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Toll-like receptor 4 (TLR4) initiates immune response against Gram-negative bacteria

upon specific recognition of lipid A moiety of lipopolysaccharide (LPS), the major

component of their cell wall. Some natural differences between LPS variants in their

ability to interact with TLR4 may lead to either insufficient activation that may not prevent

bacterial growth, or excessive activation which may lead to septic shock. In this study we

evaluated the biological activity of LPS isolated from pathogenic strain of Campylobacter

jejuni, the most widespread bacterial cause of foodborne diarrhea in humans. With the

help of hydrophobic chromatography and MALDI-TOF mass spectrometry we showed

that LPS from a C. jejuni strain O2A consists of both hexaacyl and tetraacyl forms. Since

such hypoacylation can result in a reduced immune response in humans, we assessed

the activity of LPS from C. jejuni in mouse macrophages by measuring its capacity to

activate TLR4-mediated proinflammatory cytokine and chemokine production, as well

as NFκB-dependent reporter gene transcription. Our data support the hypothesis that

LPS acylation correlates with its bioactivity.

Keywords: LPS, lipid A, acyl chains, Campylobacter jejuni, pathogenic bacteria, TLR4, proinflammatory cytokines,

macrophages

INTRODUCTION

Toll-like receptors constitute a family of immune sensors that recognize conserved molecular
patterns associated with bacteria and viruses, mediate interaction of the host immune system with
commensal microbiota and initiate early responses to infection (Akira and Hemmi, 2003; Rakoff-
Nahoum et al., 2004). Toll-like receptor 4 (TLR4) is critical for effective resistance to Gram-negative
bacterial pathogens in mice and humans (Poltorak et al., 1998; Arbour et al., 2000). TLR4 is mainly
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expressed by myeloid cells such as monocytes, dendritic cells and
macrophages (Vaure and Liu, 2014). Activation of TLR4 signaling
pathways and downstream transcription factors of NFκB and
IRF families leads to production of proinflammatory cytokines
and reactive oxygen species (Akira and Takeda, 2004; Lu et al.,
2008). These agents can be harmful both to pathogens and to the
host cells; indeed, TLR4 involvement has been reported for such
pathologies as sepsis, autoimmune diseases and cancer (Cario
and Podolsky, 2000; Bank et al., 2014; Korneev et al., 2017).

Lipid A is a biologically active part of LPS, which is responsible
for triggering antibacterial immunity (Lüderitz et al., 1978).
Stimulation of immune cells with LPS generally occurs via TLR4
that forms a complex with lipid A and extracellular adapter
protein MD-2 (Shimazu et al., 1999). Examination of several
LPS:TLR4:MD-2 complexes structurally characterized to date
(Park et al., 2009; Oblak and Jerala, 2015) clearly suggests
that various structural components of lipid A may affect the
overall biological activity of LPS to a different extent. The
great variety of LPS forms present in nature, particularly in
pathogenic bacteria, would then result in a broad spectrum
of host responses to LPS. For example, our previous studies
showed that the biological activity of LPS purified from several
pathogenic bacterial strains was mostly defined by the acylation
status of their lipid A (Korneev et al., 2014, 2015). Interspecies
structural variations in the components of the TLR4 signaling
complex may also influence the efficiency of immune response to
LPS, as exemplified by the tetraacylated lipid IVa from Escherichia
coli which acts as TLR antagonist in human macrophages, while
producing a significant response in murine cells (Kovach et al.,
1990; Ohto et al., 2012). Pathogenic bacteria can modify their
lipid A structure in order to avoid proper recognition by TLR4.
For instance, Y. pestis produces highly active hexaacyl lipid A
in fleas at 25◦C, but alters it to a less active tetraacyl form
after infecting mammals with higher body temperature of 37◦C
(Knirel et al., 2005).

