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Object attributes combine additively in visual search
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We perceive objects as containing a variety of attributes:
local features, relations between features, internal
details, and global properties. But we know little about
how they combine. Here, we report a remarkably simple
additive rule that governs how these diverse object
attributes combine in vision. The perceived dissimilarity
between two objects was accurately explained as a sum
of (a) spatially tuned local contour-matching processes
modulated by part decomposition; (b) differences in
internal details, such as texture; (c) differences in
emergent attributes, such as symmetry; and (d)
differences in global properties, such as orientation or
overall configuration of parts. Our results elucidate an
enduring question in object vision by showing that the
whole object is not a sum of its parts but a sum of its
many attributes.

Understanding object vision has been difficult
because we perceive objects as containing a variety of
attributes: local shape, texture, parts, part relations,
and global attributes (Palmer, 1999). Studying these
features has proved difficult primarily because they can
potentially interact in a number of important ways.
First, visual objects contain a vast number of potential
local features that require rigorous and extensive
testing to be validated with the result that we seldom
understand how features combine (Attneave, 1950; R.
Shepard, 1964; Tversky, 1977; Wolfe & Horowitz,
2004). Second, there may be emergent features formed
by the combination of local features that may in turn
interact with others (Kimchi & Bloch, 1998; Pomerantz
& Portillo, 2011; Pomerantz & Pristach, 1989; Pomer-
antz, Sager, & Stoever, 1977). Third, features may be
processed in a coarse-to-fine sequence with global
factors taking precedence (Kimchi, 1992; Navon, 1977;
Sripati & Olson, 2009; Wagemans et al., 2012b), but it
is not clear how global and local factors combine in
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perception. Thus, understanding feature integration
remains a fundamental issue in object vision. Our
current understanding of feature integration comes
from a number of experimental approaches, which we
review below.

Studies of perceived dissimilarity

The first approach involves measuring the perceived
dissimilarity between objects generated under some
form of parametric control (Attneave, 1950; R.
Shepard, 1964). A classic finding, for example, is that
the perceived dissimilarity between objects differing in
two features (e.g., rectangles that differ in both size and
brightness) is a sum of the dissimilarity along each
dimension (Attneave, 1950). Although some features
sum linearly (Dunn, 1983; Wiener-Ehrlich, 1978), other
features sum nonlinearly (Hyman & Well, 1967; Krantz
& Tversky, 1975; Wender, 1971). A concordant pattern
of findings were found using classification tasks in
which subjects had to classify objects along one feature
dimension while ignoring variations of a second feature
(Garner & Felfody, 1970; Gottwald & Garner, 1972).
Some features were separable, in that classification
along one feature was unaffected by manipulations of
the other, whereas other features were termed “inte-
gral” because classification was affected by the
irrelevant variations. These studies do not explain why
some features are separable and sum linearly whereas
others are integral and sum nonlinearly. The resolution
might lie in the tacit assumption that the manipulated
parameters are the features relevant for perception. For
instance, nonlinear interactions between two features
might indicate the presence of an additional feature.
We have recently shown this to be the case for rectangle
length and width, a well-known pair of integral features
(Pramod & Arun, 2014). Here, including aspect ratio as
an additional feature makes length and width sum
linearly. Thus, it is critical to study feature integration
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without making assumptions about the underlying
features.

A broader, theoretical framework for understanding
conceptual similarity was proposed by Amos Tversky
(1977). In this framework, a concept is a set of features,
and the net dissimilarity is a sum of shared and
distinctive features of the two concepts. This model
explains a variety of phenomena, such as asymmetric
judgments and contextual effects in judgments of
similarity. However, this framework also requires
explicitly defined features, which again makes any
inference about feature integration problematic.

Emergent features

The second approach to understanding feature
integration involves investigating how adding a fixed
context to an existing display changes perception. The
classic finding is that searching for a “(” among “)” is
hard, but adding “(” to every shape in the display to
make it a search for “((” among “(),” results in an easy
search. In other words, detecting the same change when
embedded in a fixed configuration is easier than
detecting the change by itself (Kimchi & Bloch, 1998;
Pomerantz & Portillo, 2011; Pomerantz & Pristach,
1989; Pomerantz et al., 1977). These configural
superiority effects have been frequently attributed to
Gestalt properties, such as closure, parallelism, sym-
metry, etc. (Pomerantz & Portillo, 2011). These
emergent properties place important constraints on
models of object vision. Despite these insights, this
approach does not explain how features, emergent or
not, combine in object vision.

Overview of the current study

As detailed above, feature integration has to be
explored with the caveat that many features can
potentially interact and result in emergent features. We
therefore asked: Is it at all possible to understand
feature integration without knowing or making as-
sumptions about the underlying features? We started
with the observation that many natural objects appear
distinct despite containing many similar features
(Figure 1A). However, natural objects may contain too
many distinct features, making them difficult to
manipulate systematically.

Our key insight was to create a large number of
objects from a small number of parts (Figure 1B) and
measure all possible pairwise dissimilarities between
these objects. We then hypothesized that the net
dissimilarity between two objects would depend on the
dissimilarities between their parts. Importantly, be-
cause a particular part pair will occur in many pairs of
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objects, its contribution to object dissimilarity (assum-
ing it is the same across object pairs) should be
recoverable from many dissimilarity measurements.
This amounts to solving a set of equations in which the
observations are the large number of measured
dissimilarities between objects and the unknowns
represent the contribution of each part—part relation to
the total dissimilarity.

Throughout this study, we have used the term
“parts” to denote distinct fragments that are attached
to predefined locations on a stem to form a whole
object. These fragments do not always correspond to
the perceived part structure of the whole object; for
instance, some of these fragments are themselves
perceived as containing further subparts. In general,
objects are thought of as containing perceived part
structure based on either decomposing them into shape
primitives (Biederman, 1987; Marr & Nishihara, 1978)
or using a set of boundary-based rules such as local
curvature extrema (Hoffman & Singh, 1997; Palmer,
1999). We have explored this issue in greater detail in
Experiment 7 by asking whether dissimilarities between
a fixed set of objects can be explained better using
fragments consistent or inconsistent with their per-
ceived part decomposition.

Throughout this study, we have shown that a variety
of object attributes sum linearly, implying that distances
in perceptual space combine according to a linear rule.
However this does not imply full linearity because a
linear function must show additivity (i.e., linear sum-
mation of attributes) as well as scaling (i.e., scaling the
input proportionally scales the output). Although scaling
is impossible to test without knowing the underlying
features, additivity or linear summation (which we use
interchangeably throughout) can be evaluated despite
this lack of knowledge (see General discussion).

In Experiment 1, for example, we created 49 objects
by combining seven parts on either side of a stem and
measured all 1,176 possible pairs of dissimilarities
between these objects (1,176 is the number of ways of
choosing two objects out of 49, hereafter denoted as
#C,). The number of part—part relations, however, is
only 21 ('C,). This enabled us to quantitatively address
an enduring question in object vision: Can distances
between objects be understood in terms of their parts?

