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Abstract: Two cembranoids, including a new compound, lobocrassin I (1), as well as a known
analogue, lobohedleolide (2), were obtained by solvent extraction from octocoral Lobophytum crassum.
This study employed a spectroscopic approach to establish the structures of these two cembranoids,
and utilized single-crystal X-ray diffraction analysis to determine their absolute configurations. The
results of biological activity assays demonstrated that cembranoid 2 exhibited bioactivity against the
protein expressions of inducible nitric oxide synthase (iNOS) lipopolysaccharide (LPS)-treated RAW
264.7 mouse macrophage cells.

Keywords: Lobophytum crassum; cembranoid; lobocrassin; lobohedleolide; X-ray; anti-inflammation; iNOS

1. Introduction

Cembrane-type diterpenoids are a group of 14-membered macrolides obtained from
terrestrial and marine organisms, with novel structures and extensive bioactivities [1].
Octocorals belonging to the genera Lobophytum, Sarcophyton, and Sinularia are currently
known to be critical sources for the supply of cembranoids [2]. In connection with our
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continuing studies of marine invertebrates with biomedical potential, we have focused
considerable attention on invertebrates found in the marine habitat of the waters around
Taiwan, with the aim of informing new drug development. In this research, we completed
the preparation, structural identification, and anti-inflammatory activity assessment of a
new cembranoid, lobocrassin I (1), as well as a known cembranoid, lobohedleolide (2) [3–6]
(Figure 1), obtained from L. crassum (von Marenzeller, 1886) [7,8]. Lobophytum crassum
is a rich cembranoid-containing octocoral distributed extensively in tropical Indo-Pacific
Ocean, including Taiwanese waters where the Kuroshio current and South China Sea
surface current converge to provide high biodiversity and the cembrane-type diterpenoids
prepared from soft coral L. crassum were proven to have the potential to be used as
therapeutic agents to treat inflammation [9–15]. This paper reported details of the isolation,
structure determination, and biological evaluation of cembranoids 1 (lobocrassin I) and 2
(lobohedleolide) (Figure 1).

Mar. Drugs 2021, 19, x FOR PEER REVIEW 2 of 10 
 

 

known to be critical sources for the supply of cembranoids [2]. In connection with our 51 
continuing studies of marine invertebrates with biomedical potential, we have focused 52 
considerable attention on invertebrates found in the marine habitat of the waters around 53 
Taiwan, with the aim of informing new drug development. In this research, we completed 54 
the preparation, structural identification, and anti-inflammatory activity assessment of a 55 
new cembranoid, lobocrassin I (1), as well as a known cembranoid, lobohedleolide (2) [3– 56 
6] (Figure 1), obtained from L. crassum (von Marenzeller, 1886) [7,8]. Lobophytum crassum 57 
is a rich cembranoid-containing octocoral distributed extensively in tropical Indo-Pacific 58 
Ocean, including Taiwanese waters where the Kuroshio current and South China Sea sur- 59 
face current converge to provide high biodiversity and the cembrane-type diterpenoids 60 
prepared from soft coral L. crassum were proven to have the potential to be used as thera- 61 
peutic agents to treat inflammation [9–15]. This paper reported details of the isolation, 62 
structure determination, and biological evaluation of cembranoids 1 (lobocrassin I) and 2 63 
(lobohedleolide) (Figure 1).  64 

 
Figure 1. Structures of lobocrassin I (1) and lobohedleolide (2). 65 

2. Results and Discussion 66 
Freshly-collected L. crassum was frozen and subsequently freeze-dried, powdered, 67 

and extracted with a solvent mixture of methanol/dichloromethane (MeOH/CH2Cl2) at a 68 
1:1 ratio to give an extract that was subsequently separated by organic solvent ethyl ace- 69 
tate (EtOAc)-water partitioning. The EtOAc layer was collected and loaded onto a column 70 
chromatograph with silica gel, and subsequently separated using high performance liquid 71 
chromatography (HPLC), yielding cembranoids 1 and 2. The known compound was elu- 72 
cidated as lobohedleolide (2) by analysis of its spectroscopic data and comparison with 73 
previously reported values [3]. 74 