Campylobacter jejuni is a Gram-negative microaerophilic,
flagellate, spiral bacterium, which is the most widespread
bacterial cause of human gastroenteritis, accounting for 5–
14% of all diarrheal diseases throughout the world (Rautelin
and Hänninen, 2000; Young et al., 2007). Infection usually
occurs through direct contact with pets or consumption of
contaminated products of poultry or cattle, for which C.
jejuni is a part of normal microbiota (Stephenson et al.,
2013). Campylobacter infection is considered a mild disease,
but it may lead to complications ranging from bacteremia,
peritonitis, pancreatitis and hepatitis to miscarriage and
autoimmune manifestations, such as arthritis and Guillain-Barré
syndrome (Peterson, 1994; Rees et al., 1995; Pope et al., 2007;
Fernández-Cruz et al., 2010). Moreover, complications from
Campylobacter infection can cause death in young, elderly, and
immunosuppressed patients, especially in developing countries,
making it extremely important from the healthcare perspective
(Barton Behravesh et al., 2011).

In this study we purified LPS from a C. jejuni O2A strain,
determined its composition and assessed its bioactivity in murine
macrophages. LPS from C. jejuni turned out to be less potent
TLR4 activator as compared to LPS from E. coli, indicating that

the number of acyl chains rather than their length determine LPS
bioactivity.

MATERIALS AND METHODS

Bacterial Cultures and Isolation of LPS
The bacterial strains of Escherichia coli O130 (Perepelov et al.,
2007), Francisella tularensis 15 (Mokrievich et al., 2010) and
Campylobacter jejuni O2A (Moran et al., 1991) were grown as
previously described. E. coli and C. jejuni cells were cultivated
under Biosafety Level II (BSL-II) conditions, F. tularensis cells
was cultivated under BSL-III conditions, according to the Russian
Sanitary Regulations SP 1.3.3118-13 and SP 1.3.2322-08 on
“Safe handling of microorganisms in pathogenic hazard groups,”
approved by decree No. 64, November 28, 2013 and decree
No. 4, January 28, 2008 of the Chief State Sanitary Physician
of the Russian Federation. LPS from bacterial biomass was
purified as previously described (Korneev et al., 2015). Briefly,
the biomass was acetone-dried (Robbins and Uchida, 1962),
frozen at −70◦C, lyophilized and subjected to phenol-water
extraction (Jann et al., 1965). R-form LPS was purified by AcA
44 Ultrogel chromatography as described (Korneev et al., 2015).
LPS-containing fractions were pooled, desalted by dialysis and
lyophilized.

Mass Spectrometry of LPS
MALDI-TOF mass spectrometry of purified LPS samples was
performed on a 4800 Proteomic Analyzer (ABSciex, USA), as
described (Sturiale et al., 2011). Negative ion mass spectra were
acquired in reflector modes with mass accuracy ca. 50 ppm.
2′,4′,6′-Trihydroxyacetophenone monohydrate was used for
matrix preparation. Mass spectra were analyzed as described
(Sturiale et al., 2011).

Laboratory Animals
All mice were housed under specific pathogen free conditions
on 12 h light/dark cycle at 20–23◦C and used at the age
of 8–10 weeks (weight of 20–22 g). C57Bl/6 mice and Tlr4-
deficient mice were housed in the Pushchino Animal Breeding
Facility (Branch of the Shemyakin and Ovchinnikov Institute of
Bioorganic Chemistry, Russian Academy of Sciences). MyD88-
deficient mice (Kleinridders et al., 2009) were from the animal
facility of the German Rheumatism Research Center (DRFZ),
Berlin. All animal manipulations were performed according
to recommendations of the Guide for the Care and Use of
Laboratory Animals (National Research Council, 2011), the
European Convention for the Protection of Vertebrate Animals
Used for Experimental and Other Scientific Purposes, Council
of Europe (ETS 123), “The Guidelines for Manipulations
with Experimental Animals” (the decree of the Presidium
of the Russian Academy of Sciences of April 02, 1980, no.
12000-496) and in accordance with German regulations of
animal protection. All animal procedures were approved by
Scientific Council of the Engelhardt Institute of Molecular
Biology.
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Cultivation and Activation of Bone
Marrow-Derived Macrophages
Murine bone marrow-derived macrophages (BMDM) were
generated by flushing the femurs and culturing bone marrow
cells for 10 days according to the standard protocol (Muller
et al., 1996) in DMEM (Gibco, Gaithersburg, MD, USA)
supplemented with 30% conditioned medium from L929 cells (a
source of M-CSF) and 20% horse serum (Biological Industries,
Kibbutz, Israel, lot No. 1630708). To determine the mRNA
levels of the cytokines, BMDM were seeded on 12-well plates
(106 cells/ml) and treated with LPS species (10 ng/ml) for 2 h.
To assess cytokine production in the supernatants, BMDM
were stimulated in 96-well plates (106 cells/ml) with LPS
(10 ng/ml) for 5 h.

