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Abstract: The study on the complexity of streamflow has guiding significance for hydrologic
simulation, hydrologic prediction, water resources planning and management. Utilizing monthly
streamflow data from four hydrologic control stations in the mainstream of the Weihe River in
China, the methods of approximate entropy, sample entropy, two-dimensional entropy and fuzzy
entropy are introduced into hydrology research to investigate the spatial distribution and dynamic
change in streamflow complexity. The results indicate that the complexity of the streamflow has
spatial differences in the Weihe River watershed, exhibiting an increasing tendency along the Weihe
mainstream, except at the Linjiacun station, which may be attributed to the elevated anthropogenic
influence. Employing sliding entropies, the variation points of the streamflow time series at
the Weijiabu station were identified in 1968, 1993 and 2003, and those at the Linjiacun station,
Xianyang station and Huaxian station occurred in 1971, 1993 and 2003. In the verification of the above
points, the minimum value of t-test is 3.7514, and that of Brown–Forsythe is 7.0307, far exceeding the
significance level of 95%. Also, the cumulative anomaly can detect two variation points. The t-test,
Brown–Forsythe test and cumulative anomaly test strengthen the conclusion regarding the availability
of entropies for identifying the streamflow variability. The results lead us to conclude that four
entropies have good application effects in the complexity analysis of the streamflow time series.
Moreover, two-dimensional entropy and fuzzy entropy, which have been rarely used in hydrology
research before, demonstrate better continuity and relative consistency, are more suitable for short
and noisy hydrologic time series and more effectively identify the streamflow complexity. The results
could be very useful in identifying variation points in the streamflow time series.

Keywords: complexity; streamflow; approximate entropy; sample entropy; two-dimensional entropy;
fuzzy entropy

1. Introduction

Streamflow, as a key component of the hydrologic cycle, is significantly influenced, and its
natural variability is being complicated by climate change and human activities, which may introduce
extra chaotic information into discharge records [1]. It is characterized with a stochastic, nonlinear,
non-stationary and time-varying nature by a multitude of uncertain information and represents
a complex system [2–4]. Extreme floods and droughts are generally related to those aggravating
variability of discharge, destroying the consistency of hydrologic data and complicating hydrologic
research, such as hydrologic simulation and prediction [5]. It is vital to investigate the complexity
of streamflow variability for effectively depicting the hydrologic process, planning and managing of
water resources.
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A variety of methods have been utilized to characterize the complexity of the system [6–10].
Some of the most common approaches include Lyapunov exponent, fractal dimension, Lempel–Ziv
algorithm and Kolmogorov entropy. However, those classical methods are sensitive to noise, and to
obtain credible results, they require a long time series, which is either unavailable for streamflow
data or practically cumbersome to process if available [11]. The entropy algorithm, stemming from
information theory, is considered an effective measure of uncertainty or randomness of a series of data
without any previous knowledge about the source generating the dataset [12]. Information entropy
and its derivative algorithms allow us to measure the amount of information in a mathematical way
and have been extensively employed in multitude of research fields [13–16], including hydrology.
It has been achieved in detecting the randomness and complexity of streamflow based on approximate
entropy (ApEn) and sample entropy (SampEn) [11,15].

Approximate entropy, presented by Pincus [17], has shown the characteristics of strong
anti-interference ability and requirement of a short length of data. However, ApEn is a biased
statistic, with self-matches in calculating the similarity of vectors, resulting in a certain deviation for the
final results [18,19]. As an improved algorithm of ApEn, sample entropy (SampEn) was proposed by
Richman [20], which can eliminate the error caused by self-matches of vectors and has the advantages
of better relative consistency, less dependence on data length, and faster operational speed compared
with those of ApEn. ApEn and SampEn, with the same physical meaning, represent the level of
self-similarity of patterns in the reconstructed m-dimensional phase space and the probability of
generating new patterns when the dimension increases [21,22]. However, SampEn does not consider
the influence on the time series complexity of the distribution of similar vectors and the complexity of
the vectors composing the sequence.

In order to eliminate the bias, Yu [23] proposed a modified algorithm of SampEn called
two-dimensional entropy (TD-entropy) and introduced the time distance between vectors and the mode
distance into the vector similarity measurement for analysing the complexity of financial time series.
In addition, the effect of the degree of patterns of self-similarity on the sequence complexity is taken into
account in calculating the entropy value. The TD-entropy has better consistency [23] and continuity,
and it may be more reasonable than SampEn for measuring the complexity of hydrologic sequences.

In the above entropies, the similarity of vectors is determined by the Heaviside function with rigid
boundaries, whose hard threshold will lead us to obtain unstable results. Fuzzy entropy (FuzzyEn),
as a new family of statistics, is developed by Chen [24], where the concept of Zadeh’s fuzzy sets are
introduced [25] and the Heaviside function is replaced by the fuzzy membership function with soft and
continuous boundaries, which improve the unstable results of the similarity of the vectors. Moreover,
FuzzyEn features advantages of better continuity, relative consistency, free parameter selection and
stronger robustness [26,27].