To measure perceived distances between objects, we
used a visual search paradigm. For each pair of objects,
we created search arrays in which one object was an
oddball target and many copies of another object were
used as distracter items. We used the reciprocal of the
average time taken by subjects to find the oddball target
as an index of the perceived distance between the objects.
The reciprocal of reaction time (RT) can be interpreted as
the underlying salience signal that drives search (Arun,
2012) and yields more accurate accounts of visual search
compared to accounts based on RTs (Pramod & Arun,
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Figure 1. Objects and parts (Experiment 1). (A) Many natural objects appear distinct because of a collection of differences between
their parts. How do part relations combine to make objects similar or dissimilar? (B) Schematic of object creation. We created a total
of 49 objects by combining seven possible parts at either end of a stem and measured perceived distances between all 1,176 pairs of
these objects. Left parts (light gray) and right parts (dark gray) are colored differently for illustration. In the experiment, each object
was entirely white presented against a black background. (C) Example search arrays used to measure perceived distances (top panel:
easy search; bottom panel: hard search). Each array contained an oddball target among identical distracters. In both panels, the target
differs in one part from the distracters. RT (mean *+ SD) is shown at the bottom right of each panel. (D) Observed dissimilarities from
one group of four subjects were plotted against dissimilarities from a second group of four subjects. Here and in all figures, asterisks
represent statistical significance (*p < 0.05, **p < 0.005, etc.). (E) Visualization of perceptual space. We performed multidimensional
scaling to embed all 1,176 observed search distances between 49 objects into a two-dimensional space. Nearby images represent
hard searches. The correlation coefficient represents the correspondence between the observed distances and the distances in the 2-
D plot. Objects with red dots are the ones used in Experiment 9.

2014; Vighneshvel & Arun, 2013). Even in this study, ilarities between objects differing in their local parts.
models based on search distances produced much more These experiments are detailed below.

accurate accounts of the data compared to models based
on search times (Experiment 1).

We performed a total of 12 experiments. In
Experiments 1-10, we investigated how local features
combine in vision by asking whether part relations . . . o
explain object relations. In Experiments 11 and 12, we In Experiments 1-5, we used objects with distinctive
asked how global and local features combine by asking parts joined together by a stem. The stem ensured that
how changes in a global attribute modify the dissim- parts were spatially separated to minimize emergent

Local feature integration (Experiments 1-10)
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features, but we tested this assumption in later experi-
ments. In Experiment 1, we found that the net
dissimilarity between two-part objects is explained by the
sum of local part relations. Importantly, symmetric
objects were systematically more distinct by a fixed offset
from the model predictions. Thus, symmetry adds to the
local part dissimilarities and does not interact with them.
In Experiment 2, we confirmed that our results from
Experiment 1 hold when subjective dissimilarity ratings
are used instead of visual search distances. In Experiment
3, we confirmed that model performance and the effect of
symmetry do not depend on object orientation. In
Experiment 4, we show that objects with repeated parts
are also systematically more distinct than predicted by
the part summation model. In Experiment 5, we
measured distances between three-part objects to ask
how part relations changed with distance. We found that
parts that are further away interact weakly, suggesting
that the part comparison process is spatially tuned.

In Experiments 69, we tested whether our results
would hold when parts were no longer connected,
unique, or salient. In short, they did. In Experiment 6,
we asked how part relations change when parts are no
longer connected. We found that part relations within
connected objects and within disconnected objects are
fundamentally different. In Experiment 7, we asked
whether object distances could be explained better when
they were broken into their natural parts compared to
their unnatural parts. This was indeed the case. In
Experiment 8, we asked whether part relations could
explain distances between “holistic” objects that are not
perceived as containing any obvious parts. Here too,
object distances were accurately predicted as a sum of
part relations. This somewhat surprising finding might
reflect the subjects’ tendency to parse even whole objects
into parts when they are viewed along with other objects
that share some contours with the whole object. To
address this issue, in Experiment 9, we measured
dissimilarities between holistic objects in a separate
group of subjects that were never exposed to the shared
parts. Even these dissimilarities were explained by the
part-based model, suggesting that perceived dissimilar-
ities might be driven by a contour-matching process.

In Experiment 10, we investigated whether the
results from the preceding experiments—based on
manipulating shape—would extend to other object
properties. To this end, we created objects that could
differ in shape, texture, or both properties. Here too,
distances between objects were explained by a linear
sum of shape and texture dissimilarities.

Global properties (Experiments 11 and 12)

The results of Experiments 1-10 show that the net
dissimilarity between objects is almost entirely ex-
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plained as a linear sum of part distance relations. The
objects in these experiments were designed with the
same overall global structure to prevent these global
factors from influencing search. In Experiments 11 and
12, we examined how a change in a global attribute
modifies the dissimilarity between objects that differ in
their local parts. By a global attribute, we mean a
property that modifies the entire object as a whole
rather than any single part. For instance, a change in
the overall orientation of an object changes all features
rather than only a subset. Likewise, a change in the
configuration of parts induced by elongating the
connecting stem or moving one part relative to another
changes feature locations but leaves their local features
unchanged. In Experiments 11 and 12, we investigated
how the dissimilarity between two objects differing in
their parts is modified by changes in a variety of global
attributes. Strikingly, changes in global properties only
introduced fixed increases in dissimilarities, suggesting
that they sum linearly with local properties.

Experiment 1: Two-part objects

Here, our goal was to investigate whether the
dissimilarity between objects (as measured using visual
search) can be understood in terms of the dissimilarities
between their parts. We created a total of 49 two-part
objects by combining seven possible parts on either side
of a stem (Figure 1B). We took advantage of the
combinatorial nature of this set of objects by asking
how a large number of object—object dissimilarities
(49C2 = 1,176; where *’C, denotes the number of
possible distinct pairs of 49 objects) can be explained
using a relatively small number of part relations ('C, =
21).

Method
Participants

Eight human subjects (five female, aged 20-30 years)
participated in this experiment. In this and all following
experiments, subjects had normal or corrected-to-
normal vision and gave written informed consent to an
experimental protocol approved by the Institutional
Human Ethics Committee of the Indian Institute of
Science.

Stimuli

Each stimulus was created using two of seven
possible parts joined together by a stem (Figure 1B).
The parts were designed such that the resulting objects
ranged from very similar to very dissimilar. The set of
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Figure 2. Perceived object relations are explained using part summation (Experiment 1). (A) Schematic of the part summation model.
According to the model, the perceived distance between two objects AB and CD is a linear sum of distances between parts at
corresponding locations (green), parts at opposite locations (red), and parts within each object (blue). (B) Observed dissimilarity
plotted against predicted dissimilarity for all 1,176 object pairs. Object pairs with global attributes are highlighted: mirror-related pairs
(blue squares) and symmetric object pairs (red circles). The red dashed line is the best-fitting line for symmetric object pairs. (C) Part
relations at opposite locations (red) and within-object locations (blue) plotted against part relations at corresponding locations.
Dashed lines indicate the corresponding best-fitting lines. All part relations are significantly correlated but vary in magnitude,
suggesting that a single set of part relations drives object dissimilarity. (D) Two-dimensional embedding of part relations at
corresponding locations, showing differences between estimated part distances that ultimately drive object dissimilarity. The
correlation coefficient represents the correlation between the estimated part relations and the 2-D distances in this plot.

seven parts used in this experiment is shown in Figure
2D. The entire set consisted of 49 objects containing all
possible combinations of parts at either location (Fig-
ure 1E).

Procedure

Subjects were seated approximately 60 cm from a
computer monitor that was under control of custom
programs written using Psychtoolbox (Brainard, 1997)
in Matlab. In all experiments, in each trial, a fixation
cross was shown for 500 ms followed by a 4 X 4 search
array (measuring 21° X 21° with items measuring 3°
along the longer dimension with 3° interitem spacing)
containing one oddball item among multiple identical
distracters with a red vertical line down the middle.
Items were centered at the grid locations but were
jittered about the center by =0.45° according to a
uniform distribution to prevent alignment cues from
guiding search. Subjects were asked to report using a
key press (Z for left, M for right) the side on which the
oddball target appeared as quickly and accurately as

possible. They had to make a response within 10 s after
which the trial was aborted. The reciprocal of the
average time taken by subjects to make a key press was
taken as an estimate of the perceptual distance between
the oddball target and the distracter. In all, subjects
performed two correct trials for each pair of objects
(either item was target and could appear on the left or
right). Error trials were repeated after a random
number of other trials.