Real-Time Quantitative RT-PCR Analysis
Total RNA from macrophages was isolated using the TRIzol
Reagent (Invitrogen, Carlsbad, CA, USA) according to the
manufacturer’s protocol. Reverse transcription was carried
out using 1.5 mcg total RNA and oligo(dT)18 primers with
RevertAid First Strand cDNA Synthesis Kit (Thermo Scientific,
Waltham, MA, USA) according to manufacturer’s protocol.
Real-time quantitative PCR was performed using qPCRmix-HS
SYBR+LowROXKit (Evrogen, Moscow, Russia) on the ABI 7500
Real-Time PCR System (Applied Biosystems, Foster City, CA,
USA). RT-PCR analysis was performed as described previously
(Korneev et al., 2015). The following primers were used: IL-6,
5′-CTC TGC AAG AGA CTT CCA TCC, 5′-TTC TGC AAG
TGC ATC ATC GT; TNF, 5′-TCT GTC TAC TGA ACT TCG
GG, 5′-TTG GTG GTT TGC TAC GAC; IL-1β, 5′-TCA ACC
AAC AAG TGA TAT TCT CCA T, 5′-ACT CCA CTT TGC
TCT TGA CTT CT; RANTES, 5′-CCC TCA CCA TCA TCC
TCA C, 5′-CCT TCG AGT GAC AAA CAC GA; IP-10, 5′-AAG
TGC TGC CGT CAT TTT CT, 5′-GTG GCA ATG ATC TCA
ACA CG; IRF3, 5′-AAC CGG AAA GAA GTG TTG CG, 5′-
GCA CCC AGA TGT ACG AAG TC and β-actin, 5′-GAC CTC
TAT GCC AAC ACA GT, 5′-AGA AAG GGT GTA AAA CGC
AG.

ELISA Assay
IL-6 and TNF levels in cell-culture supernatants were
determined using a Mouse IL-6 ELISA Ready-SET-Go and
Mouse TNF alpha ELISA Ready-SET-Go kits (eBioscience,
San Diego, CA, USA) according to the manufacturer’s
instructions.

Luciferase Reporter Assay in RAW264.7
Cell Line
NFκB-responsive luciferase reporter construct containing
minimal CMV promoter and five tandem copies of NFκB
consensus site have been described previously (Mitkin et al.,
2015). Luciferase reporter vector pmIL-6 FL containing full-
length promoter of murine IL-6 gene was a gift from Gail Bishop
(Addgene plasmid # 61286) (Baccam et al., 2003).

The murine macrophage-like cell line RAW264.7 was
maintained in Dulbecco’s modified Eagle medium (DMEM,
Life technologies, Carlsbad, CA, USA) with 4.5 g/l glucose.

