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Simple Summary: NK cells are important innate immune effectors that contribute substantially to
tumor control, however the role of NK cells in haematological cancers is not as well understood.
The aim of this review is to highlight the importance of the role of NK cells in the management
of Ph+ Myeloproliferative Neoplasms, and emphasize the need and possible benefits of a more
in-depth investigation into their role in classical MPNs and show potential strategies to harness the
anti-tumoral capacities of NK cells.

Abstract: Myeloproliferative neoplasms (MPNs) comprise a heterogenous group of hematologic
neoplasms which are divided into Philadelphia positive (Ph+), and Philadelphia negative (Ph−) or
classical MPNs. A variety of immunological factors including inflammatory, as well as immunomod-
ulatory processes, closely interact with the disease phenotypes in MPNs. NK cells are important
innate immune effectors and substantially contribute to tumor control. Changes to the absolute and
proportionate numbers of NK cell, as well as phenotypical and functional alterations are seen in
MPNs. In addition to the disease itself, a variety of therapeutic options in MPNs may modify NK
cell characteristics. Reports of suppressive effects of MPN treatment strategies on NK cell activity
have led to intensive investigations into the respective compounds, to elucidate the possible negative
effects of MPN therapy on control of the leukemic clones. We hereby review the available literature
on NK cells in Ph+ and Ph− MPNs and summarize today’s knowledge on disease-related alterations
in this cell compartment with particular focus on known therapy-associated changes. Furthermore,
we critically evaluate conflicting data with possible implications for future projects. We also aim
to highlight the relevance of full NK cell functionality for disease control in MPNs and the impor-
tance of considering specific changes related to therapy in order to avoid suppressive effects on
immune surveillance.

Keywords: innate immunity; CML; polycythemia vera; essential thrombocythemia;
primary myelofibrosis

1. Introduction
1.1. Introduction to MPNs

The group of MPNs belong to the family of chronic myeloid neoplasms and comprise a
variety of clonal hematological diseases, characterized by the increased proliferation of cells
originating from the myeloid lineage [1–5]. Typically, the group of MPNs is subdivided
into two major groups: the Philadelphia chromosome carrying CML and the classical
or Ph− MPNs [6]. Summarized under the term classical MPNs are polycythemia vera
(PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), chronic neutrophilic
leukemia (CNL) and chronic eosinophilic leukemia—not otherwise specified (CEL-NOS) [5].
Annual incidence rates of PV, ET, PMF and CML are around 1–2/100.000 whereas CNL
and CEL-NOS are extremely rare conditions [6–10].

Cancers 2021, 13, 4400. https://doi.org/10.3390/cancers13174400 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0001-8132-5293
https://orcid.org/0000-0003-4918-8887
https://orcid.org/0000-0003-2265-1974
https://doi.org/10.3390/cancers13174400
https://doi.org/10.3390/cancers13174400
https://doi.org/10.3390/cancers13174400
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13174400
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13174400?type=check_update&version=2


Cancers 2021, 13, 4400 2 of 23

All MPN entities originate from a single mutated hematopoietic stem cell (HSC)
with subsequent proliferation through clonal expansion [4]. Depending on disease entity
and main disease-driving mutation, clonal expansion can affect single or multiple cell
lineages [4]. The respective somatic driver mutations are then found among all myeloid
lineages; however, they may also be detectable at lower frequencies within the lymphoid
lineage, particularly in B and NK cells [4].

1.1.1. Disease Characteristics

MPNs include a variety of subtypes with numerous gene alterations involved, re-
sulting in a heterogenous landscape of phenotypes. Accurate diagnosis of the respective
disease entities therefore requires careful consideration of clinical and morphological
features as well as the genetic aberrations involved [2,4,5,11,12].

1.1.2. Ph+ MPNs

The most prominent of the somatic alterations known in MPNs is the BCR-ABL1
gene rearrangement, constituting an exclusive feature of CML [13,14]. Due to the disease-
defining reciprocal translocation t(9;22) (q34;q11), termed the Philadelphia chromosome,
CML is considered a unique entity and model disease among the group of MPNs [13,15].
From a clinical perspective, CML often presents in chronic phase with symptoms rang-
ing from mild and unspecific to asymptomatic [13,15]. Without accurate treatment, the
disease naturally progresses over the accelerated phase into blast crisis in the course of
3–5 years [13,15]. This serious condition ultimately leads to patient death by means of
thrombosis, anemia or infection [13]. However, with modern therapeutic standards and
the introduction of tyrosine kinase inhibitors (TKIs) the life expectancy of CML patients
has been significantly ameliorated and almost meets the general population’s [16].

1.1.3. Classical MPNs

Among the Ph− MPNs, the main clinical manifestations differ substantially and
largely depend on the respective entity’s most prominent hematologic features. All MPNs
can furthermore vary in disease severity and thus show a wide range of symptom intensity.
PV patients may present with marked erythrocytosis and associated concomitant symptoms
of hyperviscosity, microvascular symptoms and bleeding complications, whereas classical
ET is characterized by an elevation in platelet count and history of thrombosis [1,17–19]. A
typical sign of PMF is bone marrow fibrosis accompanied by marked anemia, cachexia and
thrombohemorrhagic events [20,21]. A hallmark finding of CNL is an extensive bone mar-
row neutrophilic granulopoiesis, while CEL-NOS presents with typical hypereosinophilia
with eosinophil clonality [9,10]. Frequently occurring mutated genes in PV, ET and PMF
include JAK2, CALR and MPL. These mutations all ultimately result in increased down-
stream activation of the STAT and other disease-promoting pathways [4,18–20,22]. The
mentioned classical genetic alterations are however absent in CNL and CEL-NOS [9,10].

2. Immunological Changes in MPNs

Immune evasion by tumor-associated immune dysregulation is a phenomenon that
was detected in a variety of tumor entities [23]. Furthermore, the concept of oncoinflam-
mation has given rise to the idea that a hyperinflammatory tumor microenvironment may
also contribute to tumor development and progress [23,24].

Classical myeloproliferative diseases are also driven by inflammation and the exces-
sive activation of inflammatory pathways has several immunomodulatory effects [25–27].
Increased pro-inflammatory cytokines and the accumulation of reactive oxygen species as
well as the transcriptional deregulation of anti-oxidative stress genes were found in patients
with JAK2V617F mutant MPN [28,29]. This up-regulation has been reported to stimulate
the JAK/STAT signaling axis, resulting in an increased proliferation of various cell types,
including an increased viability and survival of malignant cancer cell clones [30]. Studies
in mice have shown that administering the anti-oxidant N-acetylcysteine (NAC), could
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reduce splenomegaly and the number of JAK2-mutant hematopoietic stem and progenitor
cells in the spleen and BM, and normalize blood parameters [28].

