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Abstract

The sequence space of five protein superfamilies was investigated by constructing se-

quence networks. The nodes represent individual sequences, and two nodes are connected

by an edge if the global sequence identity of two sequences exceeds a threshold. The net-

works were characterized by their degree distribution (number of nodes with a given number

of neighbors) and by their fractal network dimension. Although the five protein families dif-

fered in sequence length, fold, and domain arrangement, their network properties were simi-

lar. The fractal network dimension Df was distance-dependent: a high dimension for single

and double mutants (Df = 4.0), which dropped to Df = 0.7–1.0 at 90% sequence identity, and

increased to Df = 3.5–4.5 below 70% sequence identity. The distance dependency of the

network dimension is consistent with evolutionary constraints for functional proteins. While

random single and double mutations often result in a functional protein, the accumulation of

more than ten mutations is dominated by epistasis. The networks of the five protein families

were highly inhomogeneous with few highly connected communities ("hub sequences") and

a large number of smaller and less connected communities. The degree distributions fol-

lowed a power-law distribution with similar scaling exponents close to 1. Because the hub

sequences have a large number of functional neighbors, they are expected to be robust

toward possible deleterious effects of mutations. Because of their robustness, hub se-

quences have the potential of high innovability, with additional mutations readily inducing

new functions. Therefore, they form hotspots of evolution and are promising candidates as

starting points for directed evolution experiments in biotechnology.

Introduction

Power laws of the form f(x) ~ xγ are ubiquitous in many physical systems and describe scale free

phenomena, for which changing the scale of the independent variable x preserves the functional

form f of the solution (f(λx) = λγ f(x)) [1]. Because scaling is a manifestation of the dynamics

and geometry of a physical system, scaling laws reflect underlying generic features and provide

insight into important universal principles, characterized by the scaling exponent γ.

Power laws also play an important role in life sciences. Spanning many orders of magni-

tude, fundamental variables such as metabolic rate, growth rate, or tree height follow a power

law with an exponent γ which is an integer multiple of ¼ [2]. The observation of scaling
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relationships throughout the living world has inspired the search for basic principles that

explain complex biological phenomena from unicellular organisms to trees. Power laws also

describe population genetics for unlinked loci in the monomorphic limit and are a conse-

quence of Darwin’s theory of evolution [3]. For proteins, scaling relations were observed for

the solvent-accessible surface area [4], the packing [5], and the equilibrium dynamics [6], and

it has been suggested that near-criticality might be a characteristic of biological systems [7].

Power law distributions have also been detected in sequence similarity networks of proteins

[8] and have been interpreted as a consequence of evolution [9,10] or the constraints of protein

structure [9,11]. Detailed modelling of protein evolution is challenging due to the high com-

plexity of combining random genotypic variation with selection of phenotypic traits such as

folding pathway, protein stability, and biological function of the protein. Usually, the effects of

mutations are non-additive and dominated by epistasis [12]. Moreover, only an infinitesimally

small fraction of the sequence space of proteins has been inspected yet, despite the rapidly

growing amount of DNA data due to advances in DNA sequencing techniques. While we cur-

rently know the sequences of 108 proteins [13], the number of different protein sequences

existing in the biosphere was estimated to be 1034, and up to 1043 different protein sequences

might have been explored during 4 Gyr of evolution [14]. Though this number seems to be

large, it is extremely small as compared to the number of possible protein sequences (10300 the-

oretical sequences for a medium-sized protein). Thus, we only know a tiny fraction of the total

sequence space of viable proteins, and the theoretical sequence space is sparsely populated by

the extant proteins.

In the absence of knowledge about the extant sequence space, relationships between known

sequences can be measured by a metric based on global sequence identity or by neighborhood

relationships in a protein sequence network where sequences form nodes that are connected

by edges [15,16]. While pairwise sequence identity can be determined for all protein families,

extended protein sequence networks only exist for families with high microdiversity such as

TEM β-lactamases, which form a single connected network of more than 260 single point vari-

ants. In this network, the number of neighbors of each sequence is not equally distributed, but

follows a power law with a scaling exponent of 1.2 [16]. The protein sequence network of TEM

β-lactamases contains a few "hubs" such as TEM-1 and TEM-116 [17] and a large number of

less connected nodes, with about 10 times less sequences having 10 times more neighbors

each. It is tempting to relate the property of being a highly connected node to the property of

being an ancestral sequence by intuitively assuming a preferential attachment model of net-

work generation [18]. However, the observed scale-free degree distribution can result from a

variety of different mechanisms [19] and might be determined by the actual constraints of the

system rather than a unique mechanism [20].