Lobocrassin I (1) was obtained as colorless prisms. The positive mode high resolution 75 
electrospray ionization mass spectrum ((+)-HRESIMS) showed a peak at m/z 355.18815, 76 
suggesting the molecular formula C20H28O4 (calcd. for C20H28O4 + Na, 355.18798), indicat- 77 
ing seven degrees of unsaturation in the compound. The IR spectrum revealed absorp- 78 
tions for α,β-unsaturated carboxyl (νmax 3749~2216 and 1710 cm–1) and γ- lactone (νmax 1766 79 
cm–1) groups. The 13C NMR spectrum of 1 (Table 1) showed signals of 20 carbons. The 80 
multiplicities of carbon signals were determined from a distortionless enhancement by 81 
polarization transfer (DEPT)/heteronuclear single quantum coherence (HSQC) spectrum, 82 
indicating three methyls, six sp3 methylenes, three sp3 methines (one bearing a heteroa- 83 
tom), three sp2 methines, and five sp2 non-protonated carbons (two carbonyls and three 84 
olefins). From the 1H and 13C NMR spectra (Table 1), 1 was found to possess a γ-lactone 85 
(δC 179.3, C-16), a carboxyl carbon (δC 170.7, C-19), and three tri- substituted olefins (δH 86 
5.74, 1H, dd, J = 8.4, 3.6 Hz, H-7; 5.21, 1H, d, J = 10.8 Hz, H-3; 4.93, 1H, dd, J = 8.8, 7.6 Hz, 87 
H-11; δC 119.6, CH-3; 142.4, C-4; 147.8, CH-7; 128.7, C-8; 122.7, CH-11; 135.5, C-12). Five 88 
double bonds that accounted for the five degrees of unsaturation were identified. The re- 89 
maining two degrees of unsaturation delineated the configuration, and indicated that 1 90 
was a bicyclic molecule. 91 

  92 

Figure 1. Structures of lobocrassin I (1) and lobohedleolide (2).

2. Results and Discussion

Freshly-collected L. crassum was frozen and subsequently freeze-dried, powdered,
and extracted with a solvent mixture of methanol/dichloromethane (MeOH/CH2Cl2) at a
1:1 ratio to give an extract that was subsequently separated by organic solvent ethyl acetate
(EtOAc)-water partitioning. The EtOAc layer was collected and loaded onto a column
chromatograph with silica gel, and subsequently separated using high performance liquid
chromatography (HPLC), yielding cembranoids 1 and 2. The known compound was
elucidated as lobohedleolide (2) by analysis of its spectroscopic data and comparison with
previously reported values [3].

Lobocrassin I (1) was obtained as colorless prisms. The positive mode high resolution
electrospray ionization mass spectrum ((+)-HRESIMS) showed a peak at m/z 355.18815, sug-
gesting the molecular formula C20H28O4 (calcd. for C20H28O4 + Na, 355.18798), indicating
seven degrees of unsaturation in the compound. The IR spectrum revealed absorptions for
α,β-unsaturated carboxyl (νmax 3749~2216 and 1710 cm–1) and γ- lactone (νmax 1766 cm–1)
groups. The 13C NMR spectrum of 1 (Table 1) showed signals of 20 carbons. The multiplici-
ties of carbon signals were determined from a distortionless enhancement by polarization
transfer (DEPT)/heteronuclear single quantum coherence (HSQC) spectrum, indicating
three methyls, six sp3 methylenes, three sp3 methines (one bearing a heteroatom), three sp2

methines, and five sp2 non-protonated carbons (two carbonyls and three olefins). From the
1H and 13C NMR spectra (Table 1), 1 was found to possess a γ-lactone (δC 179.3, C-16), a
carboxyl carbon (δC 170.7, C-19), and three tri- substituted olefins (δH 5.74, 1H, dd, J = 8.4,
3.6 Hz, H-7; 5.21, 1H, d, J = 10.8 Hz, H-3; 4.93, 1H, dd, J = 8.8, 7.6 Hz, H-11; δC 119.6,
CH-3; 142.4, C-4; 147.8, CH-7; 128.7, C-8; 122.7, CH-11; 135.5, C-12). Five double bonds that
accounted for the five degrees of unsaturation were identified. The remaining two degrees
of unsaturation delineated the configuration, and indicated that 1 was a bicyclic molecule.
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Table 1. 1H and 13C NMR data for cembranoids 1 and 2.