Among those four entropies, ApEn and SampEn have been introduced into the hydrologic
system for detecting the dynamic changes and variation in the hydrologic series and have been
validated [11,28,29]. TD-entropy and FuzzyEn have rarely been employed to identify the complexity
of hydrologic series before. However, TD-entropy and FuzzyEn have been widely used for mechanical
fault diagnosis [14,30], stock market analysis [23] and image segmentation [31], and the literatures [32,33]
found that fuzzy entropy has good stability and reliability when used to study the complexity of
precipitation. The researches have shown that fuzzy entropy equips the capabilities of better continuity
and stronger anti-interference in detecting the complexity than those of ApEn and SampEn. Moreover,
TD-entropy, taking into account the effect of self-similarity of patterns, measures the complexity from
the perspective of probability corresponding to the randomness of the hydrologic series. The concept of
fuzzy sets in FuzzyEn is consistent with the fuzziness of the hydrologic series. Therefore, the properties
of TD-entropy and FuzzyEn make it more reasonable to analyse the complexity of hydrologic series.
This study will attempt to introduce these two entropies into hydrology and to explore the effectiveness
of methods in the complexity analysis of hydrologic series to provide effective methods for identifying
streamflow complexity.
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In this paper, entropies, including ApEn, SampEn, TD-entropy and FuzzyEn, are combined
with sliding technique, are employed to investigate the streamflow complexity of the Weihe River in
China for the period 1954–2016. The objectives of this paper are (1) to analyse the spatial difference
of the streamflow complexity in the main stream of the Weihe River, based on data from Linjiacun
station, Weijiabu station, Xianyang station and Huaxian station, using ApEn, SampEn, TD-entropy and
FuzzyEn; (2) to evaluate the dynamic variability in streamflow complexity for four gauging stations
by introducing the sliding technique into ApEn, SampEn, TD-entropy and FuzzyEn to diagnose the
variation points of the streamflow series; and (3) to compare the four derived sliding-entropies and
to verify the availability of sliding-entropies for identifying the complexity by employing the sliding
t-test, Brown–Forsythe test and cumulative anomaly test. Subsequently, the important results and
conclusions will be presented.

2. Methods

2.1. Approximate Entropy

Assuming an N-point time series
{
u(1), u(2), . . . , u(N)

}
, given the embedded dimension m,

reconstruct a new set of vectors from the series
{
u(i)

}
as follows:

Xm
i =

{
u(i), u(i + 1), . . . , u(i + m− 1)

}
, i = 1, 2, . . . , N − m + 1 (1)

Calculate the distance between Xm
i and Xm

j as follows:

dm
i, j = d

{
Xm

i , Xm
j

}
= max

{∣∣∣u(i + k) − u( j + k)
∣∣∣}, k = 0, 1, . . . , m − 1 (2)

which is equal to the maximum of the absolute difference between the corresponding elements of the
vectors. Give the threshold value r (r = 0.1~0.25 SD, SD is the standard deviation of the original time
series) [17]. For each i ≤ N – m + 1, calculate the number of vectors Xm

j within r of Xm
i , denoted as Bi.

Bi =
N−m+1∑

j = 1

 1, dm
i, j ≤ r

0, dm
i, j > r

(3)

Construct
Cm

i (r) =
Bi

N −m + 1
(4)

and

Cm(r) = (N −m + 1)−1
N−m+1∑

i = 1

ln Cm
i (r) (5)

where ln is the natural logarithm. Increase the dimension to m + 1 and repeat the above steps to
get Cm+1

i (r) and Cm+1(r). Thus, approximate entropy can be defined as lim
N→∞

[Cm(r) −Cm+1(r)] and is

usually estimated by [18] the following:

ApEn(m, r, N) = Cm(r) −Cm+1(r) (6)

2.2. Sample Entropy

For an N-point time series
{
u(1), u(2), . . . , u(N)

}
, give the phase space dimension m and form a

sequence of vector Xm
1 through Xm

N−m+1. The detailed form is as follows:

Xm
i =

{
u(i), u(i + 1), . . . , u(i + m− 1)

}
, i = 1, . . . , N − m + 1 (7)
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where m denotes each vector of length. Define the distance between Xm
i and Xm

j as follows:

dm
i, j = d

{
Xm

i , Xm
j

}
= max

{∣∣∣u(i + k) − u( j + k)
∣∣∣}, k = 0, 1, . . . , m− 1 (8)

Given a tolerance r, let Cm
i (r) be (N −m− 1)−1 times the number of vectors Xm

j within r of Xm
i , and j

ranges from 1 to N − m and j , i to exclude self-matches.

Cm
i (r) =

the number o f {dm
i, j ≤ r}

N −m− 1
(9)

Define the average similarity

Cm(r) = (N −m)−1
N−m∑
i = 1

Cm
i (r) (10)

Increase the dimension to m + 1 and repeat the above steps to calculate Cm+1(r). Thus, the statistic of
SampEn(m, r) can be defined as follows:

SampEn(m, r) = − lim
N→∞

ln(Cm+1(r)/Cm(r)) (11)

In fact, the length of sequence is usually finite, so the SampEn can be expressed by the statistic:

SampEn(m, r, N) = − ln(Cm+1(r)/Cm(r)) (12)

The SampEn excludes self-matches and only counts the first N − m vectors [20]. In addition,
it represents the degree of self-similarity between two points in the m-dimensional phase space after
reconstructing the sequence and the probability of generating new patterns when the dimension
m increases.