Culture medium was supplemented with 10% fetal bovine
serum (Biological Industries, Kibbutz, Israel, lot No. 1540726),
2mM L-glutamine, 1mM sodium pyruvate, 100 U/ml penicillin
and 100 mcg/ml streptomycin, MEM non-essential amino
acids and 10mM HEPES (all, Gibco, Gaithersburg, MD,
USA). Cells were transfected with 5 mcg of purified plasmid
DNA and 300 ng of pRL-CMV control Renilla luciferase
reporter vector (Promega, Madison, WI, USA) using Neon
Transfection System (Thermo Scientific, Waltham, MA, USA).
All electroporations were carried out with one 20ms 1900V
pulse using 100 mcl tip with cell density 2 × 107 cells/ml
in resuspension buffer T. 24 h after electroporation, cells
were treated with LPS preparations (10 ng/ml) for 6 h and
then luciferase activity was measured using Dual-Luciferase
Reporter Assay System (Promega, Madison, WI, USA) and
Luminometer 20/20n (TurnerBioSystems, Sunnyvale, CA,
USA) following the manufacturer’s instructions. The activity
of Firefly luciferase was normalized to the activity of Renilla
luciferase to account for fluctuations in electroporation
efficiency.

IRF3 Knockdown with siRNA
IRF3 knockdown was performed using IRF3-specific and
control scrambled siRNA synthesized by Syntol, Moscow,
Russia. Sense and antisense single-stranded RNA were annealed
by slow cooling down from 95◦ to 25◦C in annealing
buffer (10mM Tris, 20mM NaCl, pH 8.0). At day 1,
RAW264.7 macrophages were electroporated (as described
above) with 500 pmol siRNA duplexes. In order to prolong
the silencing effect, at day 3 cells were transfected with
300 more pmol of the same siRNA duplexes. At day 5
macrophages were treated with LPS preparations (10 ng/ml)
for 2 h to determine the mRNA levels of the proinflammatory
cytokines and chemokines. Oligonucleotides used for IRF3
knockdown: IRF3: 5′-AAG GUU GUU CCU ACA UGU
CUU dTdT, 5′-AAG ACA UGU AGG AAC AAC CUU
dTdT; scrambled: 5′-GUU CUA UCG AUC CUG GAA
UUG dTdT, 5′-CAA UUC CAG GAU CGA UAG AAC
dTdT.

Statistical Analysis
Statistical analysis was carried out using GraphPad Prism
software (version 6, San Diego, CA, USA). All data passed
the D’Agostino-Pearson omnibus normality test. One-way
ANOVA or two-way ANOVA with Tukey’s test were used
for multiple pairwise comparisons. The data were obtained in
at least three independent experiments and presented as the
mean ± SD. P < 0.05 were considered to indicate statistical
significance.

RESULTS

Characterization of Lipid A of the C. jejuni

LPS by MALDI-TOF MS
Structure of the lipid moiety (lipid A) of the LPS from a
C. jejuni O2A strain was analyzed by MALDI-TOF MS in the
negative ion mode (Figure 1). The mass spectrum shows peaks
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FIGURE 1 | MALDI-TOF mass spectrum of the LPS from a C. jejuni O2A strain. Structures of the tetraacyl and hexaacyl lipid A species shown in the inset are based

on the structures that have been established by chemical and MS analysis of the isolated lipid A of C. jejuni (Moran et al., 1991). Dotted line indicates

non-stoichiometric substitution with phosphoethanolamine (PEtN). Numbers indicate the number of carbons in the acyl chain.

of the lipid A and core moieties that originated from in-source
fragmentation of the LPS (Sturiale et al., 2011). A peak for
an Y-type fragment at m/z 1402.8 belongs to a tetraacylated
lipid A species (LAtetra) having a biphosphorylated hybrid
hexosamine disaccharide backbone that consists of one residue
each of D-glucosamine and 2,3-diamino-2,3-dideoxy-D-glucose
and carries four residues of 3-hydroxymyristic acid. Peaks in