With the discovery that CML patients can potentially stay in treatment free remission
(TFR) even after treatment cessation, it became clear that the immune system must play a
pivotal role in disease control of Ph+ MPNs [31,32]. Numerous findings have been reported,
showing that immunological variables serve as predictors of molecular response and depth
of remission, and thus support the hypothesis of a close interaction between the immune
system and survival of the leukemic clone [33]. Current data suggest that the restoration of
immune-effectors, particularly involving T and NK cells, are key-points to achievement of
molecular response and durable TFR [33,34].

3. Natural Killer Cells

Natural killer (NK) cells are innate lymphocytes with effector functions, they play an
important role in host defense and immune surveillance and are known for their ability
to rapidly kill tumor- and virus-infected cells. NK cells also produce cytokines such as
IFN-γ and TNF-α, which play an important role in the differentiation and maturation of
both innate and adaptive immune cells [35]. Murine models have shown that NK cell
development is complex and tightly regulated, and while human NK cells are generated
and maintained by HSCs, the precise process is not yet fully elucidated [36,37]. The main
site of NK cell generation is considered to be the immunological niche in the BM; however,
whether the NK cell ontogenesis occurs exclusively in the BM niches remains debated,
as evidence suggests that immature NK cells can migrate to secondary lymphoid tissue
to mature [38]. IL-15 is produced by stromal cells in the BM and is important for the
differentiation and survival of NK cells. As common lymphoid progenitors develop into
NK progenitors, they down regulate CD34 and acquire the expression of the IL-15 receptor
(IL-15R). Various other chemokines and receptors are expressed on the different subsets of
NK cells, influencing their tissue localization and regulating their release from the BM [39].
Different anatomical sites and tissues possess different homeostatic mechanisms, which
result in tissue specific NK cell development, and maintain the balance between immune
tolerance and immune surveillance [36].

The diversity of the NK cell repertoire is determined by the large array of activating
and inhibitory receptors expressed on the cell surface. Inhibitory receptor expression is
intrinsic, encoded by the host germline, while activating receptors can be influenced by
extrinsic factors such as epigenetics or chronic infection [40,41]. These activating and
inhibitory markers form a delicate balance on the cell’s surface, determining whether the
NK cell will be activated upon presentation of the target cell [42].

Unlike T cells, NK cells do not require any previous priming and they exert anti-
metastatic functions via (1) the release of lytic granules containing perforin and granzymes,
(2) IFN-γ secretion, and (3) the exposure of death receptor ligands, e.g., TRAIL and FASL,
which when bound, can induce apoptosis [43].

Under homeostatic conditions, they remain in a resting state due to inhibitory markers
such as inhibitory Killer Immunoglobulin-like receptors (iNKRs), C-type lectin receptor
NKG2A, Ig-like transcripts (ILTs), and leukocyte Ig-like receptors (LIRs). These inhibitory
receptors recognize a wide range of Human Leukocyte Antigens (HLAs) which allow
autologous cells to be identified as “self” [36]. The dearth or downregulation of HLA-I
alleles by infected or tumor cells boosts NK cell-mediated killing, engaging various NK cell
activation receptors (aNKRs), a concept referred to as the “missing-self” hypothesis [44].
aNKRs include Natural Cytotoxicity Receptors (NCRs) such as NKp46, C-type lectin
receptors such as NKG2D, DNAM-1 and Killer Ig-like Receptors (KIRs) [36,37]. aNKR
ligands can also be upregulated by cellular stress or as a response to DNA damage, both of
which are common in many different types of cancer [45]. The secretion of soluble NKG2D
ligands (MICA and MICB) by cancer cells, has been postulated as a possible mechanism of
NK cell killing evasion. MICA and MICB are able to downregulate NKG2D on the NK cell
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without triggering activation [46]. Indeed, sMICA levels were shown to be increased in
CML patients and to return to normal levels with imatinib therapy [47].

The phenotype and density of the cell surface antigen expression is theorized to
explain a functional distinction between the subsets [48]. The two main subsets of NK cells
can be defined by their surface expression of CD56 and CD16. CD56, also known as neural
cell adhesion molecule (NCAM), plays an important role in adhesion in bone marrow
niches [49] and CD16 is the type III Fcγ receptor which binds to the Fc region of antibodies
and triggers the release of cytotoxic granules [50]. CD56dimCD16+ cells are cytotoxic
NK cells and make up the majority of circulating NK cells (~90%). CD56bright CD16−

NK cells are defined as a regulatory subset, producing high levels of pro-inflammatory
cytokines [36,51]. The vast array of NK cell surface receptors is complex and distinct within
the different sub-populations, highlighting the functional heterogeneity of NK cells [48].
Environmental factors, including pathogen exposure or the microenvironment in which
the cell develops and resides, may also influence receptor diversity [36].

NK cells are pivotal in the control of metastatic dissemination of solid tumors and
an inverse correlation has been observed between circulating NK cells and metastases at
clinical presentation in a range of different carcinomas, while improved NK cell cytotoxicity
has previously been linked with good prognosis [52]. NK cells have been described
as ‘critical’ to immunosurveillance and anti-tumor activity in B cell lymphomas [53],
chronic myeloid leukemia (CML), acute myeloid leukemia (AML), and myelodysplastic
syndromes (MDS) [54], highlighting the importance of further elucidating their role in
hematological cancers.

4. NK Cells in MPN
4.1. CML
4.1.1. NK Cells in CML

A considerable amount of the immunological changes and influencing factors in CML
concern phenotypic and functional alterations of the NK cell compartment which makes
them an interesting topic for closer investigation [55] (Figure 1).

T/NK progenitors derived from untreated chronic phase CML patients, were shown
to express the Philadelphia chromosome [56]. Interestingly, the vast proportion of mature
NK cells were reportedly negative for BCR-ABL1 [56–58]. This discrepancy in Philadelphia
positivity is explained by a lack of malignant precursors to differentiate into mature NK
cells [59]. In advanced phases of CML, however, both CD56dim and CD56bright popula-
tions can become Ph+ and can thus contribute to the malignant clone [58,59]. Although,
in chronic phases of CML, most peripheral NK cells are not directly part of the disease
itself, they have, as important key players of immunity, been subjected to comprehen-
sive investigation in order to obtain a better understanding of immunologic surveillance
in CML.

The first findings demonstrating that NK cells are capable of killing leukemic blasts
derived from CML patients, date back to 1983 [60]. Reports by Lotzová et al. confirmed the
capability of NK cells to inhibit the growth of leukemic cells in CML [61]. Cervantes et al.
furthermore demonstrated that NK cells derived from healthy donors, as well as from
CML patients, exhibited cytotoxic activity towards the cell line K562 in vitro, and that this
effect was mediated by direct cell-to-cell contact [62]. Cebo et al. supported this finding
by showing that lysis of BCR-ABL1 expressing cell lines by NK cells was mediated by an
interaction of NK-receptor NKG2D and its corresponding ligands [63]. Primitive, quiescent
CD34+ progenitor cells derived from CML patients were the least susceptible to NK cell
cytotoxicity in vitro [61,64].