2.3. Two-Dimensional Entropy

Like in SampEn, given an N-point sequence
{
u(i) : 1 ≤ i ≤ N

}
and the parameter m, form a set of

vectors Xm
i consisting of m consecutive u values from i-th, where i ranges from 1 to N − m + 1. Define

dm
i, j as the distance between Xm

i and Xm
j . Next, calculate the similarity of vectors based on the pattern

distance and time distance [23] as follows:

µm
i, j =


N−m−|i− j|

N−m dm
i, j ≤ r

0 dm
i, j ≥ r

(13)

Let Cm
i (r) be (N −m− 1)−1 times the sum of similarity, where j ranges from 1 to N − m and j , i.

Cm
i (r) = (N −m− 1)−1

N−m∑
j = 1, j,i

µm
i, j (14)

Then define Cm(r):

Cm(r) = (N −m)−1
N−m∑
i = 1

Cm
i (r) (15)

Similarly, increase the dimension m by 1 and get Cm+1(r). Considering the probability of generating
new information and the degree of pattern self-similarity, TD-entropy is defined as follows:

TD− entropy(m, r) = − lim
N→∞

ln(
Cm+1(r)

Cm(r)
Cm+1(r)) (16)



Entropy 2020, 22, 38 5 of 17

which can be evaluated by

TD− entropy(m, r, N) = − ln(
Cm+1(r)

Cm(r)
Cm+1(r)) (17)

TD-entropy also excludes self-matches. In contrast, in SampEn, the contributions of all the
data points inside the boundary r are treated equally, while in TD-entropy the data points inside
the boundary r are treated differently, where the closer the time distance of vectors is, the higher
the similarity.

2.4. Fuzzy Entropy

Similarly, Fuzzy entropy excludes self-matches and considers only the first N −m vectors of length
m to ensure that Xm

i and Xm+1
i are defined for all 1 ≤ i ≤ N − m. For time series

{
u(i) : 1 ≤ i ≤ N

}
, form

vectors as follows:

Xm
i =

{
u(i), u(i + 1), . . . , u(i + m− 1)

}
− u0(i), 1 ≤ i ≤ N − m + 1 (18)

where u0(i) is average of sequence consisting of the m consecutive u values from i-th [24].

u0(i) = m−1
m−1∑
j = 0

u(i + j) (19)

Calculate the distance dm
i, j and take the exponential function as the fuzzy membership function. Then,

the similarity between two vectors is set as

Dm
i, j = exp (dm

i, j/r)n (20)

where r is the tolerance of template mismatch, and n is the boundary gradient, which is usually
recommended to be 2. Let Cm

i be (N −m− 1)−1 times the sum of similarity Xm
i with other vectors Xm

j ,
where j ranges from 1 to N − m and j , i.

Cm
i = (N −m− 1)−1

N−m∑
j = 1, j,i

Dm
i, j (21)

Set the average similarity Cm(r) and Cm+1(r) as follows:

Cm(r) = (N −m)−1
N−m∑
i = 1

Cm
i (r) (22)

Cm+1(r) = (N −m)−1
N−m∑
i = 1

Cm+1
i (r) (23)

The statistic of FuzzyEn(m, r, n) is defined as lim
N→∞

[ln Cm(r)− ln Cm+1(r)], which can be replaced by the

following statistics:
FuzzyEn(m, r, n, N) = ln Cm(r) − ln Cm+1(r) (24)

The sample entropy algorithm, defined based on the Heaviside function, applies a hard threshold
r to measure the similarity, which may cause the instability of the judgement results. FuzzyEn employs
the fuzzy membership function, which needs to be equipped with two attributes [26]: (1) continuity
and (2) convexity, to measure the similarity of vectors. In this paper, the exponential function was
selected as the fuzzy membership function. It can be seen that the FuzzyEn does not directly employ
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the original sequence but removes a baseline based on it; that is, the FuzzyEn does not depend on the
values of the vectors but on the shape.

2.5. Sliding t-Test

The sliding t-test was developed on the basis of tradition t-test, which could only be used to test
the significance for a change-point. It is assumed that the sequences divided into double segments
due to a mutation point obey the distribution of F1(x) and F2(x). Then, the statistic T is defined as
follows [34]:

T =
x1 − x2√

(n1−1)S2
1+(n2−1)S2

2
n1+n2−2 ( 1

n1
+ 1

n2
)

(25)

where xi and S2
i denote the mean and variance, respectively, of the sample sequences, and n1 and n2

are the amount of samples. The statistic T obeys a t distribution with a degree of freedom (n1 + n2

− 2). Taking a confidence level α, use a two-tailed test to verify the hypothesis F1(x) = F2(x). When
the statistic |T| exceeds tα/2, there is a significant difference between F1(x) and F2(x); thus, the original
assumption is not accepted. When the statistic |T| is less than tα/2, the difference is not significant,
and this assumption can be accepted. In addition, if there are multiple points that make |T| > tα/2,
the point at which |T| reaches the maximum is selected as the most likely variation point. (The year
corresponding to the peak or trough of the wave is the year of the mutation).