A central constraint in protein evolution is the evolvability of a protein sequence, which

includes two elements, robustness to faults and innovability [21]. Innovability seems to be a

consequence of active site location [21]. Robustness can be measured by the tolerance of a pro-

tein for deleterious effects of mutations and is related to stability and conformational dynamics

of a protein [22,23]. Thus, robustness is expected to vary between and inside a protein family,

and it is desirable to identify or construct highly evolvable protein family members as promis-

ing starting points for directed evolution experiments.

Methods

Datasets of protein sequences

The datasets of the individual protein families were updated by performing BLAST searches

against the non-redundant protein database from the NCBI (GenBank)[24]. The sequence
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datasets were updated for the families of TEM β-lactamases (TEM, 422 sequences), β-hydroxyacid

dehydrogenases/ imine reductases (bHAD, 30781 sequences), thiamine diphosphate-dependent

decarboxylases (DC, 39290 sequences), ω-transaminases (oTA, 120921 sequences), and short-

chain dehydrogenases/ reductases (SDR, 141496 sequences). In case of TEM β-lactamases, the

core region from positions 24 to 280 was used only (referring to TEM-1 position numbering).

Sequence alignments and sequence networks

The distances between pairs of protein sequences can be measured either by counting point

mutations or by pairwise sequence alignments. The former metric was applied for the densely

connected family of TEM β-lactamases, for which a single point mutation forms the minimal

distance between two sequences. TEM β-lactamase protein sequences were connected by an

edge, if they differed by one point mutation, which was feasible due to the high microdiversity

of this protein family.

Pairwise distances between sequences of the remaining protein superfamilies were calcu-

lated by combining the heuristic alignment approach of USEARCH, which reduced the num-

ber of sequence pairs, with global Needleman-Wunsch sequence alignment [25,26].

USEARCH alignments were performed to identify highly similar neighbor sequences with an

identity threshold of 0.5, corresponding to 50% sequence identity without terminal gaps. In

the second step, more accurate global sequence identities were derived from pairwise Needle-

man-Wunsch alignments (implemented in the EMBOSS bioinformatics software suite [27])

with gap opening penalty of 10 and gap extension penalty of 0.5. USEARCH and EMBOSS

were run on multiple threads by applying GNU Parallel [28].

The point-mutation network of TEM β-lactamases and the identity-based networks of the

remaining protein superfamilies, i.e. the sequence networks calculated by global sequence

alignments as described above, were constructed and visualized by Cytoscape (version 3.4.0)

using prefuse force directed layout. For the identity-based networks, prefuse force directed lay-

out was applied with respect to the edge weights (i.e. the higher the sequence identity, the

closer the sequences are placed).

Degree distribution and fractal network dimension

For identity-based sequence networks, the number of neighboring sequences for a given

sequence, i.e. the degree of a network node, was determined by counting the number of

sequence pairs having a minimum sequence identity to the respective sequence, such as�95%

sequence identity and thus less than 5% pairwise distance. For the point mutation network of

TEM β-lactamases, the degree of a network node was determined by counting neighboring

sequences within the distance of one point mutation to the respective sequence. The degrees

were calculated for all sequences of a given sequence network and the number of sequences N

having n neighbors was plotted over the degree n.

To derive the fractal network dimension Df of identity-based sequence networks, the num-

ber of sequence pairs p(d) that differed by less than d%, with d% = (100—sequence identity)%,

was computed for pairwise sequence identities determined by USEARCH [25]. The respective

fractal network dimension Df was calculated assuming p(d) ~ dDf and plotting log(p(d)) over

log(d) for d = 2, 4, 6, . . ., 100. In addition, p(d) was determined for the point-mutation net-

work of TEM β-lactamases with d = 1, 2, 3, 4 point mutations.