Model fitting

In Experiment 1, we estimated perceived distances in
visual search between 49 objects created by combining
seven parts on either side of a stem. This resulted in
¥C, = 1,176 perceived distances measured using visual
search. The part summation model consisted of C,,
i.e., 21 part relations at corresponding and opposite
locations and an equal number of within-object part
relations. Together with a constant term, the model had
64 free parameters. We used similar models for smaller
numbers of parts. In addition to the linear fit, we also
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transformed model predictions using a sigmoid func-
tion (integral of Gaussian with three parameters: mean,
variance, and peak level) to account for the fact that the
measured dissimilarity (1/RT) cannot increase indefi-
nitely due to motor constraints on RT. In general the
sigmoid nonlinearity yielded only subtle improvements
in the quality of fit (r = 0.86 for linear model; r = 0.88
for the sigmoid model in Experiment 1).

Model cross-validation

The model performance reported in each experiment
was based on fitting all the data, so it is possible that
the striking fits of the model are due to the model
overfitting the data. To assess this possibility, we
repeated all our analysis by fitting the model on 80% of
the data and testing it on the remaining 20% of the
observed dissimilarities that the model had never been
trained on before. We obtained qualitatively similar fits
using cross-validation. We observed a strong correla-
tion between observed dissimilarities and model pre-
dictions on test data sets obtained through 10 random
80/20 splits of the data (mean = standard deviation of
correlation across the 10 splits: r =0.85 = 0.02, p <
0.00005). Thus, the striking agreement between the
model and data did not arise from overfitting.

Analysis of search asymmetries

The dissimilarity between a pair of objects was
calculated by taking the reciprocal of the search time
averaged across all trials and across all subjects. However
doing so ignores any search asymmetries that may be
present in the data. It is well known that searches can be
sometimes asymmetric; for instance, it is easier to search
for a Q among Os than for an O among Qs (Wolfe,
2001). A detailed analysis of search asymmetries is
beyond the scope of the present study because we have
only two search times per object pair from each subject
with either object as target. To assess whether there are
any consistent search asymmetries at all, we separated
the subjects into two groups and asked whether there are
object pairs that show statistically significant asymme-
tries in both groups (using a ¢ test between search times
with one object as target vs. the other as target, criterion
of p=0.05). This yielded only five object pairs (of 1,176)
with a significant asymmetry in both groups, which rules
out any further systematic analysis. We nonetheless tried
to assess, as far as the model is concerned, whether model
performance is affected by search asymmetries. To this
end, for each object pair, we identified the target with the
smaller average search time (i.e., the easy target) and
took the dissimilarity for that pair to be the reciprocal of
the search time. We then asked whether model fits using
the easier searches across object pairs were any different
from model fits based on the hard searches. We obtained
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equally striking correlations in both cases (model-data
correlations: r = 0.83 for the easy target; r = 0.85 for the
hard target, p < 0.00005 in both cases). Thus, at least in
our data, search asymmetries do not affect model fits.

Although asymmetries were, in general, harder to
detect for individual object pairs, there is one group of
objects for which search asymmetries do systematically
occur. It is known that search for an asymmetric target
among symmetric distracters is easier than the other
way around (Olivers & van der Helm, 1998). To test if
this was true in our data, we compared search RTs for
object pairs involving symmetric and asymmetric
objects. This included a total of 294 object pairs. For
these pairs, search times for a symmetric target among
asymmetric distracters were longer than search times
for an asymmetric target among symmetric distracters
(mean search times: symmetric targets: 1321 ms;
asymmetric targets: 888 ms; z statistic =12.34, p <
0.00005, ranksum test).

Results

To measure perceived dissimilarity between objects,
we created visual search displays in which one object
was embedded among multiple instances of another
object (Figure 1C). We took the reciprocal of the
average RT for each object pair as a measure of
perceived dissimilarity between them (Arun, 2012).
Visual search has the advantage of being an objective,
naturalistic task requiring no explicit similarity judg-
ments, yet dissimilarities in visual search are strongly
correlated and less categorical than subjective dissim-
ilarity ratings (see Experiment 2).

In Experiment 1, subjects performed visual search
involving pairs of 49 objects created by placing two
parts at either end of an elongated stem (Figure 1B).
We measured all possible 1,176 (**C») pairwise
distances between the 49 objects. To assess whether
search performance was consistent across subjects, we
repeatedly split the subjects randomly into two groups
and calculated the average “split-half” correlation. A
large split-half correlation implies that subjects were
highly consistent in their search performance. Its
statistical significance (p value) represents the proba-
bility of observing a correlation at least as large as that
observed given the null hypothesis that the two subject
groups are uncorrelated. This analysis yielded a highly
consistent correlation (mean = SD: r=0.80 £ 0.005, p
< 0.00005; Figure 1D). The high consistency in search
RTs indicates a systematic and consistent perceptual
space across subjects.

The variation in observed RTs were not due to a speed—
accuracy trade-off as evidenced by a significant negative
correlation between search RT and accuracy across all
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searches (r =—0.31, p < 0.00005). In other words, when
subjects were faster, they were also more accurate.

To visualize these objects in perceptual space, we
embedded the observed distances for all 49 objects
using multidimensional scaling into a two-dimensional
plot. In the resulting plot, nearby objects represent hard
searches (Figure 1E). This plot reveals several inter-
esting patterns. For instance, objects that are vertical
mirror images are close together, and objects that share
parts tend to cluster together. We confirmed this
quantitatively by comparing search times for object
pairs involving vertical mirror images or shared parts
with object pairs with all distinct parts. There were
significant differences between these three groups
(mean search times: 2630 ms for mirror pairs, 1402 ms
for shared parts, and 971 ms for distinct parts; p <
0.0005 for the main effect of pair type in an ANOVA
with subject and pair type as factors).

Overview of the part summation model

We set out to investigate whether the large number
of measured dissimilarities between objects made from
essentially seven parts can be explained using relations
between parts. Because parts might be perceived
differently in isolation and when embedded in an
object, we indirectly estimated part relations rather
than directly measuring them. Consider two objects AB
and CD made from parts (A, B) and (C, D),
respectively. We hypothesized that the perceived
distance between these objects is a linear sum of all
possible pairwise relations between these parts: i.e.,
dac, dgp, dap, dec, das, and dcp. Further, perceived
distance might be driven differently by part relations at
corresponding locations (AC & BD), by part relations
at opposite locations (AD & BC), and by part relations
within the object (AB & CD) (Figure 2A). Thus, the net
dissimilarity between objects AB and CD can be
written as

d(AB, CD) = dAC + dBD + XAD + XBC + WaB + WcD
+ constant

where dac and dpp represent the dissimilarity between
parts AC and BD when they are at corresponding
locations in the two objects, xap and xpc are the
dissimilarities between parts AD and BC when they are
at opposite locations, and wapg and wep likewise are the
dissimilarities between these parts when they occur
within the object. The working of the model becomes
clearer on writing down the dissimilarity between
another pair of objects AB and CE where only one part
has changed.

d(AB, CE) = dAC + dBE + XAE + XBC + WAB + WCE
+ constant.
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It can be seen that a number of terms are common to
both equations (dac, Xpc, Wap) Whereas other terms are
present in one equation but not the other. For example,
the contribution of the term dyg 1S zero in the first
equation but one in the second. One can then
extrapolate this observation to the equations corre-
sponding to the 1,176 dissimilarity measurements: Each
term occurs frequently enough by itself for its
contribution to be estimated independently of the
others. Note that the number of part relations at
corresponding locations (i.e., terms of type dag, dac,
etc.) are a total of “C, =21 in number. In all, there are
21 part relations each for corresponding, opposite, and
within-object locations, which together with the con-
stant term amount to 64 unknown terms across 1,176
equations. The resulting set of linear equations can be
written down as the matrix equation y=Xb where y is a
vector of 1,176 dissimilarities, b is a vector containing
the 64 unknown part relations, and X is a 1,176 X 64
matrix whose rows contain Os and 1s representing
whether or not a particular part pair contributes to the
object pair corresponding to that row. This equation is
then solved using standard linear regression to estimate
the unknown vector b given y and X. Note that the
model contains separate, independent terms for each
type of part relation (corresponding, opposite, within)
and therefore makes no assumption about how these
terms may be related.