NK cells therefore seem capable of killing the leukemic clone in CML and may play a
crucial role in disease control. Various findings have demonstrated a decrease in quantity,
as well as functional deficits, of NK cells in CML [54]. However, these assumptions were
followed by contradictory findings, indicating a more complex situation [54,65].
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Figure 1. Phenotypic and functional alterations in the NK cell compartment of CML patients before therapy initiation, as 
well as TKI-specific changes. An in vivo increase or decrease is displayed with green or red arrows respectively, while blue 
and purple arrows indicate an observed increase or decrease in vitro or using a mouse model. References are given in 
brackets. Created with BioRender.com (accessed on August 27th 2021). 
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Figure 1. Phenotypic and functional alterations in the NK cell compartment of CML patients before therapy initiation, as
well as TKI-specific changes. An in vivo increase or decrease is displayed with green or red arrows respectively, while
blue and purple arrows indicate an observed increase or decrease in vitro or using a mouse model. References are given in
brackets. Created with BioRender.com (accessed on 15 June 2021).

General Alterations in the NK Cell Compartment

Several studies reported reduced relative amounts of NK cells within the lymphocytic
compartment in newly diagnosed CML patients compared to healthy controls [34,66]. The
decrease of NK cell proportions remained detectable even under imatinib treatment with
stable remission in a study by Chen et al. [66]. Opposing data, however, demonstrated a
significant increase of NK cell numbers with consequent TKI therapy, in particular with
dasatinib treatment [34,67].

Chen et al. investigated the finding of NK cell reduction in newly diagnosed CML
using a transgenic mouse model with reversible BCR-ABL1 expression [66]. They found
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that the relative proportions of murine NK1.1+ were significantly reduced with BCR-
ABL1 induction and remained low even after BCR-ABL1 reversion [66]. Upon functional
exploration, the group demonstrated that the murine NK cells isolated from BCR-ABL1+

mice did not show any difference in proliferative activity, whereas the degranulation
capacity was significantly decreased when the mutation was expressed [66]. However, in
contrast to findings in human studies, it should be highlighted that in this experimental
setting, NK cells expressed the BCR-ABL1 transcript [66].

We have previously demonstrated that assumptions regarding NK cell numbers in
CML must be interpreted cautiously [65]. When quantifying the lymphocytic compartment
in this entity it is of utmost importance to take into account the high number of basophil
and hematopoietic progenitors that rapidly normalizes with TKI administration. As lym-
phocytes, basophils and progenitors all have similar SSC and FSC characteristics in flow
cytometry, relative numbers of lymphocytes such as NK cells will be underestimated at
time of diagnosis. It is therefore crucial to first exclude the abundant cell types of basophils
and progenitors. We have thus defined lymphocytes in whole blood via flow cytometry
using the different levels of CD45 for exclusion of the aforementioned cell populations
among the FSC and SSC defined lymphocyte gate. While other groups performed stainings
on PBMCs, we used whole blood to obtain more accurate absolute numbers. With these
improvements, we found, in contrast to previous reports, a significantly higher number
of NK cells (including CD56dim and CD56bright) at time of diagnosis compared to months
6 and 12 after treatment initiation with nilotinib [65]. This was true for both percentages of
lymphocytes, as well as for absolute numbers [65].

In addition to the changes in quantity, phenotypic alterations and changes in the
composition of the NK cell compartment have been reported. Hughes et al. demonstrated
a significant decrease, in proportions of lymphocytes, of the cytokine-producing CD56bright

cells, as well as the CD56dim group at diagnosis compared with patients in molecular remis-
sion [34]. They also found a significant reduction of a mature NK subpopulation (defined
as CD57+CD62L−) at CML diagnosis [34]. Chen et al. showed that, even with the total NK
cell proportions among lymphocytes being reduced in CML at diagnosis, concerning the
CD56dim and CD56bright subpopulations, there was no difference in composition between
CML patients and healthy individuals [66].

Further reports have described a loss of activating NK cell receptors at time of diagnosis,
such as NKG2D, CD94/NKG2C, CD161, NKp30, NKp46 or KIR2DL2/DL3/DS2 [32,34,68].
Additionally, expression of the activating KIR receptor, KIR2DS1, was shown to be in-
creased in CML patients undergoing TKI therapy compared with healthy individuals [69].
The KIR-ligand combination KIR2DS2/KIR2DL2 absent/HLA-C1 present was also signifi-
cantly reduced in CML patients [69].

The aforementioned decrease of NK cell activating receptors may consequently cause
an imbalance between activating and inactivating receptors and confer suppression of
NK cell activity. Downregulation of receptor NKG2D or loss of the correlating ligands, is
thought to contribute to immune escape of the leukemic clone by decreasing the NK cell
mediated recognition of BCR-ABL1 positive cells [32,63,70]. In another report, however,
NKG2D positive NK cell proportions were similar between healthy individuals and CML
patients before treatment initiation [66].

In addition to the phenotypic changes mentioned—or resulting from them—NK cells
in Ph+ MPN were described to display functional deficits, which may inhibit sufficient
control of the leukemic clone. These alterations were discovered not only at baseline but
intriguingly also during therapy.

Chen et al. demonstrated NK cell dysfunction in vitro [66]. Incubation of NK cells
derived from newly diagnosed CML patients with the K562 cell line resulted in signifi-
cantly lower degranulation, which persisted in patients undergoing imatinib therapy [66].
Furthermore, they showed that NK cells derived from CML patients, both before therapy
initiation and under imatinib-mediated remission, had a significant reduction in prolifera-
tion rate using a 10-day expansion protocol with K562 and IL-2 incubation compared with
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healthy individuals [66]. However, this stands in contrast to findings of normal NK cell
proliferative activity demonstrated in the group’s BCR-ABL expressing mouse model, as
mentioned above [66]. It remains to be elucidated whether these discrepancies are due to
the fact that NK cells derived from the mouse model expressed the BCR-ABL transcript, or
can be explained by other experimental variables [66] (Figure 1).

Specific Changes during Course of Treatment with Possible Functional Consequences

Treatment of CML is primarily dictated by the characteristic BCR-ABL1 mutation
and with the introduction of imatinib in 2000, mainly consists of single-agent TKI admin-
istration [16]. These TKIs target the BCR-ABL1 transcript itself and inhibit its tyrosine
kinase function [71]. In the past years, 2nd generation TKIs, namely dasatinib, nilotinib
and bosutinib, have proven higher efficacy with deeper molecular remissions in first- and
further lines of treatment, compared to 1st generation TKI imatinib [72]. The 3rd generation
TKI ponatinib may be indicated in case of resistance to prior lines and/or T314I muta-
tion [72]. Later phases of CML, namely the advanced or blast phase, may even necessitate
further treatment escalation and an allogeneic stem cell transplantation (allo-SCT) could
be required as a final therapeutic option [72]. When deep remissions are achieved with
TKI treatment, CML patients can ultimately become eligible for treatment cessation and
experience treatment-free remission (TFR), meaning stable molecular remission without
further specific therapy [72].

