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ARTICLE INFO ABSTRACT

We introduce a new approach to monitoring the activity of smartphone users based on their physical interactions
with the interface. Typical events are taps, scrolling and typing, carried out to interact with apps. As compared to
other measures, this directly encapsulates potential problematic physical smartphone behaviour as a signal. The
approach contrasts against conventions such as self-reporting or timing activity sessions, and it focusses on active
rather than passive smartphone activity. Using this alternative method, we collected all user interface interaction
events from a sample of 64 participants over a period of 8 weeks, using a bespoke monitoring app called Tymer.
User Smartphone Addiction was seen to significantly correlate with high levels of interaction with Lifestyle apps,
particularly for female users. Interactions with Social apps in general were also associated with Smartphone
Addiction. In particular, user interactions with Snapchat correlated with Smartphone Addiction, represented
across all types of interface interaction. This is significant given the widespread usage of Snapchat by teenagers,
and we hypothesise that the app's design provides a particularly strong pathway in support of Smartphone
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1. Introduction

Smartphone usage is now ubiquitous across much of the global
population, with the smartphone offering a vast range of applications
(apps) that help to extend human cognition (Clark & Chalmers, 1998).
Typical daily usage levels are high (De-Sola Gutiérrez et al., 2016) and
there is evidence of dependency and attachment to smartphone tech-
nology (Hoffner, Lee, & Park, 2016), combined with the potential dis-
ruptiveness of incoming notifications (Turner et al., 2015, 2017) and
“checking habit” formation (Oulasvirta, Rattenbury, Ma, & Raita,
2012). It is now acknowledged that such uncontrolled and problematic
behaviour can become harmful, being recognised as Smartphone Ad-
diction (SA) (Pearson & Hussain, 2016). Problematic smartphone use
has been linked to teenage depression and anxiety (Ha, Chin, Park, Ryu,
& Yu, 2008; Lemola et al., 2014), and more widely, various relation-
ships have been found concerning stress, depression, sleeping problems,
anxiety, subjective well-being, and loneliness (Demirci, Akgoniil, &
Akpinar, 2015; Elhai, Dvorak, Levine, & Hall, 2017; Lee, Chang, You, &
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Cheng, 2014; Lemola et al., 2014).

Despite this research progress, detecting indicators of problematic
smartphone behaviour is a challenge for two main reasons. Firstly, the
range of utility that smartphone apps provide means that usage levels
are generally high and that high usage is socially acceptable
(Chotpitayasunondh and Douglas, 2016). Therefore behaviour corre-
lating with SA can easily be hidden. Secondly, apps increasingly allow
the smartphone to be passively used for large periods of time as a
substitute for other devices (e.g., GPS navigation, TV, music player)
meaning that as smartphone usage gets more diverse, high level me-
trics, such as time on the smartphone, may not represent the strongest
indicator of problematic behaviour. These issues contribute to the in-
visibility of SA (Roberts et al., 2014) and the challenge of encouraging
behaviour change to avoid it.

In this paper, we propose a new approach to identifying behaviours
indicative of SA. By examining all interactions that a user performs
through physically touching the screen (e.g., typing, scrolling, tapping),
we are able to consider detailed user-app interactions as an indicator for
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SA. This allows us to gain new insight into the potential sources of
problematic behaviour and pathways to addiction. In particular, our
approach is based on measures of active usage than passive usage, which
is determined by the extent of user engagement with the interface while
the smartphone is operational. It also avoids the need for self-reporting
and goes beyond the convention of monitoring screen or app time.
Validating the approach required the development of a bespoke
smartphone application called Tymer, which listens for and records the
smartphone events that are triggered by human interaction, which was
deployed on a cohort of 76 recruited participants over an eight week
period (Noé, Turner, Linden, Allen, Maio, & Whitaker, 2017). Unlike
previous work, this approach allows us to examine a wide range of apps
within a single study, and make relative comparisons between different
apps and classes of apps.

2. Related literature and hypotheses

Smartphone Addiction is an extension of Internet Addiction
(Kimberly, 1998), which may also encompass other forms of behaviour
bundled through the device, such as gaming, social networking, and
online shopping (Block, 2008; Montag et al., 2015a). SA broadly refers
to the condition leading to uncontrolled smartphone use despite the
experience of negative repercussions on personal and social life. From
an initial focus on the “cell-phone” as a means to communicate (e.g.
(James & Drennan, 2005; Park, 2005)), the functionality provided by
the latest generation of smartphones allows untethered Internet access,
with applications optimised for mobile usage. The first smartphones
with large touch-screens became globally available little over a decade
ago: Apple's iPhone in 2007, followed by HTC's Dream in 2008, with the
first studies on SA being published in 2011 (Chae and Lee, 2011;
Woojae, Park, & Chang Lee, 2011).