2.6. Brown–Forsythe Test

In statistics, analysis of variance is a method of analysing the difference in the mean level of
experimental data, and its main purpose is to quantitatively distinguish the difference between the
experimental results caused by different observation conditions and the experimental results caused
by random factors to determine whether there are systemic factors that play a role in the experiment.
The statistics are as follows [35]:

F =
m∑

i = 1

ni(xi − x)2/
m∑

i = 1

(1− ni/N)S2
i (26)

f = 1/
m∑

i = 1

c2
i /(ni − 1) (27)

ci = (1− ni/N)S2
i /[

m∑
i = 1

(1− ni/N)S2
i ] (28)

The statistic obeys the F distribution with a degree of freedom (m − 1, f ), where m is the number of
groups, ni is the number of samples in the i-th group, N is the total number of samples, xi is the sample
mean of the i-th group, x is the mean of the total sample, and S2

i is the variance of the i-th group.

2.7. Cumulative Anomaly

Cumulative anomaly is a test method based on the mean value. By observing the curve of
cumulative deviation from the mean, the trend and the variability in the streamflow can be detected. For
the time series {Xi : 1 ≤ i ≤ n}, the cumulative anomaly at a certain moment is expressed as follows [36]:

x̂t =
t∑

i = 1

(xi − x) (29)

where t ranges from 1 to n, and x is the average of sequence. The curve shows an upward trend,
indicating a positive anomaly; a decreasing trend indicates a negative anomaly.
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3. Application

3.1. Gauging Location

In this study, the multiple entropies are carried out with application to the four gauging stations
on the mainstream of the Weihe River with a drainage area of approximately 135,000 km2. The Weihe
River, the largest tributary of the Yellow River, extends from western Weiyuan County in Gansu
Province more than 800 km east to Tongguan County in Shaanxi Province and finally flows into the
Yellow River [37,38].

The geographical locations of the four gauging stations adopted in this study, Linjiacun station,
Weijiabu station, Xianyang station and Huaxian station, are depicted in Figure 1. Among them,
Linjiacun station is the upstream control station, and Huaxian station is the downstream control station
for the Weihe River flowing into the Yellow River. The spatial distributions of the four hydrometric
stations and twelve climate stations are shown in Figure 1.
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Figure 1. Geographical location of Mainstream Area of the Weihe River basin in China and spatial
distribution of the hydrometric stations and the climate stations used in this study.

3.2. Data Used

The monthly discharge data from the four basic gauging stations in the Weihe River basin
over 1954–2016 (total of 756 months) were obtained from the Hydrological Yearbooks compiled and
published by the Ministry of Water Resources of China. The monthly average streamflow time series
were utilized in this study to interpret the spatial difference and variation in streamflow complexity
based on the multiple entropies. Basic information of the gauging stations and descriptive statistics
of the data are summarized in Table 1, including, for each station, maximum, minimum, standard
deviation (SD) and coefficient of variation (Cv).
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Table 1. Basic information of monthly streamflow data for selected gauging stations.

Station Longitude Latitude Control Area
(km2)

Max
(m3/s)

Min
(m3/s)

Mean
(m3/s)

SD
(m3/s) Cv

Linjiacun 107◦03′ E 34◦23′ N 30,661 470 0.4 62.17 6.91 0.95
Weijiabu 107◦42′ E 34◦18′ N 37,012 705 0 86.9 9.24 0.77
Xianyang 108◦42′ E 34◦19′ N 46,827 974 2.32 122.88 8.35 0.83
Huaxian 109◦46′ E 34◦25′ N 106,498 1690 2.7 208.66 8.16 0.87

It can be seen from Table 1 that the differences between the maximum and the mean were in the
range of approximately 7–10 standard deviations, strongly positively skewed. The Cv value of monthly
runoff is relatively large at over 0.7, indicating a drastic temporal variability for the monthly discharge.

The whole watershed is influenced by an arid and semi-arid climate, and the monthly fluctuation
in P is obvious since most of the basin is located within the East Asian monsoon climatic belt.
The precipitation data of 12 climate stations from China Meteorological data network are processed to
obtain the watershed areal rainfall. The average annual precipitation in the basin is approximately
545.0 mm, and the Cv value of precipitation is 0.17–0.19. The dynamic changes and the evolution
tendency of the annual runoff and annual precipitation in the Weihe River basin are shown in Figure 2,
which reflects that rainfall and runoff exhibit an approximately consistent process of change, and both
of them appear to have a certain downward trend, especially for runoff. Obviously, the change and
variability in runoff are more complicated and significant than those of precipitation. The reduction in
rainfall is a factor in the reduction in runoff; furthermore, anthropogenic effects such as land use and
land cover change, and diversion irrigation in the basin, which can introduce additional randomness
into streamflow, may be the main cause of the decline and dramatic changes in runoff.
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Figure 2. Changes and overall trend of annual runoff and annual precipitation in the Weihe River basin.
The runoff data used is the measured monthly discharge record of Huaxian station.

3.3. Parameter Selection

The parameters involved in ApEn, SampEn, TD-entropy and FuzzyEn are r, m and N. The r is a given
threshold, that is, the tolerance for pattern mismatch. For a small value of r, the excessive interferential
information would be counted. In contrast, some details would be neglected. The parameter m is the
embedded dimension. The parameter N represents the total length of the sequence in calculating the
static entropy value, while it represents the size of the sliding window in calculating the entropy value
in the form of a sliding window. According to the works performed by other researchers [12,17,20],
it was recommended that r takes the value of (0.1–0.25) times SD (the standard deviation of the original
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sequence) and m takes the value 2. Based on several calculations, when the parameter r was set as
0.15SD and m was set as 2, relatively stable results can be obtained.