a higher mass regions corresponded to hexaacylated species
(LAhexa) with two additional residues of palmitic acid (m/z
1879.2), some species carrying phosphoethanolamine (m/z
2002.2). These findings are basically in agreement with the
structure that has been established by chemical and MS
analysis of the isolated lipid A of C. jejuni (Moran et al.,
1991).
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Stimulation of Macrophages with LPS from
C. jejuni Results in an Equally Moderate
Activation of All TLR4-Mediated
Proinflammatory Signaling Pathways
In order to assess the biological activity of LPS preparations, we
measured their ability to induce expression of proinflammatory
cytokines in BMDM at the mRNA level 2 h after activation
(Figure 2) and at the protein level after 5 h of stimulation
(Figure 3). Similarly to other bioactive LPS preparations
(Korneev et al., 2015), our assays with LPS from C. jejuni
demonstrated a dynamic range from 0.1 to 100 ng/ml, therefore
a working concentration of 10 ng/ml was used in all subsequent
experiments.

We used highly active LPS isolated from E. coli with
hexaacyl biphosphoryl lipid A (Qureshi et al., 1988) as
positive control. In addition, inactive LPS from F. tularensis
with tetraacyl monophosphoryl lipid A (Vinogradov et al.,
2002) was used as negative control. BMDM stimulated with
C. jejuni LPS showed lower levels of IL-6, TNF and IL-
1β gene expression in comparison with LPS from E. coli
(Figure 2). Specificity of TLR4 recognition of LPS preparations
was assessed by stimulating BMDM culture from TLR4-deficient
mice (Figure 3).

We then assessed the production of IL-6 and TNF proteins
by the BMDM 5h after LPS treatment. Concentrations of both
cytokines in the culture medium very closely followed the pattern
of mRNA expression, indicating that the observed results were
not due to translational regulation (Figure 3).

To further investigate the transcriptional effects of different
LPS preparations on TLR4 signaling, we used two NFκB-
dependent reporter constructs. One of the constructs contained a
luciferase gene under the control of NFκB-responsive synthetic
promoter (Figure 4A) and another one employed the murine
IL-6 promoter previously shown to contain an NFκB binding

site critical for its activity (Baccam et al., 2003; Figure 4B). The
RAW264.7 murine macrophage cell line was used instead of
BMDMdue to its higher transfection efficiency. In both cases, the
effects by LPS from C. jejuni were moderately but significantly
lower as compared to those produced by LPS from E. coli
(Figure 4).

In order to assess the contribution of MyD88-independent
TLR4 signaling in our system, we used BMDM generated
from MyD88-deficient mice and measured mRNA levels of
interferon-inducible proinflammatory chemokines RANTES and
IP-10 encoded by Ccl5 and Cxcl10 genes, known targets of
the TLR4-TRIF-IRF3 pathway (Lin et al., 1999; Kawai et al.,
2001). We observed that the difference in activity between
C. jejuni and E. coli LPS preparations was the same for both
MyD88-dependent and -independent TLR4 signaling pathways.
Similarly to TNF, IL-6 and IL-1β, activation of RANTES and
IP-10 by LPS was completely abolished in TLR4-deficient
cells (Figure 5). In order to further demonstrate the lack
of cross-coupling of TLR4 signaling pathways, we performed
IRF3 knockdown in RAW264.7 cells using siRNA against Irf3
gene. IRF3-specific siRNA caused at least 5-fold suppression
of IRF3 mRNA in RAW264.7 macrophages on day 5 after
the first transfection (Figure 6A) and led to a significant
decrease in RANTES and IP-10 mRNAs (Figures 6B,C), while
the level of TNF mRNA remained unchanged (Figure 6D).
These observations suggest that LPS bioactivity depends on
its interaction with TLR4 rather than on specific intracellular
pathways.