1 2

Position δH
a (J in Hz) δC

b δH
a (J in Hz) δC

b

1 2.21 m 46.6, CH c 3.11 m 42.9, CH c

2 5.32 dd (10.8, 7.2) 77.6, CH 5.43 dd (10.4, 8.0) 77.9, CH
3 5.21 d (10.8) 119.6, CH 5.05 d (10.4) 120.5, CH
4 142.4, C 142.0, C

5/5’ 2.38 m; 2.24 m 39.9, CH2 2.38 br d (14.0); 2.19 m 39.8, CH2
6/6’ 3.11 m; 2.42 m 26.6, CH2 3.07 m; 2.46 br d (12.4) 26.6, CH2

7 5.74 dd (8.4, 3.6) 147.8, CH 5.72 dd (8.8, 4.0) 148.1, CH
8 128.7, C 128.8, C
9 2.75 br d (13.2); 1.82 m 35.2, CH2 2.71 br d (13.2); 1.87 ddd (13.2, 7.6, 7.6) 35.1, CH2

10 2.19 m 25.0, CH2 2.18 m 25.0, CH2
11 4.93 dd (8.8, 7.6) 122.7, CH 4.93 dd (8.4, 8.0) 122.8, CH
12 135.5, C 135.3, C

13/13’ 2.01 m; 1.67 m 36.6, CH2 2.07 m; 1.69 m 36.1, CH2
14/14’ 1.84 m; 1.35 m 27.8, CH2 1.99 ddd (12.8, 6.4, 3.2); 1.45 m 27.0, CH2

15 2.33 dq (12.0, 6.8) 38.8, CH 138.7, C
16 179.3, C 170.6, C

17a/b 1.25 d (6.8) 13.6, CH3 6.28 d (3.2); 5.54 d (3.2) 120.8, CH2
18 1.73 s 15.0, CH3 1.73 s 15.3, CH3
19 170.7, C 171.7, C
20 1.52 s 16.0, CH3 1.54 s 16.1, CH3

a 1H NMR (400 MHz, CDCl3), b 13C NMR (100 MHz, CDCl3), c Multiplicity-edited 13C, DEPT, and HSQC spectra.