Since then, interest in SA has grown strongly. Although, it has not
yet received the clinical acknowledgement from the World Health
Organisation (WHO) or American Psychiatric Association (APA), the
WHO recently added gaming disorder to the ICD-11 (World Health
Organization, 2018). Behavioural addictions share many similarities to
substance abuse disorders, but differ inherently in the way they are
caused not by a substance, but by a specific behaviour that is experi-
enced as rewarding despite any associated negative consequences
(Alavi et al., 2012). As such, it has been argued that any stimulating
experience can potentially become addictive (Stanton & Brodsky,
1975).

Assessments for SA have resulted in various self-diagnostics (Kwon
et al., 2013, Kwon, Kim, Cho, & Yang, 2013; Lin et al., 2014; Tossel,
Kortum, Shepard, Rahmati, & Zhong, 2015), with the Smartphone Ad-
diction Scale in particular combining assessment of substance use dis-
orders, Internet Addiction, and the smartphone's own features. Current
research related to SA frequently considers a particular application
(e.g., Facebook (Ryan, Chester, Reece, & Xenos, 2014), WhatsApp
(Montag et al., 2015b)) or a class of apps (e.g., social networking
(Salehan & Negahban, 2013)). In this context it is important to note that
SA can, like Internet Addiction (Griffiths, 2012), be argued to be both
source and pathway to the causes of addiction.

Measures of smartphone activity typically involve self-reporting
(e.g. (Elhai, Levine, Dvorak, & Hall, 2016)) or recording screen time
(e.g. (Ferreira, Goncalves, Kostakos, Barkhuus, & Dey, 2014)). Although
valid and worthy, these approaches have limitations, such as allowing
subjects to filter their own reports of behaviour (King & Bruner, 2000)
or including passive usage. Additionally, important details can be ob-
fuscated that a user may consider insignificant, such as a dependency
on a particular type of physical interaction with the device, or excessive
repetition. Automated collection of user-data sets a new standard
(Stachl et al., 2017), but this is more challenging to achieve and less
well-established.

These issues motivate the new approach taken in this paper, which
goes beyond monitoring high level metrics such as time on the device,

57

Computers in Human Behavior 99 (2019) 56-65

to understand how the detailed interactions with the smartphone may
coincide with SA. Furthermore, different apps, and different types of
smartphone interaction may present different potential pathways to SA
and different levels of risk. Our approach involves automatically re-
cording all of the user's interactions with the user interface (UI) for all
their applications and activity, over an eight week period. Related work
taking this approach is scant: although tracking device interaction is an
established technique in the human-computer interaction literature
(Cao & Lin, 2017; Jesdabodi & Maalej, 2015; Peng, Zhao, & Zhu, 2016;
Shin & Dey, 2013), detailed assessment of correlations with SA are
limited, with usage typically being assessed at the higher level (e.g.,
time on device (Falaki et al., 2010; HintzeRainhard et al., 2014)) and
correlated with other aspects such as personality (Gokul, Blom, &
Gatica-Perez, 2013; Stachl et al., 2017) and mood (LiKamWa, Liu, Lane,
& Zhong, 2013).

2.1. Motivating issues

Historically, high usage, measured by time, has been shown to be a
key element of SA (e.g. (Bae, 2017; De-Sola Gutiérrez et al., 2016; Lee
et al., 2014a; Lemola et al., 2014; Roberts et al., 2014; Rozgonjuk,
Levine, Hall, & Elhai, 2018)). Differences in time spent on smartphones
is often attributed to habit (Oulasvirta et al., 2012; Tossel et al., 2015)
and usage frequency (Tossel et al., 2015). However, as smartphone
capabilities continue to increase and support a wider variety of apps, it
becomes important to determine the extent to which SA is related to
particular types of use. Active usage, where the user is engaged through
Ul interactions, as compared to passive use (e.g., video streaming),
remains an important distinction. To the best of our knowledge, this
distinction has not been studied in the literature, due to the additional
complexity required in assessing a user's interactions at a granular level.
We focus on this and determine the interaction events occurring at the
user interface. Based on previous observations regarding time, it is
appropriate to hypothesise that high-scorers in SA have more UI interac-
tions than low-scorers (H1); this can be considered across all applica-
tions.