DISCUSSION

We have previously assessed the bioactivity of LPS preparations
from various pathogenic bacteria, such as Y. pestis (the cause
of plague), B. mallei (the cause of glanders and melioidosis),

FIGURE 2 | LPS isolated from a C. jejuni O2A strain is a mild activator of mRNA expression of proinflammatory cytokines in BMDM. Quantification of IL-6 (A), TNF

(B), and IL-1β (C) mRNA levels in BMDM from WT mice. Relative mRNA expression levels were normalized to β-actin. All data are representative of five independent

experiments. Data represent mean values ± SD. *P < 0.05, ***P < 0.001, as calculated by one-way ANOVA with Tukey’s test were used for multiple pairwise

comparisons.
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FIGURE 3 | Stimulation of BMDM with LPS from a C. jejuni O2A strain leads to lower production of proinflammatory cytokines compared to LPS from E. coli. ELISA

quantification of IL-6 (A) and TNF (B) levels in the supernatants of LPS-stimulated BMDM from WT and TLR4−/− mice. LPS preparations did not induce production of

proinflammatory cytokines in TLR4−/− BMDM. All data are representative of five independent experiments. Data represent mean values ± SD. **P < 0.01,

***P < 0.001, as calculated by two-way ANOVA with Tukey’s test for multiple pairwise comparisons. ##P < 0.001 indicates statistically significant LPS activity on WT

BMDM vs. TLR4−/− BMDM.

FIGURE 4 | LPS from a C. jejuni O2A strain induced a moderate level of NFκB activation in RAW264.7 cells. The bars correspond to the normalized expression levels

of luciferase reporter constructs under the control of NFκB-responsive synthetic promoter (A) and IL-6 promoter (B) in RAW264.7 cells induced by treatment with

various LPS preparations. Control group did not receive any treatment with LPS; the dotted lines indicate the baseline. All data are representative of three independent

experiments. Data represent mean values ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, as calculated by one-way ANOVA with Tukey’s test were used for multiple

pairwise comparisons. ##P < 0.001 indicates statistically significant reporter activity of LPS from E. coli and C. jejuni vs. control.

P. aeruginosa and A. baumannii (the causes of nosocomial
infections), as well as from ancient psychrotrophic bacteria
P. cryohalolentis and P. arcticus (Korneev et al., 2014, 2015). The
lower length of acyl groups in LPS of A. baumannii (C12-14) and
Psychrobacter spp. (C10-12) as compared to the highly active LPS
of E. coli (C14) resulted in a weaker bioactivity, indicating that

LPS with longer acyl groups is a more robust activator of TLR4
signaling.

Lipid A from a C. jejuni O2A strain has on the average
longer acyl groups (C14-16) as compared to LPS from E. coli
(C14), but nevertheless it demonstrates lower biological activity
(Figures 2–5). This may be explained by the acylation status
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FIGURE 5 | LPS from a C. jejuni O2A strain is a moderate inducer of mRNA expression of MyD88-independent proinflammatory chemokines in BMDM. RANTES (A),

IP-10 (B), and TNF (C) mRNA levels in BMDM isolated from MyD88−/−, TLR4−/− and WT mice. Relative mRNA expression levels were normalized to β-actin. All

data are representative of three independent experiments. Data represent mean values ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, as calculated by two-way ANOVA

with Tukey’s test for multiple pairwise comparisons. #P < 0.01 and ##P < 0.001 indicates statistically significant LPS activity on WT or MyD88−/− BMDM vs.

TLR4−/− BMDM.

of LPS from C. jejuni which contains a mixture of tetra-
and hexaacylated forms of lipid A, while lipid A from
E. coli is predominantly hexaacylated. As previously shown, a
tetraacylated lipid A is a less potent activator of TLR4 than
hexaacylated lipid A with fatty acid residues of the same length
(Korneev et al., 2014), and our results with LPS from a C. jejuni
O2A strain corroborate the concept of the number of acyl chains
in lipid A having stronger effect on LPS bioactivity than their
length. In addition, this reduction in activity may be explained
by the presence of phosphoethanolamine residue on one of the
phosphate groups in some of the hexaacylated forms of lipid
A (Figure 1), that may partially neutralize the negative charges
of the phosphate groups which are essential for the efficient
interaction with the positively charged amino acids of TLR4/MD-
2 signaling complex (Molinaro et al., 2015; Oblak and Jerala,
2015). Thus, several structural traits of lipid A from C. jejunimay
have a cumulative effect on moderating the activation of TLR4
signaling.