Performance of the part summation model

The part summation model produced striking fits to
the observed data (r =0.88, F(63, 1113)=49.23, p <
0.001, r* = 0.77; Figure 2B) and outperformed both
simpler models (e.g., with part relations of only one kind)
as well as those based on RT alone (see below). The
performance of this model is even better than the split-
half correlation (r=0.80) described above; this is because
the split-half correlation estimates the consistency of half
the data whereas the model is fit to the full data set, which
is more consistent. To estimate the true consistency of the
full data set, we applied a standard correction called the
Spearman-Brown formula, which estimates the correla-
tion between two full data sets based on the correlation
obtained between n-way splits of the data. For a two-way
split, i.e., the split-half correlation, the Spearman-Brown
corrected correlation is r.=2r/(r + 1) where r is the split-
half correlation. Applying this correction to the split-half
correlation yields r. = 0.88. Here and in all subsequent
experiments, we have reported this corrected split-half
correlation as a measure of data consistency. It can be
seen here that the model data correlation (r = 0.88) is
equal to the corrected split-half correlation (r. = 0.88),
implying that the part summation model explains search
dissimilarities as well as can be expected given the
consistency of the data. We conclude that perceived



Journal of Vision (2016) 16(5):8, 1-29

distances between whole objects can be explained as a
linear sum of part relations.

The estimated part relations revealed several inter-
esting insights. First, estimated part relations at
corresponding locations were significantly correlated
with relations at opposite locations (r=0.9, p < 0.001)
and within objects (r =—0.63, p = 0.0023), suggesting
that there is a common set of underlying part relations
that are modulated by object-relative location (Figure
2C). Second, parts at corresponding locations exert a
stronger influence compared to parts at opposite
locations (Figure 2C). Third, part relations within an
object have negative contribution, which means that
objects with similar parts tend to become distinctive
(Figure 2C). This negative weight is analogous to the
finding that search becomes easy when distracters are
similar (Duncan & Humphreys, 1989; Vighneshvel &
Arun, 2013). To visualize the part relationships that
drive the overall object dissimilarities, we performed
multidimensional scaling on the estimated corre-
sponding part dissimilarities. The resulting 2-D em-
bedding of the part relationships is shown in Figure
2D. It can be seen that parts that are estimated as being
dissimilar in Figure 2D result in objects containing
these parts to also be dissimilar (Figure 1E).

Does the part summation model explain mirror
confusion?

Because the part summation model is based on local
part relations, its predictions can provide a useful
baseline to evaluate global attributes. By global
attributes, we mean object properties that cannot be
inferred by the presence of a single part but only by
considering the entire object. We examined two such
global attributes. The first attribute was mirror
confusion. There were 21 pairs of objects of the form
AB and BA that were vertical mirror images of each
other. For these pairs, the observed distances were
generally smaller than the other object pairs, implying
mirror confusion. But importantly, model predictions
were significantly correlated with the data (r=0.60, p =
0.005; Figure 2B) with no systematic deviation. The
lower correlation of the model could be either due to
the relatively fewer points or because subjects were
themselves more variable in their responses for mirror
pairs. We found the latter to be true (average split-half
correlation of dissimilarities between mirror object
pairs across two groups of subjects: r=0.71, p=0.001).
What makes the model explain mirror confusion?
Consider what happens for a mirror pair AB versus
BA. The net dissimilarity can be written as d(AB, BA)=
dAB + dAB + XAA + XBB+ WAB + WARB- But the terms XAA
and xpp are taken to be zero in the model. This reduces
the net distance between objects, resulting in mirror
confusion.
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Does the part summation model explain symmetry?

The second global property we examined was
symmetry. There were seven symmetric objects pro-
duced by adding the same part to both ends of the
stem. Consequently, there were 21 (’C,) observed
distances between symmetric objects. Model predic-
tions were strongly correlated with the observed
distances (r = 0.78, p < 0.001; Figure 2B). This
correlation was close to the consistency between
subjects for these symmetric object pairs (average split-
half correlation: » = 0.76, p = 0.0063). Despite these
strong correlations, the model systematically underes-
timated the observed distances by a constant offset
(mean slope: 1.07 with 95% confidence interval [0.64
1.5]; intercept: 0.29 with 95% confidence interval [0.03
0.55]). The constant offset obtained for symmetric
object pairs was present equally strongly in both
horizontally and vertically oriented objects (Experi-
ment 3). This constant offset suggests that symmetry
exerts an additive influence on perceived distances
independent of the part relations in the model.

The symmetric objects in this experiment consisted
of the same part at both ends short of a vertical mirror
reflection. Is the effect then due to mirror reflection or
because of repetition of the parts? We tested this
possibility in Experiment 4.

Comparison with models based on RT

Our results are based on using the reciprocal of
visual search time (1/RT) as a measure of dissimilarity.
Our choice of 1/RT over RT is motivated by our recent
work showing that models that use 1/RT are able to
predict search performance much better than models
based directly on RT (Pramod & Arun, 2014;
Vighneshvel & Arun, 2013). We reconfirmed this to be
the case in this data as well: We simply substituted RT
as the observed data in our model instead of 1/RT and
asked whether observed RTs are explained using a part
summation model. We assessed model performance
using two criteria. The first was simply the correlation
between model predictions and the observed data. This
number can be misleading if the models to be compared
differ in their number of free parameters because the
model with more free parameters will tend to produce a
better fit. We therefore also evaluated another criterion,
namely the corrected Akaike information criterion—
denoted as AICc—which is a measure of quality of fit
for a model that penalizes it for complexity (Pramod &
Arun, 2014). The AICc of a model is calculated as

2K(K+1)
(N—K—1)
where N is the number of observations, SS is the sum of

squared error between the model and data, and K is the
number of free parameters in the model. In general, the

SS
AlCc = NlogW + 2K+
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Performance measure RT model 1/RT model Model Quality of
Part relation terms included correlation fit (AlICc = SD)
Correlation with
observed RT 0.77 0.88 Corresponding 0.64 3,586.8 = 52
Correlation with Opposite 0.55 3,387.6 = 55
observed 1/RT 0.49 0.88 Within 0.37 3,126.4 + 47
Quality of fit on RT Opposite + within 0.65 3,555.4 = 51
(AlCc, mean = SD) 2623.8 + 115 2847.6 * 143 Corresponding + within 0.73 3,792.3 = 50
Quality of fit on 1/RT Corresponding + opposite 0.77 3,959.7 = 74
(AICc, mean = SD) 1148 + 436 4432.9 *+ 58 Full model (corresponding
+ opposite + within) 0.88 4,432.9 + 57

Table 1. Comparison of RT and 1/RT models. Notes: Model
performance was evaluated on the 1,176 object pairs used in
Experiment 1. Standard deviations for the AlCc were calculated
by generating bootstrap resampled data, fitting the model each
time, and calculating the AICc. All correlations were significant
with p < 0.00005.

more negative the AICc, the better the model. But for
case of comparison, we considered the absolute value of
the AICc so that a larger value of the AICc indicates
better quality of fit. Our results are summarized in
Table 1. Standard deviations for the AICc were
calculated by generating bootstrap resampled data,
fitting the model each time, and calculating the AICc.
The AICc values for the 1/RT model were significantly
larger than the AICc values for the RT model, both
when explaining RT or 1/RT values (p < 0.00005,
paired ¢ test across 1,176 bootstrap-derived estimates of
AICc). We conclude that 1/RT models outperform RT
models in terms of explaining search data.