It is challenging to assert with confidence how SA may manifest
itself in terms of specific types of Ul interactions, relative to the broader
user population. Social media has been reported as one of the top
reasons for smartphone use. In particular, social networking applica-
tions were found to be the second most downloaded type of application
after games (Lim et al., 2015) and social networking accounted for the
most application launches, representing 18% of the total number of
launches in front of browser and search launches at 14% in recent as-
sessments (Carrascal & Church, 2015). According to Statista (Statista,
2018), daily time spent on social networking is on the rise, reaching an
estimated 135min in 2017, representing an eighth of the time spent
awake by an average adult. Social media has also been linked to SA in
teenagers (Jeong, Kim, Yum, & Hwang, 2016) and adults (Enez Darcin
et al., 2016). Large networks and high participation intensity in net-
works seem to contribute to the use of social media apps and SA
(Salehan & Negahban, 2013). Facebook (Beyens, Frison, & Eggermont,
2016; Roberts et al., 2014; Ryan et al., 2014), Twitter (Roberts et al.,
2014), and Instagram (Roberts et al., 2014) in particular have been
identified as social media platforms whose use seems associated with
SA. Recent work (Punyanunt-Carter et al., 2017), examining the user's
relationship with the Snapchat social media app has posited that a
user's functional and entertainment needs correlate with Internet Ad-
diction. Interestingly, social media addiction also had the highest cor-
relation to Internet Addiction (Montag et al., 2015a) in comparison to a
number of addictions to other online activities: gaming, shopping, so-
cial networks, and pornography. We therefore hypothesise that high-
scorers in SA have more UI interactions on social media applications (H2),
with particular reference to Facebook, Instagram and Snapchat (Beyens
et al., 2016; Punyanunt-Carter et al., 2017; Roberts et al., 2014; Ryan
et al.,, 2014). This translates as a greater number of UI interactions
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registered across the “Social” apps category.

Closely related to social media, the communication function of
smartphones has been retained as one of the central activities for users
(Bohmer, Hecht, Johannes, Kriiger, & Bauer, 2011; Carrascal & Church,
2015), despite the extended role of the smartphone as a pocket com-
puter. Messaging (Lee et al., 2014a; Lemola et al., 2014; Yen et al.,
2009) and phone calls (Roberts et al., 2014; Yen et al., 2009) have
previously been associated with SA. Texting has also been found to be
positively related to the mobile phone interfering with life (David, Kim,
Brickman, Ran, & Curtis, 2015). In comparison to Facebook however,
little evidence for links to SA have been found for Facebook Messenger
and WhatsApp, two of the most popular communication apps world-
wide. Overall, the messaging literature points to supporting the pro-
position that high-scorers in SA will have more UI interactions supporting
communication activity (H3), detectable in our context from a larger
number of user-generated events on the “Communication” apps cate-

gory.
2.2. Summary of hypotheses

The hypotheses involve testing the extent to which UI interactions,
at the most granular level possible, are indicative of SA. In summary:

H1. SA score is positively associated with the number of UI interactions
with the device.

H2. SA score is positively associated with the number of Ul interactions
on apps of the Social app category, with particular reference to
Facebook, Instagram, and Snapchat.

H3. SA score is positively associated with the number of UI interactions
on apps of the Communication app category, with particular reference
to WhatsApp and Facebook Messenger.

To the best of our knowledge, these hypotheses have not been
previously tested and therefore the significance of Ul interactions as an
indicator of SA has not been established. We address the hypotheses in
the context of an exploratory study, where wider observations are also
presented. We investigate the hypotheses from three perspectives: the
different types of Ul interactions, as detected through machine-readable
actions; the Ul interactions with different apps and the UI interactions
with different categories of apps. This also allows us to gain new po-
tential insight into the sources of problematic behaviour and pathways
to addiction. The specific interactions generated relate to tapping (short
and long), writing, scrolling and text selection.

3. Methods

Seventy-six participants were recruited through posters and online
advertisement at Cardiff University, UK. Participants were required to
own a smartphone running Android 4.4 (KitKat) or higher and to have
no history of mental illness. Composition of the full sample is presented
in Table 1. Due to the voluntary nature of the participation in this study
and the lack of control we had over participants' phones, certain par-
ticipants were excluded as too little or no usage data was collected from
them (e.g., due to the lack of space on their phone to store any data),
resulting in the consideration of 64 participants in total. Thirty-four
participants were male and 30 female, and they were aged between 19
and 46 (M = 25.44, SD = 5.87). A large sub-group are students (79%),
who together with adolescents frequently make up samples for aca-
demic studies in this field (De-Sola Gutiérrez et al., 2016), consistent
with their propensity to use smartphones. A significant proportion
(41%) were employed.

All participants were required to attend a briefing and a debriefing
session. In the briefing session, participants gave their informed consent
and downloaded our custom smartphone application Tymer. They were
introduced to its functionality and were asked to keep the app installed
and use it over a period of 8 weeks (56 days). In the debriefing session,
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Table 1
Sociodemographic characteristics and Smartphone Addition scores (N = 64).