Results

All members of a protein family are related to each other by their global sequence identity

obtained from pairwise sequence alignments. This relationship was analyzed by constructing
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networks where the nodes represent individual sequences and the edges represent a neighbor-

hood relationship. Two types of neighborhood relationships were applied for network con-

struction. In identity-based networks, an edge is formed between a pair of sequences if their

global sequence identity exceeds a threshold. By adjusting the sequence identity threshold, the

construction of identity-based sequence networks was feasible for all homologous protein fam-

ilies and resulted in connected networks for each family. In the rare case of protein families

with high microdiversity, such as the TEM β-lactamase family, a second network type was con-

structed, where an edge between two nodes was formed if the two sequences differed by a

point mutation. If such a point mutation network is feasible, it is expected to be highly similar

to the respective identity-based network with high sequence identity threshold.

Network models for TEM β-lactamases, a family of high microdiversity

The TEM β-lactamase family is a large protein family of high microdiversity [16]. A point

mutation network was constructed for variants of the TEM β-lactamase core region, resulting

in 267 nodes and 401 edges (Fig 1). The number of neighbors varied widely for each node.

While there were two highly connected hubs (TEM-1 with 86 and TEM-116 with 55 neighbor

sequences), most nodes had only few neighbors. The network properties were characterized by

calculating the degree distribution, and the number N of nodes with n neighbors followed a

power law distribution N(n)~n-γ with a scaling exponent γ = 1.2 (Fig 2).

For comparison, an identity-based network was constructed using a global sequence iden-

tity threshold of 99.5% pairwise sequence identity, corresponding to a distance of one point

mutation (S1 Fig). The global sequence identity measures the number of mutations between

two sequences, but is independent of the number of known sequences between the two

Fig 1. Sequence network for 267 TEM β-lactamases formed by 401 point mutations (edges) with 259 sequences forming a

densely connected network with two hub sequences (TEM-1 depicted as black rectangle, TEM-116 as black oval). First

neighbors of hub sequences are depicted in dark gray, other sequences in white.

https://doi.org/10.1371/journal.pone.0200815.g001
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sequences. The n network consisted of 267 nodes and 401 edges, too, and its degree distribu-

tion followed a power law with a scaling exponent γ which was identical to the point mutation

network (S2 Fig).

Alternatively, the degree distributions of the sequence networks were fitted by a Poisson

distribution P(λ) and a Gaussian distribution G(μ,σ). In contrast to the power-law distribution,

the Poisson and the Gaussian distribution resulted in noticeably qualitative deviations from

the experimental data (S2 Fig).

Degree distributions for protein superfamilies with low microdiversity

Except for the TEM β-lactamases, the microdiversities of the protein families were too low to

result in connected point mutation networks. Therefore, four protein superfamilies (β-hydro-

xyacid dehydrogenases/imine reductases, bHAD; thiamine diphosphate-dependent decarbox-

ylases, DC; ω-transaminases, oTA; short-chain dehydrogenases/reductases, SDR) were

analyzed by constructing networks based on pairwise sequence identity (Table 1). The protein

families differed in their distributions of pairwise sequence identities, which is expected for

superfamilies of different sequence length, fold, and domain arrangement (Fig 3).

Sequence pairs with a global sequence identity�95% were defined as neighbors. For the

four identity-based networks, the degree distribution was approximated by a power law

Fig 2. Distribution of the number of sequences N in a network of TEM β-lactamase point mutations having n first

neighbors (Fig 1). The degree distribution follows a power law with exponent γ = 1.2.

https://doi.org/10.1371/journal.pone.0200815.g002

Table 1. Overview of the analyzed protein family networks by number of nodes (sequences) and maximal degree (number of neighbors) for a 95% sequence identity

threshold, with average sequence length.