The H2-13/H2-14/H-1/H-2/H-3, H2-5/H2-6/H-7, H2-9/H2-10/H-11, and H-1/H-
15/H3-17 spin systems identified by 1H-1H correlation spectroscopy (COSY) (Figure 2)
were fit to the regiochemistry of vicinal couplings in 1. Based on the aforementioned data
and the results of 1H-13C long-range correlations obtained from heteronuclear multiple-
bond coherence (HMBC) analysis, the molecular framework of 1 was determined (Figure 2).
The vinyl methyls at C-4 and C-12 were established from HMBC correlations between
H3-18/C-3, C-4, C-5, and H3-20/C-11, C-12, C-13, respectively. The carboxyl group at C-8
was established from an HMBC correlation between one of the C-9 methylene protons
(δH 1.84) and the carbonyl carbon of carboxyl group at δC 170.7 (C-19). An ester carbonyl
signal at δC 179.3 (C-16) showed a 2J-coupling with a methine proton at δH 2.33 (H-15);
3J- couplings with an oxymethine proton at δH 5.32 (H-2), and methyl protons at δH 1.25
(H3-17) in the HMBC spectrum established the α-methyl-γ-lactone moiety in 1.
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The interactions obtained using nuclear Overhauser effect spectroscopy (NOESY)
and the data of vicinal 1H-1H coupling constants revealed the relative stereochemistry
of 1 (Figure 3). Biogenetically, in most cases the proton at C-1 is β-oriented in naturally-
occurring cembranoids from Lobophytum spp. [2]. The NOESY cross-peak of H-1 and H-2
suggested that these two protons were β-oriented. The vinyl methyl H3-18 exhibited a NOESY
response with H-2, but not with H-3, and a NOESY correlation was observed between H-3
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and H-15, demonstrating the trans configuration of ∆3, and H-15 was therefore α-oriented in
the γ-lactone moiety. The trans relationship between H-1 and H-15 was established from a
large coupling constant (J = 12.0 Hz) for these two vicinal protons. H-11 showed a NOESY
correlation with one of the C-13 methylene protons (δH 2.01), but not with H3-20, indicating
the trans configuration of ∆11. Furthermore, olefin proton H-7 exhibited a NOESY correlation
with one of the C-14 methylene protons (δH 1.82), also demonstrating the cis geometry of ∆7.
Based on the aforementioned results, the configurations of the stereogenic centers of 1 were
assigned as (1S*,2R*,15S*) (Supplementary Materials, Figures S1–S10).
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Single-crystal X-ray diffraction was used to confirm the structure of 1. The data
suggested E-geometries of the C-3/4, C-11/12, and Z-geometry of the C-7/8 carbon-carbon
double bonds in 1; in addition, the absolute configurations of the stereogenic carbons of 1
were confirmed as (1S,2R,15S) based on an Oak Ridge thermal-ellipsoid plot (ORTEP) of 1
(Figure 4). According to the X-ray determined structure of 1, the carboxylic acids formed
dimers, in which the monomer units were held together by hydrogen bonds.
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Cembranoid 2 was obtained as colorless prisms, showing a sodiated ESIMS quasi-
molecular ion peak at m/z 353, and was found to have the molecular formula C20H26O4
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by analysis of 13C and 1H NMR data (see Materials and Methods). The result revealed
that this compound had 8 degrees of unsaturation. Strong bands at 3665~2398 (broad),
1760, and 1682 cm−1 in the IR spectrum indicated the presence of α,β-unsaturated carboxyl
and γ-lactone groups. The 13C NMR and DEPT spectra revealed that 2 had 20 carbons,
including two methyls, six sp3 methylenes, one sp2 methylene, two sp3 methines (one
bearing a heteroatom), three sp2 methines, and six sp2 non-protonated carbons (one ester
carbonyl and one carboxyl group). Therefore, 2 was identified as having two rings. It was
found that the NMR data of 2 were almost identical to those of a known compound, lobo-
hedleolide [3], and these two compounds were found to possess positive optical rotation
value, suggesting that compound 2 is lobohedleolide, although the 13C chemical shift for
the carboxyl carbon in 2 (δC 171.7, C-19) was different from that reported (δC 173.2) [3]
(Supplementary Materials, Figures S11–S19).

Lobohedleolide (2) was first isolated from octocoral Lobophytum hedleyi, collected from
the coral reefs of Yayeyama Islands of Okinawa, Japan [3]. The structure of lobohedleolide
was revealed by spectroscopic analysis, and its absolute configuration was concluded from
X-ray study of its p-bromophenacyl ester derivative [3]. In this study, the structure of
2 was determined by single-crystal X-ray diffraction directly for the first time, and the
absolute configuration for this compound was elucidated as (1S,2S) (Figure 5). Because the
structure of 2 has been established by a single-crystal X-ray diffraction analysis, the authors
suggested that the 13C chemical shift of carboxyl carbon in structure for lobohedleolide
should be re-examined [3].
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The anti-inflammatory effects of lobocrassin I (1) and lobohedleolide (2) were assessed
by measuring their effects on proinflammatory proteins/enzymes inducible nitric oxide
synthase (iNOS) and cyclooxygenase 2 (COX-2) production from lipopoly-saccharides
(LPS)-stimulated RAW264.7 cells (a murine macrophage cell line). Western blotting results
showed that cembranoid 2 at 10 µm inhibited iNOS expression, which reduced the protein
level to 28.50%, as compared with cells in the control group treated with LPS only (Table 2).
In previous studies, cembranoid 2 was reported to exhibit extensive bioactivities such as
cytotoxic [3,5], antiviral [4,16,17], and anti-inflammatory [16,18–20] activities, and the anti-
inflammatory activity of 2 has been evaluated and revealed that 2 is effective against both
carrageenin induced edema and cotton pellet implantation rat models [18]. Lobocrassin I
(1) did not show activity, implying that the exo-methylene substituent at C-15 enhanced
the bioactivity in comparison with cembranoid 2.
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Table 2. Suppression effects of cembranoids 1 and 2 on iNOS and COX-2 protein/enzyme expressions
in LPS-induced macrophages.