For FuzzyEn, there is one more parameter n, the boundary gradient, and n = 2 in this paper.

3.4. Spatial Difference for Streamflow Complexity

To investigate the spatial distribution of streamflow complexity in the Weihe River basin, the static
entropy values of the monthly average streamflow time series over 1954–2016 (with 756 samples) of
each gauging station are calculated first. The results are shown in Table 2.

Table 2. The static entropy values of streamflow time series for four gauging stations.

Stations ApEn SampEn TD-Entropy FuzzyEn

Linjiacun 1.1056 0.7815 4.4371 1.0061
Weijiabu 0.9408 0.6188 3.7067 0.9186
Xianyang 1.0248 0.7819 4.3723 0.9972
Huaxian 1.1106 0.9796 5.0415 1.1855

Weijiabu station obtains the minimum values for all four entropies, and Huaxian has the maximum
entropies values. Therefore, a systematic increase in the entropies values exists along the Weihe
River, except for one site, Linjiacun station. According to the nature of entropy, the larger the entropy
value is, the higher the complexity of the system. It shows that there is a spatial difference in the
streamflow complexity along the Weihe River; that is, the complexity of the streamflow time series
increases along the Weihe River, except for the Linjiacun station, and the Huaxian station has the
highest complexity, and the Weijiabu station has the smallest complexity. There are many factors
affecting the streamflow, and the causes of the complexity difference of streamflow on the space may
be related to the catchment area, inflow composition and human activities. The complexity increases
gradually from the Weijiabu station to the Huaxian station since the downstream flow not only inherits
the incoming water from upstream but also accepts the inflow from the tributaries, and at the same
time, human activities are more frequent. That is, the input and output relationship of the streamflow
is more complicated downstream, and the complexity is higher. Moreover, Linjiacun station is the exit
station of the upstream Linjiacun reservoir. Affected by the reservoir operation, the natural state of the
streamflow is broken, and the measured streamflow time series has higher complexity.

3.5. Dynamic Change for Streamflow Complexity

The static entropy values obtained above reflect the overall complexity of the streamflow in the
Weihe River and cannot quantify the dynamic change in streamflow complexity over time. Introducing
sliding skill into the static entropies, sliding ApEn, sliding SampEn, sliding TD-entropy and sliding
FuzzyEn are employed to further depict the dynamic characteristic of the complexity of streamflow
time series. Set a sliding window of size N and move along the sequence until the end of the sequence.
The entropy values are calculated for the data in each window and sequentially are connected to obtain
the dynamic curves of the four entropies of the streamflow sequences. We increased the window
length from 60 to 200 months, with one month as the sliding step, to verify the results under different
windows, so as to determine the window size for obtaining stable results. Finally, the window size of
sliding ApEn and sliding SampEn is 150 months and that of sliding TD-entropy and sliding FuzzyEn
is 110 months. The entropy curves are compared with the runoff process, and the results are shown in
Figures 3–6.



Entropy 2020, 22, 38 10 of 17

Entropy 2020, 22, x FOR PEER REVIEW 9 of 17 

 

Table 2. The static entropy values of streamflow time series for four gauging stations. 

Stations ApEn SampEn TD-Entropy FuzzyEn 
Linjiacun 1.1056 0.7815 4.4371 1.0061 
Weijiabu 0.9408 0.6188 3.7067 0.9186 
Xianyang 1.0248 0.7819 4.3723 0.9972 
Huaxian 1.1106 0.9796 5.0415 1.1855 

Weijiabu station obtains the minimum values for all four entropies, and Huaxian has the 
maximum entropies values. Therefore, a systematic increase in the entropies values exists along the 
Weihe River, except for one site, Linjiacun station. According to the nature of entropy, the larger the 
entropy value is, the higher the complexity of the system. It shows that there is a spatial difference in 
the streamflow complexity along the Weihe River; that is, the complexity of the streamflow time 
series increases along the Weihe River, except for the Linjiacun station, and the Huaxian station has 
the highest complexity, and the Weijiabu station has the smallest complexity. There are many factors 
affecting the streamflow, and the causes of the complexity difference of streamflow on the space may 
be related to the catchment area, inflow composition and human activities. The complexity increases 
gradually from the Weijiabu station to the Huaxian station since the downstream flow not only inherits 
the incoming water from upstream but also accepts the inflow from the tributaries, and at the same time, 
human activities are more frequent. That is, the input and output relationship of the streamflow is more 
complicated downstream, and the complexity is higher. Moreover, Linjiacun station is the exit station of 
the upstream Linjiacun reservoir. Affected by the reservoir operation, the natural state of the streamflow 
is broken, and the measured streamflow time series has higher complexity. 