Comparison with reduced models

The full model described above consists of part
relations at corresponding locations, part relations
across locations, and part relations within the object.
Here, we systematically evaluated how much each of
these part relations contributes to the overall model
performance. To this end, we fit a number of reduced
models containing only subsets of these terms and
assessed model performance using the two criteria
described above. The results are summarized in Table
2. The full model yielded the best fit to the data not
only in terms of the overall correlation but also after
taking into account its increased number of free
parameters (i.c., its AICc was substantially larger than
the other models). The pattern of fits also indicates that
part relations at corresponding locations are the largest
contributor to the overall fit followed by part relations
across locations and then by part relations within
objects.

Because the reduced models were degenerate ver-
sions of the full model (obtained by setting specific
parameters to zero), we were also able to compare the
quality of fits using the partial F test. The null
hypothesis in the partial F test is that the full and

Table 2. Comparison of models with differing numbers of terms.
Notes: In each case, the model was fit to the 1,176 distances
measured in Experiment 1. All correlations were statistically
significant at p < 0.00005.

reduced models are equivalent. Here too we found that
the full model was significantly better in terms of the
quality of fit as assessed using the partial F test, F(42,
1113) =40.08 for full model versus corresponding part
terms only; F(42, 1113) = 52.14 for full versus opposite
terms only; F(42, 1113) = 72.2 for full versus within
terms only; all ps < 0.00005.

Comparison with models with nonlinear interactions

The above sections show that the linear part
summation model has a striking agreement with the
observed dissimilarities. Would the model perform even
better with nonlinear terms? Although this is unlikely
given the striking fit of the linear model with the data,
we tested this possibility by including nonlinear terms
in the part summation model. The nonlinear terms
consisted of products of part relations. For instance,
the net distance between objects AB and CD in the
nonlinear model is given by

d(AB,CD) = dac + dsp + Xap + XBC + WaB + WD
+ (Nacep + Napsc + Nas.cp)
-+ constant

where Nac pp represents a term that is set to one when
parts AC and BD are present and so on. The total
number of such nonlinear terms is therefore 2'C,,
which is 210. The nonlinear model predicted the
observed data only slightly better than did the linear
model (r = 0.86 compared to r = 0.85 for the linear
model, p < 0.00005) but at the cost of many additional
parameters. To assess whether this improvement was
significantly greater than expected given the additional
degrees of freedom in the nonlinear model, we
performed a partial F test taking the nonlinear model
as the full model and the linear model as the reduced
model. The null hypothesis in the partial F test is that
the reduced model is equivalent to the full model. This
test revealed no statistically significant difference
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between the two models, F(210, 900) = 0.0151, p =1,
partial F test, implying that the nonlinear model did
not perform significantly better than the linear model.
We conclude that the part summation model is a linear
sum of part relations.

The main findings in Experiment 1 are based on
measuring dissimilarities between objects using
visual search. Would our results hold for other types
of dissimilarity data? In classic studies of dissimi-
larity, subjects are typically asked to produce a
dissimilarity rating for each pair of objects (Att-
neave, 1950; Shepard, 1964; Tversky, 1977). How do
search dissimilarities relate to subjective dissimilarity
ratings? This is an interesting question in its own
right because visual search has often been thought of
as a preattentive process guided by a variety of
features (Wolfe & Horowitz, 2004) whereas dissim-
ilarity ratings involve explicit scrutiny and poten-
tially different features (Torgerson, 1965). To
investigate this issue, we conducted an experiment in
which subjects had to indicate subjective dissimilar-
ity rating for a pair of objects instead of doing visual
search.

Method
Participants

A total of nine subjects (three female, aged 20-30
years) participated in this experiment.

Stimuli

We used a subset of 16 objects from Experiment 1
made from four parts. We presented all possible 120
pairs of objects in the rating task. Object size and
interobject spacing was identical to that used in the
visual search experiment.

Procedure

Participants were shown a pair of objects with a
rectangular scale underneath it with the two ends
marked “Very similar” and “Very different.” They were
instructed to make a mouse click at a point on the scale
that best matched their subjective sense of dissimilarity
between the two objects. The location chosen by the
subject was converted into a continuous value between
one and 10. Each subject performed one trial per pair
of objects.
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Results

Subjects were extremely consistent in their dissimi-
larity ratings (average corrected split-half correlation
between two random groups of subjects [mean * SD]: r
=0.86 = 0.03, p < 0.00005). Importantly, these ratings
were strongly correlated with search dissimilarity
ratings measured for the same pairs in Experiment 1
(Figure 3A; r=0.81, p < 0.00005) even though the two
data sets were collected from different groups of
subjects. However, it can be seen that dissimilarity
ratings tended to saturate at the extreme ends of the
available range (i.e., for ratings below three and above
eight). In other words, when objects became extremely
similar or dissimilar, subjects tended to use a single
rating that corresponded to the extreme ends of the
range (Figure 3A). In contrast, there was no such
clustering observed for search dissimilarities although
they can and do saturate when the target—distracter
dissimilarity is very large (Arun, 2012). Whereas the
search dissimilarities were normally distributed (p =
0.11, Lilliefors test for normality), the dissimilarity
ratings differed significantly from a unimodal distri-
bution (p < 0.00005, dip = 0.1, Hartigan’s dip test).

The high correlation between search and subjective
dissimilarity might have come about because of highly
similar or dissimilar object pairs. To assess this
possibility, we calculated the correlation between
search dissimilarity and subjective ratings for the
middle range of dissimilarity ratings (between 3.0 and
8.0 ratings); this too revealed a positive and significant
correlation (r = 0.50, p < 0.00005). Interestingly, for
object pairs in this middle range, subjects were more
consistent in the visual search task (correlation between
search distances of two subject groups: r =0.63, p <
0.00005) compared to the subjective rating task
(correlation between ratings of two subject groups: r =
0.45, p < 0.005).

Next, we asked how well the part summation model
explains the subjective dissimilarity data. Proceeding
exactly as with the search data, we fit a model containing
corresponding location, across-location, and within-
object terms (*C, = six parameters each) and asked
whether the observed dissimilarity ratings could be
explained using a weighted sum of the part relations.
Model predictions were again strongly correlated with
the data overall (Figure 3B); r=0.95, F(18, 102) =29.84,
p < 0.0005, ¥ = 0.9. Model predictions were also
strongly correlated in the middle range of dissimilarities
(r=0.73, p < 0.00005 for 75 object pairs with
dissimilarity rated between three and eight). However we
only saw a weak effect of symmetry in the dissimilarity
data, but this could be because of the small number of
symmetric objects in this experiment.