Age M SD
Years 25.4 5.87
Gender N %
Male 34 53.13
Female 30 46.88
Employment N %
Student 38 59.38
Student & employed 13 20.31
Employed 12 18.75
Unemployed 1 1.56
Education N %
High school, no diploma 1 1.56
High school diploma or the equivalent 5 7.81
Trade/technical/vocational training 1 1.56
Some undergraduate education, no degree 14 21.88
Bachelor's degree 19 29.69
Master's degree 21 32.81
Doctorate 2 3.13
No answer 1 1.56
Smartphone Addiction Scale -long version M SD
Score 87.8 20.26
Smartphone Addiction Scale -short version N %
Addicted 12 18.75
Not addicted 52 81.25

participants received monetary compensation. In both briefing and
debriefing sessions, participants were asked to complete 5 surveys: the
Smartphone Addiction Scale (SAS) (Kwon et al., 2013b), the Positive
And Negative Affect Schedule (PANAS) (Watson & Clark, 1994), the Big
Five Inventory (BFI) (John & Srivastava, 1999), the Monetary Choice
Questionnaire (MCQ) (Kirby & Petry, 2004), and a demographics and
smartphone use questionnaire. The Smartphone Addiction Scale was
the focus of assessment in this particular work, which is part of a wider
set of analyses (Noé et al., 2017; Turner et al., 2019).

The SAS (Kwon et al., 2013b) was given the highest reliability score
of the scales evaluated by De-Sola Gutiérrez and colleagues in their
review (De-Sola Gutiérrez et al., 2016) and presents 33 questions each
using a 6-point Likert scale. Total possible scores therefore range from
33 to 198, with a higher score indicating a higher likelihood of addic-
tion. In our analyses, we use the score as a discrete variable. A shor-
tened version (SAS-SV), composed of a subset of 10-questions is also
available (Kwon et al., 2013a), for which the cut-off values of 31 for
male and 33 for female participants have been tentatively proposed to
determine SA. The responses of our participants to this subset of
questions were therefore also evaluated separately and 18.75% of our
sample was found to have reached this threshold (see Table 1).

A paired t-test was carried out to check whether the participant
population's results for the Smartphone Addiction Scale tests had sig-
nificantly changed between briefing (M = 89.39, SD = 23.41) and de-
briefing sessions (M = 86.28, SD = 19.22). This was not the case
(p = .077) and the test values were highly correlated amongst them-
selves (r = .807, n = 64, p < . 001). For this reason, we used the mean
of both tests for the analyses. The age and gender of participants are
also taken into account in this study.

During the course of the study, the bespoke Tymer app functioned
on each participant's device to accomplish two things. Firstly, to prompt
the user for feedback on their current mood state (not featured in this
analysis) and secondly, to track user interactions with their device.
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Fig. 1. Average number of daily events per event type and gender.

Each interaction is referred to as an event, recorded alongside a time
stamp and the source of the event (i.e., the application with which the
user interacts). The participants used Tymer for an average of 53.08
days (SD = 18.74).

Only Ul interaction events were considered, excluding events that
could be ambiguous (i.e., triggered by either the user or the smart-
phone, such as a screen off event, that can be caused by the user
switching off the screen but also by the smartphone timing out the
display). This was done to avoid including smartphone generated
events as they do not constitute a real UI interaction, but also to exclude
passive usage (e.g., streaming a video, using the phone as navigation
system) which can count towards screen time, but does not constitute
active interaction with the smartphone. The specific types of events
considered are: tap, long tap, writing (e.g., striking the keyboard),
scroll, and text selection (i.e., highlighting). We subsequently refer to
the sum of all of these events together as “overall smartphone use”.
Note large numbers of events were recorded over the period (Fig. 1),
with scrolling making a particularly significant contribution.

In Fig. 2 we present descriptive statistics concerning smartphone
usage, for users classified by their addiction status, as determined by
the SAS-SV (Kwon et al., 2013a). In the left panel, users are ordered by
descending daily time spent on the smartphone, and notably, addiction
is widely spread across the distribution. The same data is presented in
the right panel, but with the users ordered by decreasing number of
daily UI interactions. Here there appears to be increased clustering of
SA for users at the head of the distribution. The relationship between
daily time on the smartphone and Ul interactions is further expressed in
Fig. 3. Note that for the smartphone addicted sub-group, there is much
greater variance in Ul interactions, as compared to daily time on the
smartphone.