Compound/Treatment iNOS COX-2 β-Actin

(10 µM) Production Level

Control 2.23 ±0.87 1.02 ±0.14 106.12 ±4.17
Vehicle 100.01 ±4.27 100.00 ±2.62 100.00 ±0.74

1 90.82 ±2.16 110.85 ±2.10 102.38 ±2.12
2 28.50 ±2.69 78.99 ±3.36 100.45 ±2.06

Dexamethasone 54.53 ±3.58 17.66 ±1.75 103.14 ±2.46
Values of cells treated with LPS alone were set to 100% as the reference for normalization. Dexamethasone at
10 µm was used as a positive reference to treat cells. Experimental results are shown as the mean ± S.E.M. The
β-actin of Western blotting is used for loading/internal control.

3. Materials and Methods
3.1. General Experimental Procedures

A digital polarimeter (model P-1010; JASCO Corp., Tokyo, Japan) was used to deter-
mine optical rotations of the samples. IR spectra were collected using a spectro-photometer
(model Nicolet iS5 FT-IR; Thermo Fisher Scientific, Waltham, MA, USA). 1H and 13C NMR
spectra were recorded on an ECZ-400 spectrometer (Jeol Ltd., Tokyo, Japan) for solutions in
CDCl3 (with residual CHCl3 (δH 7.26 ppm) and CDCl3 (δC 77.0 ppm) as internal standards).
For coupling constants (J), the results were given in frequency units, Hz. For ESIMS and
HRESIMS, the results were obtained using a SolariX FTMS mass spectrometer (7 Tesla;
Bruker, Bremen, Germany). The extracted samples were separated by column chromatog-
raphy with silica gel (range, 230 to 400 mesh; Merck, Darmstadt, Germany). The purity
of a compound can be determined by Thin-layer chromatography (TLC), a method for
analyzing mixtures by separating the compounds in the mixture. The TLC plates with
silica gel coated with fluorescent indicator F254 were employed. For visualization, the
plates were charred with 10% (v/v) aqueous sulfuric acid solution, then heated at 105 ◦C
until spots were seen. For normal-phase HPLC separation, a system containing a pump
(Hitachi model L-7110; Tokyo, Japan) and an injection interface (No. 7725; Rheodyne) was
employed, which was equipped with a semi-prep column with a dimension of 2 × 25 cm,
5 µm particle size (Sigma, St. Louis, MO, USA). For reverse-phase HPLC separation, a
system composed of a pump (Hitachi model L-2130, Tokyo, Japan) and a diode-array detector
(LaChrom L-2455, Hitachi, Tokyo, Japan) were used, which was equipped with a column with
a dimension of 2.1 × 25 cm, 5 µm particle size (Phenomenex, Torrance, CA, USA).

3.2. Soft Coral Specimens

The soft coral L. crassum was manually collected by an underwater diver with a
breathing apparatus from the marine habitat around Southern Taiwan on 23 July 2020.
The specimens were frozen directly after harvesting. Identification of the specimens was
performed by one of the authors of this study (Y.-T.Y.) by assessment of the features and
comparison with the characteristics reported in the literature [7,8]. A representative sample
of the soft coral (voucher no.: NMMBA-TW-SC-2020-0723) was stored in the National
Museum of Marine Biology and Aquarium, Taiwan.