Single-agent treatment with IFN-α has disappeared from the therapeutic landscape of
CML due to modern TKI regimes. Nevertheless, it is still under investigation as a possible
add-on to current therapies and thus exploration of alterations in the NK cell compartment
under IFN-α treatment are still of interest. In a study by Kreutzman et al. comparing
patients under IFN-α monotherapy with patients after successful IFN-α discontinuation,
NK cell proportions were considerably higher in the patient cohort after stopping IFN-α
treatment compared with patients still under treatment and healthy individuals [73]. As the
study had no long-term data available, it remained elusive to what extent the decrease of
NK cell proportions was a consequence of IFN-α application or whether low NK cell counts
were a negative prognostic factor for successful discontinuation. Ilander et al. similarly
demonstrated that relative NK cell numbers among lymphocytes were significantly higher
in patients after IFN-α monotherapy discontinuation compared to patients under treatment
and healthy controls, however, this finding was not statistically significant concerning
absolute NK cell numbers [74]. Mature NK cells (CD56dimCD62LlowCD27lowCD57+) were
more abundant in patients after successful discontinuation of IFN-α therapy [74]. Further-
more, activated NK cells (CD56+HLA-DR+) were shown to be increased in patients with
complete hematologic remission still undergoing IFN-α monotherapy [75]. Concurrently,
in these patients NK cell cytotoxicity against cell line K562 was increased together with
an increase in FasL expression on NK cells, which was suggested to help control the Fas
expressing CD34+ stem cells [75]. The combination of TKIs with IFN-α led to an increase
in the amount of CD56bright NK cells compared to TKI therapy alone [76].

Similarly, modern TKI therapy in CML patients has shown to exert various im-
munomodulatory effects, not overlooking the NK-cell compartment (Figure 1) [32]. The
specific differences among the types of TKIs may be at least partly explained by the pattern
of kinases and additional off-target effects that are inhibited in addition to BCR-ABL1
with each respective drug [77,78]. First reports of impairment of NK cell function in vitro,
especially by dasatinib and nilotinib, led to extensive investigation of possible NK cell-
modulating mechanisms [79].

In vitro experiments conducted by the group of Salih et al. showed that the three TKIs
imatinib, nilotinib and dasatinib led to a significant reduction of MICA and MICB on the
K562 cell line [80]. These cell surface proteins are ligands of NK cell receptor NKG2D and
are considered important for the detection of CML cells [80]. The functional impact of this
downregulation was confirmed in co-culture experiments of NK cells with 24h treated
K652 cells [80]. The group was able to demonstrate that the loss of MICA and MICB led
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to reduced IFN-γ production, as well as to a decrease in NK cell cytotoxicity [80]. Confir-
matory findings from Boissel et al. and Cebo et al. also demonstrate the downregulation
of MICA/B expression on BCR-ABL1+ cells treated with imatinib in vitro [47,63]. They
furthermore confirmed the reduced NKG2D dependent lytic capacity towards BCR-ABL1
expressing cell lines after imatinib application [47,63].

Salih et al. however, found no direct effect of in vitro imatinib administration on NK
cell reactivity, as NK cell cytotoxic capacity and cytokine production were not affected by
immediate addition of the substance without pre-incubation of K562 with imatinib [80].
There was also no effect of in vitro imatinib application concerning cytotoxicity or cytokine
production when primary material derived from CML patients before treatment was used
as the NK cell target [80]. Furthermore, in vivo treatment with imatinib did not lead to
changes in the lytic capacity of CML-derived NK cells compared to healthy controls [79].

Chen et al. have also comprehensively characterized the NK cell compartment in
CML patients under imatinib therapy and showed that the expression of activating NK
cell receptor NKG2D was significantly decreased with imatinib therapy [66]. As NKG2D
is known to be an activating NK cell receptor this finding would indicate that imatinib
application could potentially decrease leukemic cell control [66]. Chen et al. however, were
able to demonstrate, similarly to Salih et al., that addition of imatinib to degranulation
assays in vitro had no functional consequences on either expanded NK cells derived from
healthy individuals or from newly diagnosed CML patients [66].

Bellora et al. have further investigated phenotypic alterations of NK cells in vitro with
imatinib and nilotinib administration [78]. With application of both substances respectively,
they found a decrease in CXCR3 with CXCR4 upregulation [78]. It was hypothesized that
this combination may inhibit successful recruitment of NK cells, as CXCR3 is important
in chemotaxis whereas CXCR4 is involved in NK cell homing and the preservation of the
cells in the bone marrow niche [78].

Upon investigation of the effect of nilotinib on functionality of polyclonal NK cells
towards cell line K562 or primary PBMCs derived from CML patients, Salih et al. found
no substantial decrease in cytotoxicity, but a decline in IFN-γ production [80]. Further-
more, upon incubation of NK cells derived from healthy donors with nilotinib, the group
demonstrated an increase of dead cells in the CD56bright NK cell subset, with no effect
on the cytotoxic CD56dim compartment [80]. As the CD56bright compartment is the major
cytokine-producing NK cell population, this could partly explain the decrease in IFN-γ
production [80]. In contrast to these in vitro results, Hayashi et al. found a decrease in
cytotoxic activity of NK cells derived from patients under nilotinib treatment [79]. These
discrepancies may be the result of different investigation methods, as Salih et al. investi-
gated the direct effect of nilotinib administration as an in vitro effect on NK cells, whereas
Hayashi et al. demonstrated the decrease in lytic capacity in nilotinib-treated patient
samples. Furthermore, it may be possible that in Hayashi’s cohort, the lytic activity of NK
cells was already diminished a priori, and it was not restored with nilotinib treatment.

During dasatinib treatment, a characteristic expansion of so-called large granular
lymphocytes (LGL), comprising of CD8+ T-cells and NK cells, was previously described
in vivo [32,81,82]. This finding is specific for dasatinib among the group of TKIs [81,82].
As cytotoxic T cells, as well as NK cells, might contribute to antitumor immunity in CML,
the observed expansion of LGL may constitute a beneficial characteristic of dasatinib
treatment [82].

Moreover, the D-first study, an open-label study on dasatinib, demonstrated that
general lymphocytosis, defined by differential blood count, was a frequent event to occur
in approximately 27% of patients by the 18 month mark [83]. Among these, NK cell
counts were also found to increase with dasatinib treatment [83]. Hara et al. reported a
dose-dependent augmentation of NK-cell numbers derived from healthy volunteers with
in vitro dasatinib application [84].