3.1. Analysis design

From comparing the number of events between participants, we
analyse differences in participants' usage behaviour. The sum of events
was chosen as the principle variable rather than a total session time
length since it requires no interpretation of the data and represents the
intensity of smartphone-user engagement. The data was normalised to
obtain the average daily number of events, to account for any devia-
tions in participation, such as from choosing to opt out or a delayed
start. It should be noted that different apps generate different types and
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volumes of events. However this is not an issue in this study since we
are principally concerned with analysing inter-personal differences re-
lating to the same app or category of app.

Fig. 4 shows how user behaviour can be captured through total
events of different types, that occur within different apps belonging to
different categories of apps. These provide different levels of aggrega-
tion for a user's interaction and we consider their correlation with SA.

Events within app categories capture broad user behaviour, and can
be modelled by the approximate taxonomy provided by the Google Play
Store. No changes were made to these categories, with the exception of
game app subcategories that were aggregated into a single Game ca-
tegory. Uncategorised apps were not included in the analyses pertaining
to app categories. To allow cross comparison, app categories used by
less than half of the participants were excluded, resulting in a list of 21
app categories. Considering events within apps provides insight into
behaviour aligned with a particular bundle of functionality. Again, only
sources from popular apps were included; apps that were absent from at
least half of the participant's data and brand specific apps were ex-
cluded, resulting in the consideration of 29 apps (see Fig. 5). The total
number of events across all apps was computed for each event type in
isolation. These are potentially indicative of variations in overall usage
between users. The types of events considered relate to a tap, long tap,
writing, scroll, and text selection.

Gender and age are known characteristics likely to influence
smartphone usage (De-Sola Gutiérrez et al., 2016; Roberts et al., 2014).
To account for these confounding factors in each analysis, partial
Spearman correlations with SA were first carried out separately for each
gender, using age as a covariate. If the correlation coefficient was of the
same sign, the analysis was repeated combining both male and female
participants, and using both age and gender as covariates.

To correct for possible occurrence of type I errors, a False Discovery
Rate (FDR) method was applied using the Benjamini-Hochberg proce-
dure (Benjamini & Yosef, 1995).

4. Results

Participants received a mean score of 87.84 (SD = 20.28) on the
SAS. Neither gender was more or less likely to be addicted to smart-
phones than the other (¢(62) = .257, p = .614). The mean SA score
obtained by male participants was 89.01 (SD = 21.10), while it was
86.51 (SD = 19.57) for female participants. Moreover, age was not
significantly correlated to SA (r = .219, n = 64, p = .082).

When the daily amount of time spent on smartphones was evaluated
in relation to SA, no significant association was found for males
(r = —.073, p = .685), females (r = .351, p = .062), and across gender
(r = 150, p = .244). This formalises the observations made on the de-
scriptive statistics in Section 3 (Fig. 2) where SA is seen across parti-
cipants with wide ranging daily time on the smartphone. This may in-
dicate that passive usage, characterised by high time periods using the
smartphone with low levels of Ul interaction, could be a common use
case in smartphone usage. This provides evidence that alone, time on
the smartphone does not necessarily provide a strong indicator of
problematic smartphone behaviour, and further motivates the analysis
of UI interaction as an indicator of SA, as considered in the following
analyses.

4.1. Ul interactions in app categories and Smartphone Addiction

From considering total events by app category, analysis was un-
dertaken based on gender, assessing each gender in isolation and also
together (Table 2). These analyses allow investigation of Hypotheses H2
and H3.

For female participants, SA was linked to Lifestyle
(r =.680, p < .001) apps. When both genders were considered to-
gether, correlations were found with Lifestyle (r = .446, p = .001) and
Social (r = .421, p =.001) app categories. This is consistent with
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previous findings (Montag et al., 2015a) concerning social media ad-
diction.

These results support Hypothesis H2, however a significant corre-
lation with social apps only occurs when combined analysis is per-
formed on gender; this is likely due to limitation in sample size for the
gender specific analyses. Interestingly, the results do not support H3,
with the Communication app category not being significantly corre-
lated to SA. It may well be that the multifaceted functionality of social
media is permitting new channels through which traditional text based-
communication can be undertaken.

60

themselves to a process of targeted information exchange, lending some
partial but weak support for Hypothesis H3.

It is also notable that, while positive correlations were found for the
Lifestyle category, Tinder, the only app analysed in isolation from this
category had no significant correlation to SA.

4.3. UI event types and Smartphone Addiction

To investigate Hypothesis H1, UI interaction events were considered
by each different type (tap, long tap, writing, scroll, text selection and
all combined, see Table 4). When both genders were combined, overall
usage (r=.280, p =.028) and scrolling (r= .284, p =.025) events
were found to be positively correlated to SA. However, these results
were not significant for FDR < 0.05. This partially supports Hypoth-
esis HI.