3.3. Cembranoid Compound Preparation

Lobophytum crassum (wet/dry weight = 1174 g/591 g) was crushed and then extracted
with a mixture of MeOH and CH2Cl2 (1:1) to give an extract (22.4 g), that was next separated
by solvent-partition with EtOAc and H2O. The EtOAc extract (7.34 g) was then placed in an
SiO2 column and washed with an eluent of hexanes/EtOAc (by stepwise-gradient increase
from 100:1—pure EtOAc) to yield 12 fractions A−L. Fraction J (294 mg) was then purified
by semi-prep normal-phase HPLC to give eight fractions J1–J8. Fraction J3 (161.0 mg) was
then purified by semi-prep reverse-phase HPLC (MeOH:H2O = 65:35 (v/v); at a rate of
5.0 mL/min) to afford compounds 2 (47.1 mg) and 1 (16.6 mg).
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Lobocrassin I (1): Colorless prisms; [α]22
D + 46 (c 0.03, CHCl3); IR (ATR) νmax 3749~2216

(broad), 1766, 1710 cm−1; 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3)
data, see Table 1; ESIMS: m/z 355 [M + Na]+; HRESIMS: m/z 355.18815 (calcd. for C20H28O4
+ Na, 355.18798).

Lobohedleolide (2): Colorless prisms; [α]22
D + 48 (c 0.21, CHCl3) (ref. [3] [α]D + 104.2

(c 1.12, CHCl3); ref. [4] [α]D + 97.3 (c 0.38, CHCl3)); IR (ATR) νmax 3665~2398 (broad), 1760,
1682 cm−1; 1H NMR (400 MHz, CDCl3) and 13C NMR (100 MHz, CDCl3) data, see Table 1;
ESIMS: m/z 353 [M + Na]+.

3.4. Single-Crystal X-ray Crystallography of Lobocrassin I (1)

Suitable colorless prisms of 1 were acquired from EtOA/acetone (4:1). The crys-
tal (0.256 × 0.210 × 0.210 mm3) belongs to the monoclinic system, space group P21
(#4), with a = 19.0021(4) Å, b = 9.3796(2) Å, c = 22.1329(5) Å, V = 3810.26(14) Å3, Z = 8,
Dcalcd = 1.159 Mg/m3, and λ (Mo Kα) = 0.71073 Å. Intensity data (up to θmax of 27.5◦)
were obtained using an X-ray diffractometer (Bruker D8 Venture, Bremen, Germany). All
30,010 reflections were collected. By using direct methods and a full-matrix least-squares
refinement [21,22], the structure of compound 1 was obtained. The refined structural model
converged to a final R1 = 0.0546 and wR2 = 0.1277 for 17,444 observed reflections, with
I > 2σ(I) and 881 variable parameters. The absolute configuration of this molecule was
confirmed by an absolute structure Flack parameter, x = 0.0(4) [23,24]. Crystallographic
data of compound 1 have been deposited with the Cambridge Crystallographic Data Center
(CCDC) as supplementary publication no. CCDC 2053256 [25].

3.5. Single-Crystal X-ray Crystallography of Lobohedleolide (2)

Suitable colorless prisms of 2 were acquired from MeOH. The crystal (0.324 × 0.193 ×
0.152 mm3) belongs to the orthorhombic system, space group P212121 (#19), with a = 8.8283(4)
Å, b = 12.4788(6) Å, c = 16.8460(7) Å, V = 1855.87(14) Å3, Z = 4, Dcalcd = 1.183 Mg/m3,
and λ (Mo Kα) = 0.71073 Å. Intensity data (up to θmax of 30.0◦) were obtained using
an X-ray diffractometer (Bruker D8 Venture, Bremen, Germany). All 12,446 reflections
were collected. The structure of compound 2 was obtained using the same processes
as described above for compound 1. The refined structural model converged to a final
R1 = 0.0502 and wR2 = 0.1294 for 5399 observed reflections, with I > 2σ(I) and 220 variable
parameters. The absolute configuration of this molecule was confirmed by Flack parameter
x = −0.1(5) [23,24]. Crystallographic data for the structure of lobohedleolide (2) were also
deposited with the CCDC as supplementary publication no. CCDC 2043446 [25].