Enzyme family (abbreviation) Nodes Maximal degree Length

TEM β-lactamases (TEM) 267a 86a 250

β-hydroxyacid dehydrogenases/imine reductases (bHAD) 17020 259 320

thiamine diphosphate-dependent decarboxylases (DC) 24880 266 580

ω-transaminases (oTA) 79987 381 460

short-chain dehydrogenases/reductases (SDR) 81680 312 300

The small family of TEM β-lactamases is shown as reference due to its high microdiversity with a threshold of 99.5% sequence identity (a).

https://doi.org/10.1371/journal.pone.0200815.t001
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distribution N(n)~n-γ, whereas the distributions deviated from a scale-free behavior for the

most highly connected nodes (Fig 4). Thus, data for degrees�50 or 70 were excluded from

linear regression, resulting in scaling exponents of γ = 1.2–1.3 (Table 2). The power law distri-

bution was maintained upon decreasing the global sequence identity thresholds for the con-

struction of identity-based networks to�90%,�85%, or�80% (S3–S5 Figs), and the scaling

exponents γ decreased slightly with decreasing threshold to γ = 0.9–1.1. Furthermore, subsets

between 10% and 90% randomly selected sequences from the DC superfamily resulted in simi-

lar scaling exponents γ between 1.1 and 1.4 (S1 Table).

The inhomogeneous power law degree distributions of identity-based sequence networks

point to the existence of highly connected hubs in the sequence space of the four protein su-

perfamilies (Table 3). Instead of individual hub sequences, communities of highly connected

nodes with similar degrees were identified in the identity-based networks. For the DC super-

family, the 100 most highly connected protein sequences had between 250 and 266 neighbor-

ing sequences. Upon random selection of a subset of protein sequences from the DC

superfamily, the respective sequences with the highest number of neighboring sequences were

found to be highly similar, unless very small subsets were analyzed (S2 Table).

Fig 3. Distributions of pairwise global sequence identity for the protein families from Table 1 as determined by

high-scoring sequence pairs in USEARCH (20).

https://doi.org/10.1371/journal.pone.0200815.g003
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Dimensions of protein sequence networks

As a further network property, the fractal network dimension Df was evaluated by counting

the number of sequence pairs p(d) that differed by less than d% (100%—sequence identity) for

d = 2, 4, 6, . . . (Fig 5). For low values of d (d�10%, i.e.�90% identity), log p(d) increased line-

arly with log d, resulting in a network dimension Df = 0.7–1.0 for the four superfamilies with

low microdiversity (Table 2). Random selection of a subset of protein sequences from the DC

superfamily lead to almost identical values for of Df� 0.7 for d�10% (S6 Fig). For increasing

distance d, the network dimension Df increased to Df = 3.5–4.5 for 30%�d�70%. For the fam-

ily of TEM β-lactamases, Df was estimated to 1.8 from the values at d = 2% and d = 4%.

Fig 4. Neighbor distribution for the protein families with low microdiversity from Table 1 with neighbors defined

by�95% global sequence identity. The corresponding scale-free exponents γ were derived from linear regression for

degrees� 50 (bHAD, DC) or� 70 (oTA, SDR) and are summarized in Table 2.

https://doi.org/10.1371/journal.pone.0200815.g004

Table 2. Overview of the analyzed protein families from Table 1 and their derived parameters.

Enzyme family γ Df

TEM 1.2a 1.8

bHAD 1.2 1.0

DC 1.1 0.7

oTA 1.2 0.9

SDR 1.3 1.0

The scale-free exponent γ refers to sequence identity networks constructed with pairwise identity thresholds of 95%

(compare with Fig 4, 99.5% threshold for TEM β-lactamases a). Network dimension Df refers to the slope from Fig 5

in different regions of pairwise sequence identity (>90%).

https://doi.org/10.1371/journal.pone.0200815.t002
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Because of the high sequence identities of the members of the TEM β-lactamase family, only

few sequence pairs showed distances higher than 4% identity. Estimating the fractal network

dimension for the point-mutation network of TEM β-lactamases by comparing the number of

single and double mutants resulted in a higher value of Df = 4.0 (S7 Fig). Beyond double

mutants, the limited network size resulted in an apparent decrease of the network dimension,

and the analysis of double, triple, and quadruple mutants resulted in Df = 1.8, as observed for

the identity-based TEM β-lactamase network.