In sum, we conclude that both subjective dissimi-
larity ratings and visual search dissimilarities reflect a
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Figure 3. Visual search and subjective dissimilarity (Experiment 2). (A) Plot of subjective dissimilarity (rescaled to a range of 1-10) against
search dissimilarity for the 120 object pairs created from 16 objects made by all possible combinations of four parts. Object pairs with
global attributes are highlighted (symmetric object pairs: red, mirror-related pairs: blue). Marginal histograms along each axis are
depicted. Green lines indicate the best-fitting mixture of Gaussian distribution of each case. (B) Performance of the part summation
model on subjective dissimilarity data, showing observed dissimilarity plotted against predicted dissimilarity. (**** is p << 0.00005).

common underlying object representation that is
explained well by a part summation model.

Experiment 3: Vertical versus

horizontal objects

In Experiment 1, we showed that symmetric objects
were systematically more distinct than predicted by the
part summation model. These results were obtained
using horizontally oriented objects. Objects in this case
became symmetric when parts on either end of the stem
were identical short of reflection about the vertical axis.
This raises the intriguing possibility that symmetry may
be related to mirror confusion. Based on the observa-
tion that mirror confusion is stronger about the vertical
axis than the horizontal axis (Rollenhagen & Olson,
2000), we reasoned that symmetry should be weaker in
vertically oriented objects (i.e., when it occurs due to
parts reflected about the horizontal axis) than in
horizontally oriented objects (i.e., when symmetry
occurs due to parts reflected about the vertical axis). To
address this issue, we conducted an experiment by using
both horizontal and vertical objects.

Method
Participants

Eight subjects (four female, aged 20-30 years)
participated in this experiment.

Stimuli

We used a subset of six parts from Experiment 1 and
created two sets of 36 objects from these parts: one with
objects in a horizontal orientation and the other with
objects in a vertical orientation.

Procedure

We measured visual search dissimilarity for *°C, =
630 pairs of objects in each set with two repeats per
condition. Trials containing horizontal objects were
randomly interleaved with trials containing vertical
objects. Subjects had to perform a total of 2,520 (2 sets
X 630 conditions X 2 repeats) correct trials. All other
details are the same as in Experiment 1.

Data analysis

As in the previous experiments, we fit a linear part
summation model with 46 parameters (15 part
dissimilarities each at corresponding, across, and
within object locations and a constant term) to the
observed data. To account for saturation in search
RTs, we transformed the model predictions using a
sigmoid function. In addition to the linear model, we
also tested a model with extra nonlinear terms. For
horizontal objects, this model did not perform
significantly better than the linear model even though
it had more free parameters: » = 0.87 for linear model,
r = 0.88 for nonlinear model, p =0.12, F(105, 477) =
1.19 for a partial F test comparing the two models.
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Figure 4. Horizontal and vertical objects (Experiment 3). (A)
Observed dissimilarity versus predicted dissimilarity plot for
pairs of horizontal objects. The best-fitting line for symmetric
objects is shown as a red dashed line. (B) Similar plot as in (A)
for pairs of vertical objects. (C) Average part dissimilarities for
horizontal objects (light gray) and vertical objects (dark gray).
Error bars indicate standard deviation. (D) Observed dissimi-
larities between vertical symmetric objects plotted against
dissimilarities for horizontal symmetric objects. Example object
pairs are shown along corresponding axes.

This was true for the vertical object searches as well: r
= 0.86 for the linear model, r = 0.87 for the nonlinear
model, p=0.063, F(105, 477)=1.25 for a partial F test
comparing the two models. We also confirmed that the
linear part summation model was not overfitting the
data by performing cross-validation as detailed in
Experiment 1 (cross-validated model correlation: » =
0.84 = 0.02 and »=0.84 = 0.03 for horizontal and
vertical objects, respectively). We did not analyze
search asymmetries as only six out of 1260 object pairs
showed significant effect of asymmetry (4/630 and 2/
630 pairs for horizontal and vertical objects, respec-
tively).

Results

Subjects were highly consistent in their search
performance (corrected split-half correlations across
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search dissimilarities [mean * SD]: r = 0.84 £ 0.01
and » =0.83 £ 0.01). There was a strong correlation
between search times across object pairs between the
horizontal and vertical orientations, suggesting that
object distances are fundamentally unaltered by
overall orientation (r =0.80, p < 0.00005). However,
horizontally oriented pairs were slightly harder in
visual search compared to vertically oriented pairs
(median RTs: 1086 ms for horizontal, 992 ms for
vertical, p < 0.00005, Wilcoxon signed rank test).
Importantly, however, the part summation model
produced excellent predictions for both horizontal
and vertical objects: r = 0.87, with F(45, 585) =
37.07, > = 0.76 for horizontal objects; r = 0.86,
F(45, 585) = 33.72, r* = 0.74 for vertical objects; p <
0.0005 (Figure 4A, B). Distances between symmetric
objects were systematically different from model
predictions by a constant offset for both object
orientations with no obvious difference in the
amount of offset (offsets: 0.34 for horizontal, 0.43
for vertical; p = 0.32, Wilcoxon ranksum test on 15
bootstrap-derived offset estimates; Figure 4A, B).
Mirror pairs were harder in horizontal orientation
when compared to vertical orientation (Mean RT:
2.73 s for horizontal, 2.03 s for vertical), #(28) = 3.8,
p < 0.00005, unpaired ¢ test. This is in agreement
with previous reports that mirror confusion is
stronger about the vertical axis (Rollenhagen &
Olson, 2000). Finally, we compared part relations
for horizontal and vertical orientations to elucidate
why distances were larger in the horizontal orien-
tation. Part relations at corresponding locations did
not differ in magnitude between horizontally and
vertically oriented objects. However, part relations
at opposite locations were slightly weaker for
vertical objects, and part relations at within-object
locations were substantially weaker for vertical
objects (Figure 4C). According to the model, then,
vertical objects are more distinct because within-
part relations are weaker. We conclude that part
matching is not isotropic and occurs preferentially
along the horizontal direction compared to the
vertical direction.

Although the above results indicate that the constant
offset due to symmetry does not differ between
horizontal and vertical objects, this finding is based on
a small number of observations (°C, = 15 distances
between six symmetric objects). To further confirm this
negative result, we performed an additional experiment
in which we took a larger number of symmetric objects
(n =12 objects) and measured all 66 pairs of distances
between these objects in visual search for seven subjects
(four females, aged 20-30 years). We reasoned that any
difference in the strength of symmetry between
horizontal and vertical objects should manifest as a
systematic difference in the observed dissimilarity. We
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Figure 5. Symmetry versus repetition of parts (Experiment 4). (A) Observed dissimilarity plotted against the model predictions for all
1,176 object pairs. Some example object pairs are shown. Pairs involving objects with repeated parts are highlighted in red circles
whereas pairs involving objects that share parts on opposite locations are shown as blue squares. (B) Part relations at opposite locations
(red) and within-object locations (blue) plotted against part relations at corresponding locations. Solid lines indicate the corresponding
best-fitting lines. All part relations are significantly correlated but vary in magnitude. (C) Two-dimensional embedding of part relations at
corresponding locations, showing the distance relationships between parts that ultimately drive object dissimilarity.

observed no such difference: Distances in both condi-
tions were strongly correlated (r = 0.83, p < 0.00005)
and did not differ in magnitude (median distances: 1.17
s~'and 1.19 s™! for horizontal and vertical, p = 0.79,
Wilcoxon signed-rank test, Figure 4D). We conclude
that the effect of symmetry does not depend on object
orientation.