Concerning the functional exploration of dasatinib on degranulation and cytotoxicity
of NK cells, contradictory results have demonstrated the importance of a clear definition
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of the experimental setups comparing with- versus without- “wash-out” settings. This is
especially necessary in vitro when the drug is added directly to the incubational assay. In
a study conducted by Salih et al., dasatinib significantly reduced cytotoxicity and IFN-γ
production in vitro [80]. Dasatinib administration also led to comparable short-term and
reversible dose-dependent reduction of cytotoxicity, degranulation and cytokine secretion
of NK cell lines in a study performed by Hassold et al. when no dasatinib wash-out
was performed [85]. Simultaneously however, in the same study stimulatory effects were
seen applying experimental settings with dasatinib pre-treatment and subsequent wash-
out before functional investigation [85]. This finding suggests that the wash-out of the
drug is crucial when clearly defining the long-term effects of dasatinib in vitro and more
adequately mimicking in vivo conditions.

A confirmatory finding was provided in a study performed by Uchiyama et al. [86]
Dasatinib administration to peripheral blood mononuclear cells (PBMCs) in vitro derived
from healthy donors led to a dose-dependent increase in proliferation of NK cells (both in
percentages and absolute counts) as well as to elevation of cytolytic activity using K562
target cells when dasatinib wash-out was performed [86].

Further investigations validating the stimulatory effect of dasatinib were provided
by Hayashi et al. [79]. The group demonstrated that NK cells derived from patients
under dasatinib treatment had an increase in cytotoxic reactivity [79]. Interestingly, they
also found an increase in NK cell number with in vivo dasatinib treatment, especially
the CD56+CD57+ compartment, which was simultaneously associated with higher NK
cell-specific cytotoxic activity [79] (Figure 1).

With the current ongoing pandemic, it is interesting to note that the Italian Campus
CML program has reported low incidences of COVID-19 infections in CML patients under-
going TKI treatment [87]. As NK cells are considered to be important players in infection
control of COVID-19, it may be assumed that under successful TKI therapy NK cells are
functional enough to exert antiviral characteristics [88].

The Role of NK Cells to Disease Progression and Response to Therapy

In addition to the changes conferred by therapeutic interventions in CML, several
studies assessing NK cell related parameters have also found prognostically relevant
associations with response to TKI therapy (Figure 2).

A comprehensive investigation by Ureshino et al. on the predictive role of the in-
hibitory receptor KIR3DL1 and the associated HLA-B allelic polymorphisms has revealed
that weakly interacting combinations of these two counterparts were associated with a
superior response to TKI treatment [89]. Alleles KIR3DL1*005 and KIR2DL4*011/005 as well
as KIR2DS4*007 also conferred favorable prognostic value [89]. A sub-study of the TIDEL-II
study, a trial examining a risk-adapted scheme of imatinib and nilotinib combination, found
the expression of KIR2DL5B to be an independent negative prognostic factor for achieve-
ment of MMR (major molecular remission) and was furthermore significantly linked to
inferior achievement of MR4.5, event-free survival (EFS) and transformation-free survival
(TFS) [90]. As KIR2DL5B is an inhibitory KIR receptor, it was consequently hypothesized
that its expression could possibly suppress sufficient NK-cell mediated killing of leukemic
cells [90]. Loss of the inhibitory receptor KIR2DL2 was associated with successful CMR
(complete molecular remission) in a heterogeneously treated patient population under 1st
and 2nd generation TKI therapy as reported by Nasa et al. [69]. In the same cohort, KIR
genotype AA was linked to earlier CMR, with a higher probability of CMR achievement in
comparison to genotype Bx [69]. KIR genotype AA thus appeared to be a strong predictive
factor for successful CMR in this setting [69].
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The amount of effector NK cells (defined as IFN-γ+ NK cells) has also been previously
linked to successful and stable CMR under imatinib treatment [91]. The increase in this cell
compartment may therefore constitute a marker for functioning immune surveillance [91].
In a patient population under dasatinib treatment, Iriyama et al. demonstrated that NK
cell counts at 1 month after treatment initiation revealed to be a crucial predictive factor for
DMR [83]. This suggests that a rapid increase in NK cell count, potentially caused by dasa-
tinib itself, may reflect a successful immune response towards leukemic cells [83]. Addition-
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ally, a study by Hara et al. revealed that expression of NKG2D HNK1/HNK1 haplotype was
linked to a higher likelihood of achieving MR4.5 in dasatinib treated patients [84] (Figure 2).

It is therefore likely, that NK cells have a potential role in control of the leukemic
clone, even in patients with ongoing TKI treatment. Furthermore, various reports indicate
that NK cells also seemingly play a pivotal role in the achievement and maintenance of
successful TFR [92].

NK Cells in the Setting of Treatment Discontinuation

In the past years the concept of treatment discontinuation with consequent TFR has
become a desirable and achievable goal in CML therapy [92]. However, TFR is not always
successful. One potential reason for discrepancies in TFR achievement are differences in
immune response (Figure 2) [92].

The IMMUNOSTIM trial group demonstrated that higher numbers of peripheral
CD56dim NK cells at the time of treatment cessation were significantly and independently
correlated to treatment-free remission after imatinib discontinuation [93]. In agreement
with these results are the EUROSKI and DADI trials on imatinib and dasatinib treatment
cessation respectively, also demonstrating the protective effect of NK cell increase in the
setting of TFR [94,95].

The IMMUNOSTIM group furthermore found no differences in expression of an
extensive panel of NK cell receptors comparing non-relapsing to relapsing patients, but
demonstrated less NKp46 and DNAM-1 expressing NK cells (CD56dim and CD56bright) in
all patients after discontinuation, compared with healthy individuals [93]. Degranulation
capacity towards the K562 cell line was preserved in both relapsing and non-relapsing
patients compared with healthy donors, while IFN-γ and TNF-α production after stimu-
lation were diminished in relapsing patients [95]. When dichotomized into high versus
low IFN-γ and TNF-α production, patients with increased amounts of cytokine production
were significantly associated with higher molecular relapse-free survival [95]. Mizoguchi
et al. in agreement with this, have described a sustained elevation of NK effector IFN-γ+

cells in successful TFR after imatinib treatment (STOP-IM trial), suggesting that this cell
population is essential for control of the leukemic clone in this setting [91].

Furthermore, homozygosity for KIR A haplotype conferred a significantly higher
likelihood of achieving successful TFR in patients after imatinib or nilotinib treatment
cessation as reported by Caocci et al. [96]. Conversely, patients with Bx genotype and
KIR-ligand combination KIR2DS1/KIR3DL1 present/HLA-Bw4 present had a higher risk
of relapse [96].

Altogether, these results demonstrate the importance of NK cells in control of the
leukemic clone in the setting of TFR. Therefore, it may be reasonable to consider a therapy
that enhances NK cell function as well as investigating NK cell specific markers before
discontinuation of treatment.