3.5. Dynamic Change for Streamflow Complexity 

The static entropy values obtained above reflect the overall complexity of the streamflow in the 
Weihe River and cannot quantify the dynamic change in streamflow complexity over time. Introducing 
sliding skill into the static entropies, sliding ApEn, sliding SampEn, sliding TD-entropy and sliding 
FuzzyEn are employed to further depict the dynamic characteristic of the complexity of streamflow 
time series. Set a sliding window of size N and move along the sequence until the end of the sequence. 
The entropy values are calculated for the data in each window and sequentially are connected to 
obtain the dynamic curves of the four entropies of the streamflow sequences. We increased the 
window length from 60 to 200 months, with one month as the sliding step, to verify the results under 
different windows, so as to determine the window size for obtaining stable results. Finally, the 
window size of sliding ApEn and sliding SampEn is 150 months and that of sliding TD-entropy and 
sliding FuzzyEn is 110 months. The entropy curves are compared with the runoff process, and the 
results are shown in Figures 3–6. 

 
Figure 3. The relation curves between the measured monthly streamflow and the entropies for the
Linjiacun gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the sliding
FuzzyEn curve of measured streamflow.

Entropy 2020, 22, x FOR PEER REVIEW 10 of 17 

 

Figure 3. The relation curves between the measured monthly streamflow and the entropies for the 
Linjiacun gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding 
SampEn curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; 
(d) the sliding FuzzyEn curve of measured streamflow. 

 
Figure 4. The relation curves between the measured monthly streamflow and the entropies for the 
Weijiabu gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn 
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the 
sliding FuzzyEn curve of measured streamflow. 

 
Figure 5. The relation curves between the measured monthly streamflow and the entropies for the 
Xianyang gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn 
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the 
sliding FuzzyEn curve of measured streamflow. 

Figure 4. The relation curves between the measured monthly streamflow and the entropies for the
Weijiabu gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the sliding
FuzzyEn curve of measured streamflow.

As shown in Figures 3–6, throughout the 63-year study period, the entropy curves of ApEn,
SampEn, TD-entropy and FuzzyEn of the monthly average streamflow for each station show a similar
tendency of evolution and fluctuate sharply with obvious phase characteristics. There is an approximate
inverse relation between the runoff process and the corresponding entropy values for each station,
that is, the runoff increases, the corresponding entropy value decreases; contrarily, the runoff decreases,
and the corresponding entropy value would increase.



Entropy 2020, 22, 38 11 of 17

Entropy 2020, 22, x FOR PEER REVIEW 10 of 17 

 

Figure 3. The relation curves between the measured monthly streamflow and the entropies for the 
Linjiacun gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding 
SampEn curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; 
(d) the sliding FuzzyEn curve of measured streamflow. 

 
Figure 4. The relation curves between the measured monthly streamflow and the entropies for the 
Weijiabu gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn 
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the 
sliding FuzzyEn curve of measured streamflow. 

 
Figure 5. The relation curves between the measured monthly streamflow and the entropies for the 
Xianyang gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn 
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the 
sliding FuzzyEn curve of measured streamflow. 

Figure 5. The relation curves between the measured monthly streamflow and the entropies for the
Xianyang gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the sliding
FuzzyEn curve of measured streamflow.
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Figure 6. The relation curves between the measured monthly streamflow and the entropies for the
Huaxian gauging station. (a) The sliding ApEn curve of measured streamflow; (b) the sliding SampEn
curve of measured streamflow; (c) the sliding TD-entropy curve of measured streamflow; (d) the sliding
FuzzyEn curve of measured streamflow.

Figure 3 shows the dynamic change of the monthly streamflow complexity and the corresponding
monthly streamflow process in Linjiacun station. A similar behaviour was observed for ApEn, SampEn,
TD-entropy and FuzzyEn, having values in the intervals (0.3842; 1.5021), (0.623; 1.2233), (3.6617; 6.5556),
and (0.755; 1.2657), respectively, where the values of TD-entropy are relatively high, and it displays
the largest range of entropy values. The curves of TD-entropy and FuzzyEn are smoother than those
of ApEn and SampEn and can depict the characteristics between different dynamic structures. Then,
it can be clearly seen from the Figure 3 that there is obvious peak-to-valley correspondence between
the entropy curves and the runoff process. The entropy curves reach the peak around the 205th month,
but the runoff shows a valley value; after that, the entropy curves begin to decline and remain stable for
a long time. In the following 475th month, the entropy curves show a near peak, and runoff appears a
valley value. Before the peak of runoff in the 600th month, the entropy curves have a peak; when the
runoff reaches its peak, the entropy values drop sharply; in the 715th month, a large peak of the runoff
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leads to a temporary valley in the entropy curves. Due to the complexity of data with different dynamic
properties being discrepant, the entropy value remains relatively stable when the dynamic structure
is unchanged, and yet the entropy value changes significantly when the system dynamic structure
shifts. At the abovementioned positions, the 205th, 475th and 600th month, the evolution trend in the
complexity changed, indicating that the dynamic structure of the sequence has been changed and that
the streamflow may have abrupt changes. For the 715th month, though the entropy curves have a brief
drop, the evolution trend remains unchanged.

The change in streamflow process and corresponding entropy values for the Weijiabu station is
shown in Figure 4. The ApEn and SampEn curves differ obviously, while the TD-entropy and FuzzyEn
have the same trends. TD-entropy is depicted as the largest range of entropy values in the intervals
(2.8331; 5.7735), which can better describe the small changes in runoff complexity, and SampEn has the
smallest range of entropy values, ranging in the intervals (0.4634; 1.0356). The runoff presents obvious
phase characteristics. As shown in Figure 4c,d, the runoff shows two significant reductions and a
significant increase, respectively at the 180th month, the 475th month and the 600th month, yet the
entropy curves exhibit two peaks and one sharp drop. However, the curves in Figure 4a,b, show no
obvious characteristics near the 600th month. Compared with the Linjiacun station, there is no evident
uptrend in the complexity of the streamflow sequence after the 600th month.