Experiment 4: Symmetry versus

repetition

In Experiment 1, we found that objects with
bilateral symmetry were systematically more distinct
in visual search compared to model predictions. This
effect could be specific to bilateral symmetry or
alternatively arise due to repetition of parts in an
object. To distinguish between these possibilities, we
created a new set of objects from the same parts as in
Experiment 1 except that the stem was U-shaped to
allow each part to be placed at either end in the same
orientation (Figure 5A). This created asymmetric
objects with parts that could be repeated within the
object.

Method
Participants

Eight subjects (two female, aged 22-33 years)
participated in the experiment. All other details were
identical to Experiment 1.

Stimuli

A total of 49 objects were created from two parts
placed on either end of a U-shaped stem. This allowed
parts at either end to be in the same orientation unlike
in Experiment 1 in which they had to undergo mirror
reflection. The parts were the same as those used in
Experiment 1. Each part measured 1° wide by 1° tall (as
in Experiment 1), and the center-to-center distance
between parts was 2°. The entire object therefore was 3°
in width.

Procedure
All other details were identical to Experiment 1.

Data analysis

We fit the linear part summation model and
confirmed that the model is not overfitting the data
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(cross-validated correlation: r =0.86 = 0.01). In
addition to the linear model, we also tested a model
with extra nonlinear terms. The linear model was not
significantly different from the nonlinear model: r =
0.88 for linear model and »=0.89 for nonlinear model,
p=0.092, F(210, 900) = 1.15 for a partial F test
comparing the two models. For both models, we
transformed the predicted dissimilarities using a
sigmoid function to account for saturation in the
search dissimilarities. We did not analyze the effect of
search asymmetry on model performance as only 12
out of 1,176 pairs showed significant search asymme-
try.

Results

As in Experiment 1, subjects performed visual search
on 1,176 (*’C,) object pairs and were highly consistent
in their performance (average corrected split-half
correlation between dissimilarities across two random
groups of subjects: r =0.85 = 0.01, p < 0.00005). We
then fit the model to the observed dissimilarities as
before and obtained striking fits (r=10.88, F(63, 1113)=
53.52, » =0.77, p < 0.00005; Figure 5A). Estimated
part relations at corresponding locations were signifi-
cantly correlated with relations at opposite locations (r
=0.97, p < 0.00005) and within objects (r =—0.62, p <
0.005), suggesting that there is a common set of
underlying part relations modulated by location
(Figure 5B). Part relations were visualized using
multidimensional scaling (Figure 5C). These part
relations were similar to part relations in Experiment 1
(r =0.79 between corresponding location terms, r =
0.85 for opposite locations, and r = 0.83 for within-
object terms, p < 0.00005 in all cases).

Having established that the model performs well on
these objects, we then investigated how dissimilarities
between objects with repeated parts are explained by
the model. We observed the same pattern as in
Experiment 1: Model predictions were strongly corre-
lated with the observed dissimilarities for repeated-part
objects (r=0.88, p < 0.00005) but were offset by a fixed
amount. The slope of the best fitting line between
observed and predicted dissimilarities did not differ
significantly from one (slope = 1.06 with [0.64, 1.49] as
95% confidence interval), and the offset was signifi-
cantly different from zero (offset = 0.28 with [0.013,
0.54] as 95% confidence interval). This offset was
slightly smaller than the offset observed for symmetric
objects in Experiment 1 (0.3 vs. 0.28) but cannot be
directly compared because the data is from two
different groups of subjects. Nonetheless, to compare
the offsets with this caveat, we calculated the difference
between the observed dissimilarity and the model
prediction for each of the 21 repeated/symmetric object
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pairs and compared them using an unpaired ¢ test. This
revealed a difference that approached significance (#(40)
=1.75, p =0.087, unpaired ¢ test).

We conclude that objects with repeated parts are
systematically more distinct than expected by the part
summation model and that the magnitude of this effect
is comparable to that of symmetry. Thus, the effect of
bilateral symmetry observed in Experiment 1 might
arise due to part repetition rather than bilateral
symmetry per se. However, bilateral symmetry might
still play a role: For instance, subjects take equally long
to detect symmetry or repetition of two displays that
are far apart but are faster on symmetry when the
displays are joined together (Corballis & Roldan,
1974). More generally, repetition can be considered as a
translational symmetry. Importantly, for the purposes
of the study, both repetition and symmetry cause
objects to become more distinctive than predicted by
the part summation model. The fact that they make
objects more distinctive by a fixed offset implies that
both repetition and symmetry combine additively with
local features.

Experiment 5: Three-part objects

The results of Experiments 1-4 show that part
relations sum linearly and that part relations at
opposite locations have a weaker contribution com-
pared to those at corresponding locations. This could
be because parts at opposite locations are further apart
compared to parts at corresponding locations, implying
that part relations vary with distance. Alternatively,
this could be because corresponding locations are
fundamentally different from opposite locations in an
object. If part relations do not vary with distance, it
implies a “bag-of-parts” matching process in which all
part pairs are compared in the two objects regardless of
location. If part relations vary with distance, it implies
a spatially tuned matching process.

To address this issue, we created objects with three
parts that vary in their distance from each other. If part
relations decay with distance, relations (of the same
kind) between nearby parts should have a greater
contribution to the overall dissimilarity than relations
between far away parts.

Method
Participants

Ten subjects (four female, aged 15-30 years)
participated in the visual search experiment. All other
details are similar to Experiment 1.
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Stimuli

The stimuli were three-part objects with each part
attached to the branches of a W-shaped stem (Figure
6A). We chose the location of the branch point on the
stem such that two parts were close together and the
third part was twice as far away. There were six
possible parts at each location with the result that there
were 216 possible objects and a huge number (*'°C, =
23,220) of possible object pairs.

Procedure

Out of the possible 23,220 pairs of objects, we chose
a subset of 700 random pairs and measured perceived
distances as in previous experiments using visual
search.

Data analysis

We asked whether observed distances between objects
could be accounted for by a model in which part
relations sum linearly. However, for the object pairs used
in this experiment, the part relations could be between
parts at three possible distance levels: near (i.e., between
the near and middle parts), medium (i.e., between the
middle and far parts), and far (i.e., between the near and
far parts). Accordingly, we grouped part relations into
corresponding, opposite, and within-object terms with

three subgroups (near, medium, and far distance parts)
of terms within each group. Each set of part relations
contained °C, = 15 terms, and the complete model
contained a total of 106 (seven groups of 15 terms each
and a constant term). The predicted dissimilarities from
the linear part summation model were transformed using
a sigmoid function to account for saturation in search
dissimilarities (1/RT). We also confirmed that the model
was not overfitting using a cross-validated measure of
performance (mean * SD of cross-validated correlation:
r=0.78 = 0.04). Further, we found that there were only
six out of 700 pairs that exhibited significant search
asymmetry. Hence, we did not explore the effect of
search asymmetry on model performance in detail.

Results

We collected visual search data for 700 object pairs
from 10 subjects. The subjects were highly consistent in
their dissimilarities (average corrected split-half correla-
tion between two random groups of subjects [mean =
SD]: r=0.83 = 0.01, p < 0.00005). Upon fitting the
observed dissimilarities using the part summation model,
we obtained striking fits (r = 0.84, F(105, 595) = 12.69, r*
=0.71, p < 0.00005; Figure 6A). The estimated part
relations yielded several interesting insights. First, all
groups of part relations were significantly correlated
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(median correlation between groups: r = 0.81, median p
value: p = 0.000051), suggesting that there is a common
set of part relations that is modulated by location.
Second, the magnitude of the part relations estimated at
the different locations varied systematically (Figure 6B):
Part relations at corresponding locations were strongest
as before compared to all other terms and approached
significance for some comparisons (Figure 6B). Impor-
tantly, the magnitude of part relations for the far part
was systematically smaller than the near and medium
parts for both opposite and within-object location terms.
We conclude that part matching is spatially tuned and
decays with distance.