4.2. Classical MPNs
4.2.1. Immunological Changes in Classical MPNs

Typical untreated MPN presents with clonal myeloproliferation, decreased apoptosis
of myeloid cells and in some cases progressive myelofibrosis [48]. MPN patients usually
display an increased number of bone marrow nucleated-, terminally differentiated- and
replicative mature cells and elevated peripheral blood cells. If left untreated, microvascular
and major thrombotic events can occur [97]. The MPL mutation occurs in megakaryocytes,
where it translates to a constantly activated MPL or thrombopoietin receptor [98], while
the JAK2V617F mutation occurs in multipotent hematopoietic progenitor cells, but can be
found in all myeloid lineages, as well as B cells, T cells and NK cells [4]. It is unsurprising
that several blood parameters are seen to be altered in the various MPN phenotypes. While
it is rare to find a case of MPN with normal blood parameters, it is not impossible. The
presence of the JAK2V617F mutation with normal peripheral blood and T cell composition
has previously been reported [97].
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4.2.2. NK Cells in Classical MPNs

Baseline data for NK cells in untreated MPNs remains disputed. Some studies report
low NK cell frequencies in untreated patients (excluding therapeutic phlebotomy), com-
pared with healthy donors [48], while we reported similar NK cells frequencies in untreated
patients when compared with healthy age-matched controls (Figure 3) [99]. The phenotype
of NK cells, however, appears to be most affected by pharmacological treatments such as
IFN-α or TKI’s [48,99].
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4.2.3. The Effect of Treatment on NK Cells

Therapeutic phlebotomy can be used in Ph− MPNs to maintain hematocrit levels,
thereby reducing risk of thrombosis, and cardiovascular related death [100]. Studies
regarding the effect of phlebotomy in MPN are lacking; however, patients undergoing
regular phlebotomy for hereditary hemochromatosis, as well as healthy controls, showed
no changes in absolute numbers of NK cells, B cells, T cells, NKT cells or monocytes [101].
Anti-coagulants can be used for antithrombotic therapy and typical forms of manage-
ment of bleeding or infection may be indicated [18,19,21,102]. For the prevention of
venous thromboembolism administration of vitamin K antagonists (VKAs) or the use of
direct oral anticoagulants (DOACs) is recommended. Low-dose acetylsalicylic acid (ASA)
may be indicated in several MPN entities with concomitant thrombocytosis, such as PV
or ET [17,103–105]. Another treatment option is the administration of interferon-alpha
(IFN-α) in a variety of MPN entities, such as PV and ET [9,10,18,19,105–107]. Cytoreduc-
tion is frequently accomplished via treatment with hydroxyurea (HU), an inhibitor of
ribonucleotide reductase, or busulfan, an alkylating agent [19,21,108,109]. Anagrelide, a
phosphodiesterase inhibitor, is approved for the reduction of platelet count in ET [19,109].
With JAK2 mutations being the characteristic driver mutation in PV, ruxolitinib, a nons-
elective JAK1/2 inhibitor, is the option of choice in this entity, but can also constitute an
alternative option in ET or PMF. [18,19,21,22,110] In situations where ruxolitinib has failed,
or might not be appropriate, MF patients with anemia may be treated with immunomod-
ulatory drugs (IMiDs) such as Thalidomide, Pomalidomide or Lenalidomide [111–114].
In high-risk PMF, CNL or CEL-NOS, certain patients may be even eligible for stem cell
transplantation (SCT) [9,10,21].
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Acetylsalicylic Acid (ASA)

Low dose ASA therapy is recommended to many MPN patients, particularly in ET, to
reduce the risk of thrombotic events. ASA irreversibly acetylates platelet cyclooxygenase
(COX)-1 resulting in a long-lasting inhibition of TXA2 biosynthesis, a type of thromboxane
which stimulates platelet activation, contributing to vasoconstriction and platelet aggre-
gation [115,116]. Recent data describing the effect of ASA on NK cells is lacking, and the
effects in MPN specifically have not been reported.

Interferon-Alpha2

INF-α is a type 1 interferon which stimulates the immune cells, providing anti-
proliferative, immunomodulatory, and antiangiogenic effects [117]. Pegylated IFN-α has a
much longer serum half-life than recombinant IFN-α, and allows for weekly, as opposed to
daily, dosing [118]. Type 1 interferons act by activating the JAK/STAT pathway, resulting in
the production of a complex named IFN-Stimulated Gene Factor 3 (ISGF3), which translo-
cates to the nucleus and initiates the transcription of hundreds of IFN-stimulated genes
(ISGs) [119]. ISGs can perform an array of functions, including inhibition of viral spread,
the downregulation of telomerase activity in malignant and non-malignant hematopoietic
cells and the induction of a direct pro-apoptotic effect on myeloid progenitors [117,120].

Chronic IFN-α treatment depletes HSCs and has severe immune-altering effects
including the activation of dendritic cells, NK cells and T cells [48,117]. MPN patients
undergoing therapy with IFN-α displayed a significantly increased frequency of circulating
Tregs. This is hypothesized to be due to either the mobilization of Tregs to the periphery,
decreasing their immunosuppressive action within the bone marrow, or as a counter
response to immune activation [121]. IFN-α treatment of MPN patients also resulted in a
decreased frequency of myeloid DCs (mDCs) and plasmacytoid DCs (pDCs) [121]. This
marked immunomodulation however, does not correlate with molecular responses, and
the duration of treatment is also proposed to be a contributing variable [121].

Riley et al. 2014, described the effects of IFN-α treatment on NK cells in detail (Figure 3,
IFN-α), in a comparison with untreated patients, healthy donors, and patients undergo-
ing treatment with hydroxyurea [48]. During IFN-α treatment, NK cells increased in
number, and underwent a phenotype shift from cytotoxic cells highly capable of antibody-
dependent cellular cytotoxicity, to a more immune-stimulatory profile with little cytotoxic
importance [48]. NK cell numbers were the lowest in untreated patients compared with
healthy donors, or patients treated with hydroxyurea or IFN-α. An expansion of CD56bright

and subsequent decrease in CD56dim NK cells was observed in long-term (≥12 months)
IFN-α treated patients, and data suggests an overall decrease in NK cell functionality
upon target cell recognition, and a shift from a more cytotoxic phenotype, as previously
mentioned, to an immune-stimulatory profile. The CD56dim subset, which is suggested
to be a more mature subset, was seen to secrete an increased level of IFN-γ when stim-
ulated with DC monokines (IL-12 and IL-15), however the overall production of IFN-γ
was greater in CD56bright cells, highlighting the dependence of NK cell differentiation on
DC cytokines [48]. A decrease in degranulation and CCL4 production was seen during
treatment, and while the observed trends were not significant, they support the conjectured
compromised functionality [48] (Figure 3).

Hydroxyurea

Hydroxyurea is an antimetabolite which scavenges tyrosol-free radicals, thereby
inhibiting the enzyme ribonucleotide reductase and reducing deoxyribonucleotide produc-
tion, arresting proliferating cancer cells in the S-phase [106,108]. In a large retrospective
study of 3411 patients immunomodulatory effects were not evident, as no allergy or im-
munosuppression was detected, and little has been reported in studies so far [106]. The
bone marrow suppression and antiproliferative effect of HU may result in neutropenia, ane-
mia or thrombocytopenia [122]. Upon activation, murine cells in culture that were treated
with HU, increased IL-2 secretion, while no effect was seen in untreated cells [122], and
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similar results were seen in humans undergoing HU treatment for HIV infection [123]. HU
was shown to upregulate NKG2D ligand expression on myeloid leukemic cell lines [124];
however, in MPN patients no changes were observed between HU treated patients and
healthy controls [125].