Discussion

The dimension of protein sequence space

The evolution of protein sequences occurs in iterative steps of random mutagenesis of the

genotype and subsequent selection of the phenotype. Therefore, the sequence space that has

been iteratively explored during 4 Gyr of evolution is expected to be connected [29]. Since the

Table 3. Exemplary network hubs and their annotations from sequence networks with a threshold of 95% sequence identity (99.5% for TEM β-lactamases)a for the

protein families from Table 1.

Family Annotation Source NCBI accession Degree

TEMa β-lactamase TEM-1 Acinetobacter baumannii AAP20891 86

bHAD 2-hydroxy-3-oxopropionate reductase Proteobacteria WP_001303675 259

DC pyruvate dehydrogenase subunit Gammaproteo-bacteria WP_044256366 266

oTA putrescine aminotransferase Enterobacter cloacae WP_042715413 381

aspartate aminotransferase Shigella WP_000069444 378

SDR GDP-mannose 4,6-dehydratase Helicobacter pylori WP_058338748 312

https://doi.org/10.1371/journal.pone.0200815.t003

Fig 5. Cumulative distributions of sequence pairs p(d) for pairwise distances of d% of the protein families TEM

(open squares), DC (filled squares), bHAD (open circles), SDR (diamonds) and oTA (filled circles) from Table 1

in subsequent distance intervals of 2% distance d (100%—sequence identity). Linear fits are shown as red lines for

distances up to 10% identity (up to 4% for TEM). For further distances between 70 and 30%, an approximately linear

area is depicted in red.

https://doi.org/10.1371/journal.pone.0200815.g005
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number of explored protein sequences (1040) is much smaller than the number of theoretical

sequences (>10300), the dimension of the sub-space of extant protein sequences is expected to

be much smaller than the multi-thousand dimensional space of theoretical sequences. An esti-

mation of the dimension of the known sequence space was achieved by counting the numbers

of neighbors at increasing distances. The fractal network dimension Df of a protein family was

similar among the investigated protein families. Df varied between 0.7 and 1.0 for sequence

identities between 98% and 90%, whereas Df increased to values between 3.5 and 4.5 at lower

sequence identities between 70% and 30%. The observation of a distance-dependent fractal

dimension of sequence space gives an interesting insight into the sequence-function relation-

ships of proteins. For uncorrelated random mutations, it has been estimated that the probabil-

ity of protein inactivation is 34% for each mutation [30]. Therefore, for a small number of

mutations, the chance of finding active mutants is high (0.662 = 44% and 0.664 = 19% for two

and four mutations, respectively). Thus, many combinations of random mutations result in

active proteins, and Df� 4.0 as evaluated for the point-mutation network of TEM β-lacta-

mases is a lower limit of the dimension of the extant sequence space for a small number of

mutations, because Df is expected to further increase as more TEM β-lactamase sequences are

discovered in the future. In contrast, if 10% of all positions are randomly exchanged, the

chance of finding an active variant of a 300 amino acid protein reduces to 0.6630 = 4�10−6.

Therefore, the mutations that result in an active protein must be highly correlated, and evolu-

tion is dominated by the non-additive effects of epistasis [12]. The high correlation of muta-

tions is compatible with the much lower fractal network dimension Df = 0.7–1.0, which seems

to be a generic property of all investigated protein families. For lower sequence identities

between 70 and 30%, the mutations become more uncoupled, which results in a considerable

increase of the fractal network dimension Df.

At a first glance, scale-dependent network dimensions are counter-intuitive. However,

scale-dependent spatial dimensions have also been observed for physical systems such as tur-

bulent interfaces [31] and for the distribution of luminous matter in the universe [32].

Although the analysis of the distance dependence of protein sequence space is based on a rela-

tively small number of known sequences, it provides quantitative estimates which are in agree-

ment with known sequence-function relationships [30]. It will be interesting to see how Df

develops in the future, when many more protein sequences become known.

Evolutionary constraints for protein sequence space

Two complementary neighborhood definitions were applied to construct sequence networks.