By analyzing Figures 5 and 6, we also find the same peak-to-valley correspondence. The evolution
process of the streamflow complexity for the Xianyang station and the Huaxian station are rough similar.
Similar to the Linjiacun station, both show two peaks and one drop, respectively, at approximately the
205th, 475th and 600th months. In addition, TD-entropy revealed the largest range of entropy values
among the four entropies. Figures 5 and 6 show that the curves of TD-entropy and FuzzyEn possess
similar behaviours, and both of them are smoother than the curves of the other two.

Precipitation is the most direct factor affecting runoff, and the changes in streamflow should
be related to changes in precipitation. Figure 2 in this paper and the literature [39,40] show that
the interannual change in runoff is greater than that of precipitation in the Weihe River mainstream.
Therefore, anthropogenic influences on the variation in complexity of the runoff series in the basin
should be considered. Since the 1970s, large-scale water conservancy construction and terrace
development began in the Weihe River basin [41], accompanied by changes in underlying conditions
and confluence conditions, and a decline in runoff efficiency. Thus, the evolution trend of streamflow
changed around 1970.The cultivated-land, woodland and grassland are main usage in the region,
accounting for about 95% [42] of the area. From 1980 to 2000, intense human activity changed land use
and land cover change (LUCC) of the region, with increased cultivated-land and reduced woodland
and grassland [42,43], and the LUCC in 1980–1990 transformed significantly than that in 1990–2000 [42].
Also, the Normalized Difference Vegetation Index (NDVI) show a non-significant uptrend in this
period [44]. It can be seen form the Figures 3–6 that the runoff complexity of the same period increases
first and keeps high values. Moreover, in 1990s, the precipitation in the basin decreased, coupled with
the increase in water withdrawal outside the river. The combined effect of multiple factors resulted in
the reduction in streamflow and the occurrence of short-duration drought in this period. The ordered
state of the streamflow changed again, and the complexity of the system increased. Compared with the
period of 1980-1999, the land use change, from 2000 to 2015, is significant with a decrease in farmland
and an increase in forest and grassland benefitting from the implement of Grain-to-Green [43,45],
and the increase in the precipitation corresponds to the increase trend of NDVI after 2000 [44]. In 2003,
a rainstorm occurred in the Weihe River basin, suddenly increasing the streamflow. It can be seen
from the Figures 4–6 that the entropy curves drop sharply and the trend of entropy change, indicating
the ordered state of the streamflow time series was broken. The effects of climate change and human
activities on the complexity of the streamflow in the Weihe River basin can be reflected in the dynamic
changes in the ApEn, SampEn, TD-entropy and FuzzyEn curves.

Detection of the changes in the entropies values and curves and analysis of the anthropogenic
activities in the Weihe River basin strengthened the conclusions that the change-points of streamflow
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may have occurred around the 205th month (in 1971), 475th month (in 1993) and 600th month (in
2003) for the Linjiacun station, Xianyang station and Huaxian station, and change-points may have
occurred around the 180th month (in 1968), 475th month (in 1993) and 600th month (in 2003) for the
Weijiabu station.

In addition, it can be seen from Figures 3–6 that the local entropy values in the TD-entropy
and FuzzyEn curves fluctuate less, indicating that the two entropies are not sensitive to interference
information. However, the entropy values change sharply when the system structure changes.
Therefore, the dynamic structural change characteristics of the sequences can be effectively and
comprehensively displayed by the two methods. Additionally, the TD-entropy values range from 2.5
to 7 and should be obviously larger than ApEn and SampEn, indicating that TD-entropy can better
diagnose small changes in the complexity of the hydrological system.

3.6. Comparative Analysis of Streamflow Variability

The sliding t-test is used to verify the results of the sliding entropy methods. Taking the significance
level α = 0.01 (Tα/2 = 2.584), the two-tailed test is selected to verify whether the hypothesis F1(x) = F2(x)
held. It can be seen from both Figure 7 and Table 3 that the statistic at the peaks or valleys exceeds the
significance level. At the 180th, 475th and 595th months for the Weijiabu station, the T statistic reaches
the peak or trough, and the absolute values of the statistic are much greater than Tα/2, indicating that
there are significant differences between the sequences before and after the possible change points.
In addition, T180 and T475 (T180 represents the statistical value at the 180th month) are both positive
values, indicating that the sequence had a mutation of the average decrease. However, T595 is a
negative value, indicating that the sequence has a jump in the average increase. The absolute values of
the statistics of the Linjiacun station, Xianyang station and Huaxian station in the 209th, 475th and
595th months are all greater than Tα/2. Similarly, the sequence has two change points with an average
decrease and one variation with an average increase.
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Table 3. The corresponding values of statistic T for peaks and troughs.