JAK Inhibitors

For the treatment of Ph− MPNs, JAK inhibitors such as ruxolitinib, have been de-
signed to specifically inhibit the JAK/STAT pathway by binding to cytoplasmic JAK1 and
JAK2 kinases and modulating intracellular cytokine signaling [126]. The inhibition of JAK2
leads to the desired myelosuppression, while the inhibition of JAK1 reduces the levels of
pro-inflammatory cytokines produced, improving various symptoms including bone mar-
row fibrosis [127,128]. A high rate of infection has been observed in patients undergoing
ruxolitinib therapy, and it is hypothesized that the inhibition of JAK1 could therefore be
responsible for a certain level of immunosuppression. Cytokine action on the JAK/STAT
pathway results in proliferation, differentiation, and activation of various immune cells,
however the full extent of ruxolitinib-induced immunosuppression is not yet known [129].
In both the COMFORT I and COMFORT II studies, neutropenia was seen in ruxolitinib
treated patients compared with the placebo group (7.1 vs. 2% and 8.9 vs. 6.3% respec-
tively) [129]. Several studies have shown that ruxolitinib treatment impaired dendritic
cell function, affecting cell differentiation, tissue migration and IL-12 production, which
has been described to play an important role in NK cell differentiation [107,129,130]. Later
studies confirmed that IL-12 was completely blocked by ruxolitinib, as well as IL-15 and the
phosphorylation of STAT5, resulting in a functional impairment of IFN-γ production by NK
cells (Figure 3, ruxolitinib) [131]. An inhibition of cytokine secretion by macrophages was
also reported, possibly effecting NK cell recruitment, maturation, and killing activity [132].
The reported impairment of DC function also resulted in the impaired induction of antigen
specific T cell responses [130]. Pharmacological inhibitors of the JAK/STAT pathway have
detrimental effects on NK maturation and as a result many patients experience infectious
complications during treatment [99]. Unsurprisingly, ruxolitinib lead to a reduced number
of NK cells, most likely due to impaired maturation as a result of the lack of DC cytokines,
displayed by an increased ratio of immature/mature NK cells [99]. Additionally, compro-
mised lytic synapse formation with target cells lead to a reduction in killing activity [99].
However, these results were reversible, and when ruxolitinib treatment was discontinued,
NK cell function was restored [99] (Figure 3).

Immunomodulatory Drugs (IMiDs)

IMiDs are anti-inflammatory, anti-angiogenic drugs that regulate cytokine response.
Even though IMiDs only play a minimal role in the management of MPNs clinically,
they have substantial immunomodulatory activity on NK cell function [111–114]. MF
patients treated with IMiDs exhibited activated NKT cells, co-stimulation of T cells, and
impaired proliferation and function of Tregs [133]. More detailed effects of IMiDs on the
immune cells can be seen in patients with multiple myeloma. In addition to an increase
in IL-2 production and resultant T cell proliferation, a subsequent increase in IFNγ was
seen, resulting in an increased number and improved function of NK cells [134]. The
cytokines which are upregulated with thalidomide administration are also associated with
angiogenesis, however the precise role of thalidomide and NK cells in vascularization has
not yet been defined [135].

5. Discussion

The concepts of immune evasion and excessive inflammation are two frequently oc-
curring tumor promoting phenomena [23,136]. Properly functioning immune surveillance
is crucial for the detection and elimination of altered cell populations that could hypotheti-
cally transform into malignancies [136]. On the other hand, chronic hyperinflammatory
conditions may additionally support tumor pathogenesis and exert tumor promoting ef-
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fects [24,136]. Immunologic changes may therefore substantially affect the development
and course of neoplastic diseases and constitute useful biomarkers for better understanding
and prediction of pathologic processes.

Changes in immunologic variables were also discovered in the group of
MPNs [25,26,33,137]. These alterations also comprise the NK cell compartment [27,48,54,55].
Changes in amount, phenotype as well as function of NK cells were reported to be present
at time of diagnosis, but also occur with therapeutic intervention (Figures 1 and 3) [55,99].
It appears that these findings are not mere observations but may also have prognostic
value, especially in the setting of CML (Figure 2) [95].

In CML, conflicting results on relative amounts of NK cells as proportions among
lymphocytes were demonstrated [34,65–67]. We have, however, previously shown that as-
sumptions concerning NK cell frequencies should be regarded critically, and we proposed
a gating strategy using whole blood for more accurate quantification by flow cytome-
try [65]. Using this method we demonstrated increased frequencies of NK cells at time of
diagnosis [65].

Similarly, also in classical MPN entities, ambiguous findings concerning NK cell
frequencies at time of diagnosis were reported, with reports of decreasing as well as
increasing proportions [48,99]. However, evidence of changes in the NK cell compartment
in untreated patients remains scarce, and a more in-depth investigation of the disease-
related effects is needed.

Additionally, phenotypic changes at time of diagnosis have been described in CML,
mainly comprising a reduction of activating receptors [32,34,68]. These alterations may
hypothetically lead to a more suppressed NK cell phenotype with a decrease in tumor
cell recognition [32,63,70]. In agreement with this, a deficit in degranulation capacity of
patient-derived NK cells at time of diagnosis was reported [66]. Additionally, the NK cells
were shown to have a significantly reduced proliferative capacity, even though this finding
could not be confirmed in the group’s mouse model [66].

The NK cell compartment may not only be altered by the disease itself, but the
therapeutic agents used can also have immunomodulatory side effects (Figures 1 and 3).
Therapy of MPNs is heterogenous and the effects on NK cell functionality and phenotype
vary substantially among the respective drugs. The effects of treatment on the NK cell
compartment in Ph− MPNs is not easily summarized. One must consider the first line
treatments for the various disease phenotypes, which, in many cases can be implemented
throughout the course of disease until other factors such as age, mutational burden, or
progression to fibrosis come into play.

Therapeutic strategies in CML are majorly comprised of the group of TKIs. A vari-
ety of effects on NK cells have been reported, however, strong discrepancies especially
between in vivo or ex vivo, and in vitro models make it necessary to carefully evaluate the
respective findings.

In vitro experiments on imatinib and nilotinib suggest negative effects on NK cell
reactivity towards the leukemic clone [63,66,78,80]. Fortunately, however, the supposed
decrease in functionality of NK cells conferred by imatinib as well as nilotinib application,
was refuted in in vitro experiments using patient-derived material, suggesting that the
suppressing effects of imatinib and the phenotypic alterations may not be of significant
value for leukemic cell control [66,79,80]. When further investigating the in vivo effects of
nilotinib therapy, on the other hand, Hayashi et al. found a decrease in cytotoxicity [79].
Even though this in vivo setting is probably depicting the situation more accurately, it
would be of interest to investigate the demonstrated effects further by individually com-
paring patients pre-treatment to patients under treatment in order to reliably distinguish
between disease-related and treatment-related effects. Another possible explanation for
the ambiguous results is that nilotinib may not exert direct cytotoxicity-reducing effects,
however it may indirectly modulate NK cells by changing the tumor environment.