A network construction based on point mutations allows for an interpretation of alternative

evolutionary paths along the network [16]. However, mutation-based networks are restricted

to the rare families with high microdiversity such as TEM β-lactamases. In contrast, the metric

of global sequence identity can be applied to all protein families. For TEM β-lactamases, the

mutation-based and the identity-based degree distributions were identical and were approxi-

mated by a power law distribution with a scaling exponent γ = 1.2. A power law degree distri-

bution was also observed for four protein families with low microdiversity (bHAD, DC, oTA,

SDR) when using the distance metrics. Although the four families have different structural

folds, domain arrangements, and sequence lengths, and differ in their level of sequence diver-

sity (Fig 3) and their size (Table 1), they resulted in similar scaling exponents γ = 1.2–1.4. The

observation that different protein families show similar scaling exponents indicates that the

constraints that govern protein evolution are similar for all proteins [20].

Scale-free distributions of protein families have been described previously for networks of

co-occurring protein domains and networks of sequence motifs, with scaling exponents γ in

The scale-free nature of protein sequence space
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the range from 1.7 to 2.0 [11,33]. By clustering sequences into homologous families, scale-free

cluster size distributions have been observed with scaling exponents between 1.6 and 2.5

[8,10,34,35]. It has been suggested that cluster size distribution is a direct consequence of the

necessity for a functional protein to fold into a stable structure [9]. As a consequence, sequence

space is highly connected, as seen for families with high microdiversity [16]. Connectivity is

also related to findability of genotypes [36]. Stability against random errors, another feature

attributed to scale-free networks, is also favorable during evolution [37].

Pitfalls and limitations for protein sequence networks

While scale-free distributions seem to be ubiquitous in many domains of life sciences, care

should be taken when drawing far-reaching conclusions which are not supported by the data

[19]. Therefore, the goodness of the power law fit was compared to alternative fits by Poisson

and Gaussian distributions. While the parameters of the Poisson and Gaussian distributions

could be adjusted to follow the data in the tail, they fail to describe the monotonous increase of

the number of nodes at decreasing degrees, and thus confirm the power law fit [19,20]. How-

ever, the limited number of sequences per protein family and the small fraction (10−20) of

known protein sequences [14] are two factors that favor the tendency to form a power law dis-

tribution, because it has been observed that binning of the data has the tendency to form a

power law distribution [38] and that sub-networks tend to exhibit a power law distribution,

irrespective of the topological property of the larger network they were sampled from [39]. By

analyzing randomly selected sub-networks, we demonstrated that the scaling exponent was

robust upon resampling, thus excluding the possibility that the scaling exponent might differ

between network and sub-networks [40]. However, there is still a risk that the apparent power

law distribution might result from a sampling artefact. As the number of newly sequenced

genomes is rapidly expanding in the near future, it will be interesting to see whether the degree

distribution is robust upon better sampling of the sequence space.

Implications for protein evolution and protein engineering

Protein networks with a highly inhomogeneous, exponential degree distribution with a long

tail have another interesting consequence: the existence of a few highly connected nodes.

These hubs are sequences or groups of sequences with a very large number of potentially func-

tional neighbors.

The role of hubs in evolution is still under discussion. It has been suggested that highly con-

nected nodes originated early in evolution [41], while less connected nodes are recent results

from divergent evolution [42]. This interpretation of "the old get richer" is based on preferen-

tial attachment network models [18]. However, preferential attachment is only one way to gen-

erate networks, and there are different network topologies which all result in a power law

degree distribution [19]. As a consequence, the most highly connected protein sequences are

not necessarily the phylogenetically oldest, thus hub sequences should not be interpreted as

ancestors. By assuming that evolution has reached an equilibrium in protein sequence space,

the more evolvable folds might have become densely populated as a consequence of conver-

gent evolution [42], thus connecting the concept of hubs to the concept of evolvability. The

observation of a uniform distribution of sequences from thermophilic and hyperthermophilic

sources in the oTA network demonstrated that hub sequences are not characterized by

increased thermostability (S2 Fig in [43]).