3.6. In Vitro Anti-inflammatory Assay

Murine RAW 264.7 macrophages were obtained from the American Type Culture
Collection (ATCC; No. TIB-71). Inflammation in macrophages was induced by incubating
them for 16 h in a medium containing only LPS (0.01 µg/mL) without compounds. For the
anti-inflammatory activity assay, compounds (10 µm) were added to the cells 5 min before
LPS challenge. The cells were then washed with ice cold phosphate-buffered saline (PBS),
lysed in ice-cold lysis buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1% Triton X-100, 100 µg/mL
phenylmethylsulfonyl fluoride, 1 µg/mL aprotinin), and then centrifuged at 20,000× g for
30 min at 4 ◦C. The supernatant was decanted from the pellet and retained for Western blot
analysis of pro-inflammation inducible nitric oxide synthase (iNOS) and cyclooxygenase-2
(COX-2) protein expression. Protein concentrations were determined using the detergent
compatible (DC) protein assay kit (Bio-Rad, Hercules, CA, USA). Western blotting was
performed according to the method described in a previous study [26]. An equal volume of
sample buffer (2% 2-mercaptoethanol, 2% sodium dodecyl sulfate (SDS), 0.1% bromophenol
blue, 10% glycerol, and 50 mM Tris-HCl (pH 7.2)) was added to the samples, and the protein
lysates were loaded onto a 10% SDS- polyacrylamide gel. Electrophoresis was carried
out at 150 V for 90 min. After electro-phoresis, gels were transferred overnight at 4 ◦C
in transfer buffer (380 mM glycine, 50 mM Tris-HCl, 1% SDS and 20% methanol) onto
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a polyvinylidene difluoride membrane (PVDF; Immobilon-P, Millipore Corp., Billerica,
MA, USA (0.45 µm pore size)). The PVDF membrane was first blocked with 5% non-fat
dry milk in Tris-buffered saline containing 0.1% Tween (TTBS; 20 mM Tris-HCl, 0.1%
Tween 20, and 137 mM NaCl (pH 7.4)) and incubated overnight at 4 ◦C with the primary
antibodies for iNOS, COX-2, and β-actin proteins. Anti-iNOS and anti-COX-2 antibodies
were purchased from Cayman Chemical Company (Ann Arbor, MI, USA). A horseradish
peroxidase-conjugated secondary antibody was used for detection. It was obtained from
Jackson ImmunoResearch Laboratories (West Grove, PA, USA). The bound antibodies were
detected by chemiluminescence (Millipore Corp.). The images were obtained using the
UVP BioChemi Imaging System, and the LabWorks 4.0 software (UVP, Upland, CA, USA)
was used to quantify the relative densities.

4. Conclusions

A series of cembranoids, including lobocrassins A−F [27–29], have been obtained from
this target organism. The structures of a new compound lobocrassin I (1) and its analogue
lobohedleolide (2), two cembranoids isolated from L. crassum containing α,β-unsaturated
carboxyl group and γ-lactone systems, were elucidated using spectroscopic methods and
X-ray analysis. Cembranoid 2 exhibited effective inhibition of iNOS production. Structure-
activity relationship (SAR) comparison also indicated that the exomethylene group at
C-15 has an important role in the activity against the inflammatory response. We have
started to optimize the aquaculture conditions for this octocoral in tanks, with the aim
of culturing a large quantity of coral that is able to provide a stable supply of bioactive
materials. This approach will protect the coral population in natural marine habitats from
over-exploitation [30,31], and provide raw materials of consistent quality.

Supplementary Materials: Supplementary materials are available online at https://www.mdpi.
com/1660-3397/19/3/130/s1. ESIMS, IR, 1D (1H and 13C) and 2D (HSQC, HMBC, COSY, and
NOESY) NMR spectra of lobocrassin I (1) Figures S1–S10 and lobohedleolide (2) Figures S10–S19.
HRESIMS spectra of lobocrassin I (1).
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