Even though any given pathogen can usually activate more
than one TLR family member, it is TLR4 that is crucial for
the recognition of C. jejuni. For instance, C. jejuni can evade
TLR5 recognition by altering amino acid sequence of flagellin
(Andersen-Nissen et al., 2005), while TLR4 by itself can provide
proper recognition and induce sufficient immune response
(Rathinam et al., 2009). Moreover, it was previously shown that
strains of C. jejuni with modifications of LPS that promote
inflammatory reactions are associated with elevated severity of
gastroenteritis, suggesting a leading role for TLR4 in activation of
innate immunity in response to this pathogen (Mortensen et al.,
2009; Kuijf et al., 2010).

TLR4-dependent LPS responses may also be reduced below
the threshold required for effective immune response if
pathogenic bacteria modify their lipid A structure to a sufficient
extent. This may eventually result in the failure of local and
systemic bacterial clearance. At the same time, moderation
of anti-bacterial responses may be advantageous for infected
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FIGURE 6 | Reduced LPS-mediated mRNA expression of RANTES and IP-10 chemokines after IRF3-knockdown in RAW264.7 macrophages. Quantification of IRF3

(A), RANTES (B), IP-10 (C), and TNF (D) mRNA levels in RAW264.7 cells with IRF3-knockdown after treatment with LPS species. Relative mRNA expression levels

were normalized to β-actin. All data are representative of five independent experiments. Data represent mean values ± SD. *P < 0.05, **P < 0.01, ***P < 0.001, as

calculated by two-way ANOVA with Tukey’s test for multiple pairwise comparisons. #P < 0.01 and ##P < 0.001 indicates statistically significant LPS bioactivity from

E. coli or C. jejuni vs. LPS from F. tularensis.

patients in clinical practice, since such an attenuated LPS may
not be able to induce severe sepsis in susceptible individuals
(Ramachandran, 2014). Technically challenging fractionation
of LPS species by the degree of lipid A acylation was not
attempted in this study, however LPS containing a mixture
of tetraacyl and hexaacyl forms with moderate bioactivity in
murine macrophages is predicted to generate a reduced immune
response in humans, as human TLR4 is unable to respond a
tetraacyl form of lipid A (Golenbock et al., 1991).

LPS forms from our C. jejuni strain is structurally different
from various LPS species tested for bioactivity in previous studies
(Schromm et al., 2000; Stephenson et al., 2013). Stephenson
et al. studied LPS from 15 different C. jejuni isolates all of
which had 3 or 4 phosphate groups attached to the disaccharide
backbone of lipid A (Stephenson et al., 2013). C. jejuni lipid
A from report by Schromm et al. had two different classes of

secondary acyl chains (C16:0 and C14:0) and did not contain
any phosphoethanolamine residues. Furthermore, such LPS had
predominantly hexaacyl form of lipid A and no tetraacyl fraction
(Schromm et al., 2000) that was reliably detectable in our
preparations (Figure 1). Our data extend and complement these
reports, supporting the hypothesis that LPS preparations with
a higher acylated lipid A moiety are better inducers of TLR4-
signaling.

A limitation of using LPS from different bacteria for clinical or
biological studies of endotoxin activity is its microheterogeneity
with regard to lipid A structural components, such as the
phosphate residues or the number and length of acyl groups
(Matsuura, 2013). Thus, the purification, structural analysis, and
biological characterization of LPS from bacteria distinct in their
pathogenicity are of considerable interest. Better understanding
of relationship between LPS structure and its activity may
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facilitate novel methods for the fine-tuning of antibacterial
immune response.
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