Stations T180 T209 T475 T595

Linjiacun - 3.8947 8.3615 −3.7514
Weijiabu 4.568 - 7.3648 −4.1015
Xianyang - 4.7389 7.8312 −5.3698
Huaxian - 4.3382 6.1971 −4.0848
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The results of the Brown–Forsythe test are shown in Table 4. Using the method of segmenting
the sample sequence, a sequence containing only one possible variation point is divided into two
segments, and then whether there are significant differences between the two sample sequences is
verified. The statistical values obtained are significantly higher than the significance level of 95%
(Table 4), indicating that there was a significant difference between the sample sequences before and
after the above possible variation points.

Table 4. Statistic F of monthly mean streamflow series for four gauging stations.

Stations F180 F202 F480 F595

Linjiacun - 7.0307 93.8275 20.7573
Weijiabu 16.966 - 67.8543 21.4195
Xianyang - 15.2442 68.8939 32.6696
Huaxian - 10.2332 38.499 18.5833

F180 indicates that the statistic F reaches the maximum at 180th month.

Figure 8 shows the anomaly accumulation curves of annual runoff for four hydrological stations.
The cumulative anomaly curve of annual runoff for Linjiacun station, shown in Figure 8a, increase
significantly from 1954 to 1971, decline slightly after 1971, and then increase but non-significant than
before, and there is a significant decline in runoff after 1993. The streamflow shows the variability
around 1971 and 1993. The cumulative anomaly curve for Weijiabu station is shown in Figure 8b.
The curve exhibits two change-points in 1968 and 1993, respectively, presenting a conspicuous uptrend
in 1954–1968 and a sharply downtrend after 1993. Moreover, the cumulative anomaly curves of
Xianyang station and Huaixan station also demonstrate the variability in runoff time series around
1971 and 1993, as in Linjiacun station. In addition, it can be found that there is no evident change
characteristic in 2003 for four gauge stations. The possible reason is that the runoff was relatively dry
in 1990s, despite increasing after 2003 but still less than the mean runoff.
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Figure 8. Cumulative anomaly analysis of annual streamflow for four gauging stations. (a) Cumulative
deviation curve of runoff from mean value in Linjiacun station; (b) cumulative deviation curve of
runoff from mean value in Weijiabu station; (c) cumulative deviation curve of runoff from mean value
in Xianyang station; (d) cumulative deviation curve of runoff from mean value in Huaixan station.

Table 5 shows the comparison results of the variation points obtained by different methods.
By comparison, it can be found that there are slight differences in the months of possible change
points obtained employing different methods, but the corresponding years are consistent. In addition,
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entropies can detect all the variation points compared with cumulative anomaly. The quantitative
detection method has good effect in variability detection, and the qualitative analysis methods may not
be able to detect all variation points such as cumulative anomaly. This confirms that ApEn, SampEn,
TD-entropy and FuzzyEn can effectively characterize the complexity of the streamflow sequences and
identify their variation. That is, the variation years of the runoff series are in 1968, 1993 and 2003 for the
Weijiabu station, and the variation years of the runoff series are 1971, 1993 and 2003 for the Linjiacun
station, Xianyang station and Huaxian station.

Table 5. Comparison of the results for the complexity variability obtained by different methods.

Stations
Entropy Methods t-Test Brown–Forsythe Cumulative Anomaly Variation Points

(Month) (Month) (Month) (Year) (Year)

Linjiacun 205, 475, 600 209, 475, 595 202, 480, 595 1971, 1993 1971, 1993, 2003
Weijiabu 180, 475, 600 180, 475, 595 180, 480, 595 1968, 1993 1968, 1993, 2003
Xianyang 205, 475, 600 209, 475, 595 202, 480, 595 1971, 1993 1971, 1993, 2003
Huaxian 205, 475, 600 209, 475, 595 202, 480, 595 1971, 1993 1971, 1993, 2003

4. Conclusions

In this paper, ApEn, SampEn, TD-entropy and FuzzyEn were employed to analyse the complexity
of the observed monthly streamflow of four gauging stations in the Weihe River basin. The following
conclusions can be drawn from this study:

• ApEn, SampEn, TD-entropy and FuzzyEn are effective in the quantitative analysis of the complexity
of hydrologic systems and can effectively characterize the variation in streamflow complexity.
It has been confirmed that ApEn and SampEn detected streamflow complexity in this paper.
In addition, the satisfactory results lead us to conclude that TD-entropy and FuzzyEn have better
continuity and relative consistency and that TD-entropy has a larger range of entropy values.
These two entropies are more suitable for short and noisy hydrologic time series, more effectively
identifying the streamflow complexity.

• The streamflow complexity undergoes spatial difference across the Weihe River basin.
The complexity of the streamflow increases gradually along the Weihe River, except for the
Linjiacun station, whose complexity increases due to the reservoir operation.

• The dynamic changes in the complexity of the streamflow series have been surveyed for four
gauging stations, employing the four sliding entropies. It was found that there is a relation of
peak-to-valley correspondence between the runoff process and the entropy values for each station,
and, the observed streamflow series at the Weijiabu station changed in 1968, 1993 and 2003 and
changed in 1971, 1993 and 2003 at the Linjiacun station, Xianyang station and Huaxian station.
The sliding t-test and Brown–Forsythe test confirmed the results of the entropies.

• This paper introduces TD-entropy and FuzzyEn into the hydrologic system and expects to provide
more effective methods for analysing the complexity of hydrologic systems. The results could be
very useful in identifying variation points of streamflow series, a key in modelling and prediction.
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