Evolvability of a protein sequence has two aspects: robustness toward possible deleterious

effects of mutations and innovability, where additional mutations readily induce new func-

tions [21]. Since the hub sequences have many supposedly functional neighbors, they have
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proven to be highly evolvable. Interestingly, some hub proteins have a pivotal role in metabo-

lism. The E1 subunit of the pyruvate dehydrogenase complex, a hub of the DC network, is also

a hub in the metabolism linking glycolysis and citric acid cycle [44,45]. The aspartate amino-

transferase, a hub of the oTA network, links the amino acid and the carbohydrate metabolisms

[46]. These coincidences of hubs in sequence networks and metabolic networks could point at

a higher robustness against mutations to preserve cellular function.

The concept of hubs can also be applied to improve the efficiency of directed evolution

experiments. Directed evolution is a powerful and widely applied strategy for improving

biochemical and biophysical properties of proteins by applying iterative rounds of random

mutations and screening. However, multiple random mutations tend to result in inactive pro-

teins with a probability of 92% for only six random mutations [30]. Therefore, it has been sug-

gested to start a directed evolution experiment either from a population of neutral mutants

[47] or by constructing ancestor sequences [48] which are believed to have a higher robustness

and thus higher evolvability than contemporary sequences [49]. As a promising alternative, we

suggest to use the hub sequences as promising starting points in directed evolution experi-

ments and to select highly evolvable homologues directly from the pool of contemporary

sequences.

Supporting information

S1 Table. Scaling exponents γ for randomly selected subnetworks of the DC superfamily,

with edges formed by a threshold of 95% pairwise sequence identity. Linear regressions

were performed up to a limited number of neighbors only, due to low sampling quality for

higher degrees. Thus, values for γ were determined up to a maximum degree.

(PDF)

S2 Table. Exemplary protein sequences found in hub regions of the DC networks for vary-

ing subsets of randomly selected sequences. The Annotations are listed as “pyruvate dihydro-

gen-ase subunit” (PDH), “glyoxylate carboligase” (GLX) or “acetolactase synthase 2 catalytic

subunit” (ALS). Pairwise sequence identities towards the hub sequence of the complete net-

work (WP_044256366) are given in the column on the right.

(PDF)

S1 Fig. Sequence network for 267 TEM β-lactamases connected by 401 edges above a 99.5%

pairwise sequence identity threshold, in comparison to the point mutation network (Fig

1). Hub sequences are depicted in black (TEM-1 as black rectangle, TEM-116 as black oval)

with their first neighbors depicted in dark gray, other sequences in white.

(TIF)

S2 Fig. Distribution of the number of sequences N having n first neighbors for the dis-

tance-based network of TEM β-lactamases (S1 Fig). The degree distribution hints at a power

law distribution with exponent γ = 1.2 (a). In addition, probability density functions were fit-

ted for a power-law distribution (line, γ = 1.2), a Gaussian distribution (dashed line, μ = 3.0, σ
= 6.4) and a Poisson distribution (dotted line, λ = 3.0) with residual sum of squares 0.01, 0.2

and 0.1, respectively (b-d).

(TIF)

S3 Fig. Degree distribution for the protein families with low microdiversity from Table 1

with neighbors defined by� 90% global sequence identity. Linear regression was performed

for degrees� 50 (bHAD, DC) or� 70 (oTA, SDR).

(TIF)
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S4 Fig. Degree distribution for the protein families with low microdiversity from Table 1

with neighbors defined by� 85% global sequence identity. Linear regression was performed

for degrees� 50 (bHAD, DC) or� 70 (oTA, SDR).

(TIF)

S5 Fig. Degree distribution for the protein families with low microdiversity from Table 1

with neighbors defined by� 80% global sequence identity. Linear regression was performed

for degrees� 50 (bHAD, DC) or� 70 (oTA, SDR).

(TIF)

S6 Fig. Cumulative distributions of sequence pairs p(d) for pairwise distances of d % of the

DC protein superfamily for the complete data set (open squares) and 10%, 20%, . . ., 90%

randomly selected subsets of sequences (filled squares). The areas marked in red correspond

to the linear approximations from Fig 5.

(TIF)

S7 Fig. Cumulative distribution of sequence pairs p(d) with distance in d point mutations

of TEM β-lactamases (open squares). Linear fits are shown for d = 1,2 (red line) and for

d = 2,3,4 point mutations (blue line).

(TIF)
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