Dasatinib is probably the most substantially studied TKI in terms of NK cell related
effects in CML therapy. One of the observed drug-specific effects is the well-studied expan-
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sion of LGLs in vivo with simultaneous augmentation of NK cell counts [32,81–83]. This
appears to be a direct effect of dasatinib application on NK cells, as in vitro use of dasatinib
on healthy cells reportedly led to an increase in NK cell counts [84]. Concerning functional
effects of dasatinib administration, it is important to clearly distinguish between direct
and indirect effects. Direct administration of dasatinib led to a reduction of cytotoxicity,
degranulation and cytokine secretion of NK cells in vitro [80,85]. However, when dasa-
tinib was washed out after the application, the effects were contrary with an increase in
proliferation as well as cytolytic capacity [85,86]. Most importantly, in vivo experiments
examining patients under dasatinib treatment confirmed the increase in cytotoxic capac-
ity of NK cells [79]. The stimulatory effects of dasatinib may therefore best reflect the
actual effects. However so far, the in vitro results do not provide enough information to
clearly distinguish between a direct effect of dasatinib application or indirect stimulation
of NK cells.

Fully functioning NK cells are important players in leukemic immune surveillance in
CML. This is also reflected by the prognostic value they exert for molecular response. An
increase in NK effector cells, as well as weak linkage of inhibitory KIR/HLA combinations,
were associated with superior outcome, as well as increasing NK cell counts [83,89–91,96].
These findings indicate that changes in the NK cell compartment under TKI therapy may
actively influence sensitivity towards the treatment, making investigations into drug-
specific alterations even more important.

The role of NK cells in CML becomes even more evident in investigations on pa-
tients after TKI treatment when the individual’s immune system takes control over of the
leukemic clone. The amount of NK cells at the time of treatment cessation is an important
prognostic factor in the setting of imatinib and dasatinib cessation [94,95]. Furthermore,
preserved NK cell production of IFN-γ and TNF-α was associated with successful TFR after
imatinib discontinuation, as well as an increase in the IFN-γ producing NK cell effector
population [91,95].

Treatment with IFN-α is common in classical MPNs, and while it has vanished from
the therapeutic landscape of CML treatment with the introduction of TKIs it is now being
discussed as a possible add-on therapy. An expansion of the CD56bright population was
seen in both classical MPNs as well as Ph+ MPNs with IFN-α [48,76]. This shift was
suggested to constitute a maturation defect [48]. In CML patients, however, favorable
effects of IFN-α, such as an increase in NK cell proportions, as well as increased numbers of
mature and activated NK cells, and an upregulation of cytotoxicity were described [73–76].

The effect of HU on NK cells has not been thoroughly investigated and lacks in-depth
analyses. However, currently available data suggest that there are no detectable changes in
the NK cell compartment with HU treatment [125,138,139].

Ruxolitinib had drastic effects on the overall immune system, the JAK1 inhibition
specifically, caused by ruxolitinib, is hypothesized to be responsible for a certain level of
immunosuppression [129]. Ruxolitinib affected the NK cell compartment both directly and
indirectly. Direct effects include a reduction in number of NK cells and a greater proportion
of immature NK cells, as well as a reduction in killing activity due to the reduced ability
to form lytic synapses with target cells [99]. Indirect effects include the impairment or
complete blocking of dendritic cell IL-12 and IL-15 production, or the phosphorylation
of STAT5, resulting in defective maturation and a diminished functional capacity of NK
cells to produce IFN-γ [107,129–131]. The reduction in NK cell number is hypothesized to
be a result of the impaired maturation. Indeed, we reported a 2.5 fold higher bright:dim
ratio in untreated patients than in aged-matched healthy donors, indicative for a block
in differentiation [99]. Many aspects of lymphoid cell development and homeostasis
are controlled by cytokines, and as MPNs are diseases driven by inflammation [27], it
is no surprise that this hyperinflammatory state can contribute to maturation defects
and dysregulation of homeostasis [140]. Interestingly, studies investigating the effects of
ruxolitinib treatment in patients with STAT1 gain-of-function mutations reported higher
levels of STAT5 phosphorylation post-treatment, and the perforin expression appeared to
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be restored, contradictory to the results reported in MPN patients [141]. Vargas-Hernandez
and colleagues suggested this could be a result of the degree of phosphorylation, with
STAT1 levels elevated during IL-2 stimulation, while STAT5 was aberrantly phosphorylated,
as both STAT1 and STAT5 were affected to the same degree of impairment [141]. The in-
depth and specific effects of ruxolitinib on the NK cell phenoptype in Ph− MPNs, however,
are hard to definitively conclude, as supporting literature and studies are limited.

Overall, the impact of NK cells in MPNs is well established and substantiated in
CML. NK cells play a role in control of the leukemic clone which is not only reflected
by their prognostic impact in the setting of TFR, but also important for the achievement
of molecular remission under TKI therapy (Figure 2). The number of NK cells present,
sufficient cytokine production, as well as expression of activating NK cell receptors with
matching HLA-counterparts appear to be important prognostic features for molecular
remission in CML. Interestingly, in contrast to CML, research on NK cells in classical
MPNs still substantially lacks information at all stages of disease. The major questions
to be addressed, concern alterations in the NK cell compartment at time of diagnosis, as
well as most importantly, their prognostic impact. With the known suppressive effects of
ruxolitinib administration on NK cell function, including impaired lytic synapse formation,
and reduced recruitment, activation and killing activity (Figure 3), it would be of primary
importance to thoroughly investigate this finding in terms of patient outcomes and whether
patients may profit from additional NK-cell specific therapy.

NK cell activity may be influenced with the use of checkpoint-inhibitors, most of
which so far have only been investigated in vitro [142]. One of the targets which could
potentially influence NK cell reactivity and has been implemented in a variety of cancer
entities, is PD-1 with its counterpart PDL-1 [142]. PD-1 blockade is a well-established
mechanism of immune evasion and has already been discussed as a possible therapeutic
target in CML [143,144]. Further research on these inhibitors in vitro and in vivo would
thus certainly be of interest, especially in the field of CML, and could potentially ame-
liorate sensitivity towards TKI treatment or successful TFR through upregulation of NK
cell activity.

6. Conclusions

Regardless of the amount of research currently documented on NK cells in MPNs, the
story does not end here. In particular, the lack of data concerning classical MPNs and the
NK cell population support the need for more in-depth studies. Furthermore, we believe
that evidence of the great prognostic impact of NK cells in CML suggests that it is time
to target NK function, hopefully improving control of the leukemic clone for a deeper
molecular response and more sustainable treatment free remission.
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