2 kinases [62]. This
postraductional modification activated HIF in normoxic conditions, inducing glycolysis in
breast cancer cells. Pyruvate dehydrogenase kinase 1 (PDK1) is a key enzyme in glucose
metabolism. It has been shown that hypoxia induced this kinase by a mechanism that
required the expression of the lncRNA H19 [64]. Furthermore, inhibition of this RNA
decreased hypoxia-induced glycolysis. A similar postraductional mechanism was found
for phosphoglycerate kinase, a key glycolytic enzyme. Enhanced ubiquitination by the E3
ligase STUB1 mediated by LINC00926 downregulated this enzyme [76]. MIR210HG is a
hypoxia-induced lncRNA that promoted the Warburg effect in breast cancer cells [69]. This
was achieved by increasing the translation of HIF-1α and the consequent transactivation of
glycolytic enzymes. Finally, it is worth mentioning that GHET1 lncRNA not only increase
proliferation of breast cancer cells, but also increases glycolysis in them [79].

3.4. Stemness

Tumor Initiating Cells (TIC) or Cancer Stem Cells (CSC) are a small subpopulation of
tumoral cells that resemble progenitor tissue cells from the original organ from which the
tumor arose. CSC are important drivers of initiation, progression, invasion, metastasis and
drug resistance in all the tumors examined so far [92], including breast cancer [93]. Breast
cancer stem cells (BCSC) were first isolated by Al-Hajj et al. using cell surface markers
(EpCAM+/CD44+/CD24−) [94]. Abnormal expression of lncRNAs contribute to almost
all aspects of cancer progression, as stated previously. In breast cancer, modulation of
several lncRNAs contribute to the stemness phenotype, including well-known non-coding
RNAs such as MALAT-1, HOTAIR and H19 [95]. Nevertheless, there is a paucity of reports
exploring the role of these RNAs in the HSP. Previous reports have shown that inhibition
of HIF-1α decreased the proportion of breast cancer stem cells in xenografts and that a
hypoxic state induced more malignant traits in these cells [96,97]. As expected by these
results, we [70] and other researchers [58,82] (Table 1) have shown that lncRNAs could be
key unexplored regulators of the stem phenotype, by means of acting as ceRNAs for stem-
related microRNAs, such as miR-103 [58,82,98]. Using a three-dimensional in vitro tumoral
model we showed that the expression of lncMat2B, a lncRNA expressed in the hypoxic
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regions of multicellular tumor spheroids (MCTS), is increased in the CD44+/CD24- breast
cancer cell subpopulation [70]. Inhibition of this lncRNA decreased the stem properties of
this subpopulation, as assessed by clonogenic assays and in vivo xenografts. In a similar
work, Liu et al. showed that a decrease in the expression of the lncRNA HCG18 reduced
the expression of stem markers and the growth of tumors in a mice xenograft model [58].
Although not fully explored, preliminary reports support the view that microRNA sponging
may activate stem signaling pathways or genes such as c-Myc [81] or AMPKα2 [58]. More
research is clearly needed to address the full relevance of non-coding RNAs in breast cancer
stem cells functions.

4. Hypoxia-Associated lncRNAs as Breast Cancer Clinical Molecular Markers

As expected by the role of hypoxia in cancer, several research groups have explored the
potential use of hypoxia-related lncRNAs as molecular markers. In 2017, Liu et al., created
a 3-lncRNA signature that could classify breast tumors as triple-negative or non-triple
negative tumors based on plasma obtained from patients [99] (Table 2). Gong et al. used a
13-gene signature that included four lncRNAs for predicting poor prognosis of breast cancer
patients using a network approach that also uncovered immunological differences [57].
A more recent work using a four-lncRNA signature had prognostic power for overall
survival in patients with breast cancer when used to stratify patients in low- and high-risk
groups [100]. Gu et al. recently proposed a more extensive signature with 12 lncRNAs [101].
This signature was used to predict the survival outcome, classifying breast cancer patients
in high and low-risk groups. Patients in the high-risk group had shorter median overall
and disease-free survival and lower chemosensitivity compared with those in the low-
risk group. More importantly, the score provided by these authors was an independent
prognostic factor. Finally, there are additional works that have explored the use of single
lncRNAs as markers, such as the report from Wang et al. in 2019, which found that HIF1A-
AS2 expression had prognostic value for lymph node and distant metastasis, unfavorable
histological grade and shorter overall survival [102].

Table 2. Hypoxia-associated molecular lncRNA markers.

Year Marker Genes Signature Derived From Features Reference

2017 3-gene signature. ANRIL, HIF1A-AS2,
UCA1 Plasma Differentiate TNBC vs. other [99]

2020
13-gene signature that includes

SNHG16, LINC00899, PSMG3-AS1 and
PAXIP-AS1 lncRNAs

Tumoral tissue Prognosis [57]

2021

12-gene signature. LINC01614,
LINCO2384, AL109955.1, AC044849.1,

LINCO2084, LINC01615,
YTHDF3-AS1, AL451085.3,
AL512380.1, HSD11B1-AS1,

AC110995.1, AC004847.1, TRG-AS1,
AC011978.2, CDK6-AS1, TDRKH-AS1,

OTUD6B-AS1, MIR4435-2HG,
AP003774.2, SLC12A5-AS1

Tumoral tissue Prognosis and immune
features [101]

2021
4-gene signature. AL031316.1,
AC004585.1, LINC01235, and

ACTA2-AS1
Tumoral tissue Prognosis [100]

2018 MALAT1 Tumoral tissue Number of metastatic lymph
nodes [44]

2019 HIF1A-AS2 Tumoral tissue

Lymph node metastasis,
distant metastasis, and

unfavorable histological
grade. Shorter overall

survival

[102]

These recent reports are encouraging, but there is still the need to provide further
validation in distinct populations using larger number of patients in studies that also incor-
porate breast cancer molecular subtypes in order to implement these as routine markers.
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5. Discussion

Since the discovery that most of the human DNA is transcribed and have a potential
function [36–38], extensive research has shown that non-coding RNAs genes provide a large
number of regulatory elements in cancer. Due to the sheer number of these molecules and
lower evolutionary conservation compared to coding DNA, we have only a fragmentary
glimpse of their function in these diseases. Besides, the non-cell autonomous role of lncR-
NAs and the importance of TME in breast cancer progression make the task more difficult.
Nevertheless, several advances have been made. In this review, we provided a general
overview of the lncRNAs´ role in the hypoxic response in these tumors. Most of the studies
provide information about single lncRNAs functions over the classic cancer hallmarks, and
only a few of them aimed to discover all the possible hypoxic-responsive lncRNAs or the
role of non-coding RNAs upstream of the HSP. High-throughput experiments in a larger
number of cells lines stratified by breast cancer molecular subtypes with extensive in vivo
validation are now required to gain a more comprehensive insight on the lncRNAs role in
the hypoxic response. These results could not only be useful for this, but also to provide
better diagnostic, prognostic, and perhaps therapeutic tools for breast cancer patients.
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