We note that even though tap, long tap, writing, and text selection
events were not significantly associated with SA when all app data was
considered, they were in the context of Snapchat. This is likely due to
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Fig. 4. The relationship between events, apps and categories of smartphone
applications.

the overall strong correlation of Snapchat usage, regardless of the in-
teraction type. This is especially true for female users.

Interestingly, long tap events (used to bring up context menus) in
the Contacts built-in application were significantly correlated to SA for
male users only. The strong correlations found for other event types
(albeit not significant for FDR < .05) suggest that this result might be
due to the overall correlation of Contacts use and SA. No significant
correlations were however found for scroll events, which is of particular
interest as they are the most used type of UI interaction overall (see
Fig. 1). We also note that no significant correlation could be established
for female users.

These results further provide some support for Hypotheses HI and
H2, with weak support for H3 when male usage of the Contacts app and
the communication function of Snapchat is considered. Again it is no-
table that as compared to Facebook and Instagram, interaction with
Snapchat has a more statistically significant correlation.

5. Discussion

The results provide some evidence for Hypothesis H1, noting that
overall usage and scrolling events appear positively correlated to SA,
when taken on aggregate (Section 4.3), although they do not withstand
FDR correction. When considering events by their source application
(Section 4.2), Snapchat was repeatedly found to be an origin from
which particular events significantly positively correlate with SA. This
also supports social media being a source of high activity for
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smartphone addicts (Hypothesis H2). Indeed, we find that across the
categories of apps (Section 4.1), level of engagement (i.e., total user-
generated events) in the Social category significantly correlates with
SA, in support of Hypothesis H2. It is notable that the Lifestyle category
is also significantly correlated with SA (Section 4.1). However, the
findings in support of H2 are limited to correlation with activity in
Snapchat, rather than a broader range of social media applications. This
appears to provide a differential between Snapchat and other forms of
social media, which was not anticipated based on the previous litera-
ture. Little support for Hypothesis H3 was found, which may be due to
social media apps implicitly providing communication functionalities.
However, usage of popular messaging apps, such as WhatsApp, was not
found to be significantly correlated with SA.

Correlation between Lifestyle apps and SA was not hypothesised to
be significant. Tinder is the only Lifestyle app that was analysed in
isolation in our app analyses, however no significant relationship was
found between its use and SA, for both genders. Given the diversity of
potential Lifestyle apps, it is therefore difficult to establish any common
characteristics of the Lifestyle apps used that contribute to correlation
with SA, especially in the case of female users (r = .680). Since Lifestyle
apps are diverse and indeed linked to a certain lifestyle that might
widely differ per individual, it is perhaps the higher interaction with
personalised, non-mainstream apps that is the basis of SA in this con-
text. The gender difference might be explained by the greater brand
commitment women showcase (Tifferet & Ram, 2012), the difference
between how male and female users personalise their phones (Tossell,
Kortum, Shepard, Ahmad, & Zhong, 2012), and that a large portion of
top apps seem to target topics which in general, women display more
interest in than men (Daly, Hogg, Sacks, Smith, & Zimring, 1983;
Fichten & Sunerton, 1983).

Focusing on the findings for social media however, the results
suggest that assessment of the user's device interaction is a useful proxy
for Smartphone Addiction assessment. Importantly, the results show
utility in observing UI interactions at a detailed level, and provide a
means to filter false positive results that occur due to passive use of the
smartphone. Our findings are consistent with the general literature that
correlates social media usage with SA (David et al., 2015; Enez Darcin
et al., 2016; Jeong et al., 2016; Ryan et al., 2014; Salehan & Negahban,
2013) and the fear of missing out (FoMO) (Alt, 2015; Przybylski,
Murayama, DeHaan, & Gladwell, 2013), which has been previously
aligned with problematic usage (Elhai et al., 2016). However, the
prominence of Snapchat, relative to other social media apps, is a par-
ticularly interesting aspect in our results. This is significant because
Snapchat is heavily used in the wider population, and is attractive to
teenagers (Statista, 2016). While wider concerns have been voiced in
the wider press on the addictive nature of Snapchat (Andersson, 2018;
Kallie, 2018; Stewart, 2018; White, 2017), to the best of our knowledge,
limited academic research has been conducted to date (Punyanunt-
Carter et al., 2017).

5.1. Pathways to addiction

Smartphone usage provides pathways to addiction on several dis-
tinct levels. Firstly, the ease of access combined with the widespread
and socially accepted use of smartphones, makes smartphone use ubi-
quitous. Secondly, the increasing number of functionalities smartphone
(apps) offer, make users more reliant on the technology and incentivise
smartphone usage over analog options or other digital devices. Thirdly,
apps are designed to make users prolong their usage (e.g., through
“infinite scrolling”, which lacks any stopping cues) or come back to
them (e.g., notifications or daily rewards urging the user to open up the
app). In our fine-grained analysis of UI interaction events within ap-
plications, we have attempted to look more closely at this third phe-
nomenon. Observing Ul interaction directly engages the potential pro-
blematic behaviour as a signal. This also reduces the opportunity for
false positive problematic use classification to arise for users who have
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Fig. 5. Percentage of participants having at
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Table 2 Table 3

Application categories use correlation with Smartphone Addiction for male (a),
female (b), and all users (c).

Application use correlation with Smartphone Addiction for male (a), female (b),
and all users (c) for a subset of analysed apps.

App Categories M F M+F Apps M F M+F
r p r P r p r p r p r P

Auto And Vehicles .230 .198 .013 .948 .105 416 Communication
Business .066 713 .228 .234 .159 .216 Contacts .459 .007" -.182 .344
Communication .100 .581 .011 .953 .048 711 Facebook Messenger .204 .254 -.129 .505
Entertainment .068 .708 .075 .700 .068 .601 Gmail -.037 .840 -.033 .867 -.037 777
Finance .068 .708 .187 .332 .200 118 Google Chrome 177 .325 -135 .486
Game .062 730 .093 .631 .109 .401 Google Hangouts .084 .642 126 .516 .058 .655
Health And Fitness 131 .468 -.066 732 Skype .045 .805 -.318 .092
Lifestyle .230 .199 .680 .000"* 446 .000"* WeChat .094 .602 .281 .139 183 .155
Maps And Navigation .284 .109 .337 .074 .322 .011" WhatsApp .159 .376 .331 .079 .210 .102
Music And Audio .007 971 .169 .381 .062 .630
News And Magazines .205 252 .195 .310 .198 122 Social
Personalization 111 .537 .270 .157 .151 .241 Facebook .324 .066 .176 .361 .309 .014*
Photography .165 .360 .011 .957 117 .364 Instagram .358 041" -.017 931
Productivity .148 412 .036 .851 120 .353 Snapchat .326 .064 .548 .002" .386 .002*
Shopping .064 724 142 .464 .085 .510
Social .364 .037* .445 .016* 421 .001** Lifestyle
Sports 234 191 .014 .944 123 341 Tinder .086 .634 .203 .292 121 .348
Tools .495 .003" -117 .546
Travel And Local 177 .323 .040 .835 143 .268 p < .05.
Video Players 098 586 .085 661 090  .488 a FDR < .05.

*p < .05. . . s .
“ FDR < 05 design of the Snapchat app contributes to the significant correlations

high levels of passive usage, such as occurs through streaming media or
using the smartphone as a GPS device.

Beyond interaction with the device, the bundled nature of apps
gives a multitude of ways through which app design and user experi-
ence may further contribute to problematic behaviour. FOMO is ap-
plicable across all social media apps and therefore characteristics be-
yond this are relevant. In particular, it is conceivable that the particular
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that are repeatedly evident in our analyses, as compared to other social
media apps (e.g., Facebook, Instagram).

We note that Snapchat is distinct from other social media in pro-
viding multimedia messaging whose main feature is the ephemeral
nature of the text, picture or video messages. Snapchat has a combi-
nation of design features that promote high frequency usage. For ex-
ample, “friend emojis” appear next to a user's friends' names only if they
“snap” each other regularly and feedback is provided on when content
has been consumed by the recipient. The app's functionality, in terms of
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Table 4

Correlation between app usage per event type and Smartphone Addiction for
male (a), female (b), and all users (c) for a subset of analysed apps for which at
least one p < .05 result was found.

Event type App M F M+F
r p r p r p
All all 303 .087 .253  .186 .280 .028"
Tap all 170 .344 241 .207 226 .078
Contacts 427 .013*  -187 .331
Facebook .363 .038" 103 .596 .307 .015"
Google Quick 344 .050" .242 .207 315 .013"
Search Box
Instagram .345 .049" -.004 .984
Snapchat 322 .068 .645 .000*" .459 .000*"
Long tap all 142 431 241 .207 .210 .101
Contacts 485  .004* -.069 .720
Facebook 321 .068 105 .587 260 .042"
Google Quick 284 .109 .307 .106 .283 .026"
Search Box
Snapchat 240 178 1498 .006" .368 .003™"
Writing all -.053 .770 327  .083
Contacts 496 .003" -226 .239
Facebook 273 124 .198  .304 259  .042"
Google Play 320 .069 240 .210 .277 .030"
Store
Google Quick 412 .017* -.067 .728
Search Box
Snapchat 281 113 .620 .000™ .432 .000*°
Spotify 106 .557 481 .008" .261 .040"
Scroll all 406 .019* .159 .410 .284 .025"
Facebook 285 .024° 159  .409 .295 .020"
Google Quick 265 .037" -.066 .734
Search Box
Settings 359 .004" .246 .198 326 .010"
Snapchat 346 .006° .459 .012* .347 .006"
WhatsApp .260  .042* 322 .088 .276 .030"
Text selection all 123 497 295 .120 142 .270
Contacts 419 .015" -.343 .068
Facebook 373 .032° 119 .537 287  .024"
Google Play 404 .020° .168 .385 316 .012*
Store
Google Quick 456 .008° -.074 .705
Search Box
Snapchat 323 .067 536 .003* .411 .001**
Spotify 153  .396 418 .024*  .262 .039"
*p < .05.
2 FDR < .05.

filters used to visually edit content, also regularly changes. The self-
deleting nature of content and the way in which messages are sent
creates a perception of control and privacy (Utz, Muscanell, & Khalid,
2015). Incentives are also provided for users to increase their snapping
frequency (i.e., send new content), by effectively making friends com-
pete against each other for top position and incentivising them not to
break their “Snapstreak” (which is only maintained if both interaction
partners have sent each other a Snap within the last 24 hours). This
latter form of gamification promotes usage, but it may also promote
addiction (Hellman, Schoenmakers, Nordstrom, & Van Holst, 2013).
Additionally, in contrast to some other social media platforms, Snap-
chat is only available for smartphones (as opposed to a general web
application), channelling all usage through the handset.

Interestingly, the Snapchat app also connects with entertainment
aspects of social communication, with “chatting through pictures”
providing a strong emotional context as compared to text (Vaterlaus,
Barnett, Roche, & Young, 2016). The combined need for the app to
support fun and functionality has been previously linked to Snapchat
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addiction (Punyanunt-Carter et al., 2017), when Snapchat usage is
considered in isolation. Based on our findings, we hypothesise that the
design features of Snapchat, relative to other social media apps, are
providing a strengthened environment for SA to take hold.

5.2. Limitations

Although equal or greater in sample size than other observational
and task based studies (e.g. (Andrist, Ruis, & Shaffer, 2018; Marquet,
Alberico, & Hipp, 2018; Peleg-Adler, Lanir, & Korman, 2018; Wang &
Hung, 2018)), it is possible that, given the power of the present study,
we did not detect all true associations, and thus replications with larger
samples may reveal additional findings. We also note that due to the
properties of different smartphone operating systems, only Android
users were selected for this study. The nature of data collection through
smartphones, based on an app, means that data collection was beyond
our immediate control, leading to exclusion of certain participants or
missing data (e.g., due to a low battery preventing the app from re-
cording and/or sending data). Lastly, we acknowledge that this study
was conducted through a non-clinical sample, recruited largely in a
higher education environment. We thus would not infer that the
smartphone usage levels and/or SAS scores indicate any impairment of
everyday functioning.

6. Conclusion

We have introduced a new approach to monitoring user activity for
the detection of problematic smartphone behaviour, by considering all
the Ul interactions made by a user. As compared to other measures, this
directly engages the potential problematic physical behaviour as a
signal. This approach also allows for a focus on exclusively active rather
than passive smartphone activity. Our data indicates that the time a
smartphone is active may not be a significant correlate of problematic
behaviour, which is symptomatic of the smartphone being used for an
increasingly wide variety of applications. Within heavy and diverse
usage, a more detailed analysis of behaviour allows the potential
sources of addiction to be better understood. Scrolling behaviour in
particular, is worthy of further investigation.

Through this approach, using an exploratory study, we have been
able to analyse indicators of Smartphone Addiction across a sample of
smartphone users (N = 64) over a period of 8 weeks. This has identified
that Smartphone Addiction is associated with the usage of Lifestyle and
Social applications. We have also discovered that Snapchat, one of the
most popular social media applications in use today, may be particu-
larly indicative of problematic smartphone usage, indicated across all
types of Ul interactions. To date, few academic studies have identified
such issues and this is worthy of further consideration, particularly
given the significant usage of Snapchat by teenagers. Preliminary
analysis of the Snapchat app, compared to other social media, leads us
to hypothesise that the app's design provides a particularly strong
pathway towards Smartphone Addiction.

Research on the addictive elements of these apps, and in particular
of Snapchat, is worth pursuing. Determining the direction of causality
and further examining social and environmental factors that could be at
play would be of great interest.
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