The results in the preceding sections were based on
objects whose part identity was unambiguous. In
Experiments 68, we manipulated part identity sys-
tematically. In this experiment, we investigated how
part relations change when parts are disconnected from
each other.

Method
Participants

Seven subjects (four females) took part in the
experiment. All other details are similar to Experiment 1.

Stimuli

We selected a subset of six parts from Experiment 1
and created 36 two-part objects from it. We then
created two variants for each object: the normal one in

which the two parts were connected by a stem (Figure
7A) and a variant one in which the stem was deleted
and the two parts were now spatially separated by the
same distance as before (Figure 7B).

Procedure

Subjects performed visual search task on 630
(3°C,) pairs of connected objects and 630 pairs of
disconnected objects. The trials involving connected
objects were randomly interleaved between trials
involving disconnected objects. In case of searches
involving disconnected objects, the spacing between
items in the array (3°) was larger than the separation
between the two parts (1°). This ensured that the two
isolated parts still grouped together by spatial
proximity cues.

Data analysis

We fit a linear part summation model to the
observed data as explained in the previous experi-
ments. We confirmed that the model was not over-
fitting using cross-validation (average cross-validated
correlation: r =0.87 = 0.03 and r =0.85 = 0.02 for
connected and disconnected objects, respectively). For
connected objects, the linear part summation model
was not significantly different from a model with extra
nonlinear terms: » = (.88 for linear model and r =0.91
for nonlinear model, p =0.07, F(105, 477)=1.24 for a
partial F test comparing the two models. This was true
for disconnected objects as well: r =0.86 for linear
model and r = 0.89 for nonlinear model, p = 0.31,
F(105, 477) = 1.07 for a partial F test comparing the
two models. Finally, very few searches (n = 5)
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exhibited a statistically significant asymmetry across
both groups, so we did not analyze them separately.

Results

The subjects were extremely consistent in their
dissimilarities (average corrected split-half correlation
between two random groups of subjects [mean * SDJ:
r=0.86 = 0.01 for connected objects and r = 0.83 =+
0.01 for disconnected objects, p < 0.00005). To assess
how dissimilarities change with stem deletion, we
compared search dissimilarities for every pair of
objects when the parts were connected versus when
they were separated. This revealed a strong positive
correlation (r =0.7, p < 0.00005). However, searches
involving connected objects were slightly easier than
searches involving disconnected objects (average
search times: 1118 ms for connected, 1382 ms for
disconnected objects, z=15.64, p < 0.00005, ranksum
test). We then fit the model containing corresponding,
within, and across terms to the dissimilarities for
normal and stem-deleted object pairs. Model perfor-
mance was equally good for connected objects (r =
0.88, F(45, 585)=136.89, r*=0.77, p < 0.00005 [Figure
7A]), and for disconnected objects (r =0.86, F(45, 585)
=33.43, * =0.74, p < 0.00005 [Figure 7B]). These
correlations were not significantly different (p = 0.14,
Fisher z test). Here too, symmetric objects were
systematically more distinct by a constant offset (best-
fitting slope: 1.05 with a 95% confidence interval [0.52
1.59]; intercept: 0.34 with a 95% confidence interval
[0.12 0.56]).

Part relations at corresponding locations were
strongly correlated with those at opposite and within-
object locations for both connected objects (r = 0.87
and r =—0.53, p < 0.05 for connected objects; Figure
7C) and for disconnected objects (r =0.91 and r =
—0.51, p < 0.05; Figure 7C). Thus, both connected and
disconnected objects have consistent part relations
across locations. However, part relations for con-
nected and disconnected objects were only weakly
correlated and often not even statistically significant (r
=0.45, 0.57, and 0.19 for connected vs. disconnected
part relations at corresponding, opposite, and within-
object locations, p=0.096, 0.025, and 0.5, respectively;
Figure 7C). Thus, part relations are fundamentally
different for isolated and embedded objects but sum
linearly in both cases.

The results of the Experiments 1-5 were based on
objects with operationally defined parts joined by a
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stem. In this experiment, we asked whether part
relations depend on the specific manner in which
objects are broken down into parts. Would our results
hold even for any breakdown of objects into fragments?
Are some fragments of an object better than others in
explaining its relation to other objects?

To address this issue, we drew upon the existing
literature in object vision showing that we readily
perceive objects to contain certain parts but not others:
For instance, people are faster to report that an “8”
contains an “o0” than a “3” (Hoffman & Singh, 1997;
Palmer, 1999). However, this pattern was observed
while subjects were explicitly instructed to judge
whether fragments belong to objects. Thus it is unclear
whether part decomposition occurs in natural vision in
the absence of explicit part judgments.

Method
Participants

Twelve subjects (two females) participated in the
experiment. All other details are similar to Experiment 1.

Stimuli

To address how part relations depend on the
manner in which parts are defined, we designed a set
of seven objects that could be broken down into
natural or unnatural fragments and recombined to
form other objects (Figure 8A). We chose different
parts on either end to avoid creating symmetric
objects. This resulted in two sets of objects that had
these seven objects in common. The first set comprised
objects broken down into unnatural fragments (Figure
8B). The second set comprised objects broken down
into natural fragments (Figure 8B). Instead of running
all pairs of objects in both sets, we sampled five 4 X 4
object matrices along the diagonal of the full 7 X 7
object matrix and chose all possible pairs of objects
within each 4 X 4 object matrix. Our particular choice
of the matrices led to 492 unique object pairs. This
design ensured that all part pairs were sampled
sufficiently without having to run all possible object
pairs (¥**C, = 1,176).

Procedure

We measured perceived distances between the chosen
object pairs using visual search. Trials from both sets of
objects were randomly interleaved.

Data analysis

We used a linear part summation model with 43
parameters to fit the data (detailed below). This model
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did not overfit the data as evidenced by a high cross-
validated correlation (r =0.77 £ 0.03 and r =0.81 =
0.02 for unnatural and natural part sets, respectively).
The incidence of search asymmetries was very low (20/
492 and 14/492 searches for unnatural and natural sets,
respectively), and hence, we did not explore this
further.

Results

To address how part relations depend on the
manner in which parts are defined, we designed a set
of seven objects that could be broken down into
natural or unnatural fragments and recombined to
form other objects (Figure 8A). We chose different
parts on either end to avoid creating symmetric
objects. This resulted in two sets of objects that had
these seven objects in common. The first set com-
prised objects broken down into unnatural fragments
(Figure 8B). The second set comprised objects broken

down into natural fragments (Figure 8B). The
dissimilarities between the seven common objects in
both sets could therefore be predicted using the
natural fragments or by the unnatural fragments. This
allowed us to ask whether object dissimilarities were
explained better by their natural parts or their
unnatural parts.

Subjects performed visual search on a total of 984
(492 conditions X 2 natural/unnatural) conditions and
were extremely consistent with each other (average
corrected split-half correlation between dissimilarities
across two random groups of subjects [mean * SD]: r=
0.89 = 0.02 for unnatural and r =0.89 = 0.02, p <
0.00005). Here also, we tried to fit the part summation
model to the observed data. Because the parts on either
end were different in identity, we were only able to use
part relations at corresponding locations in the model.
Hence the model had only 43 free parameters (21 part
relations each on left and right sides of the object and a
constant term).
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Model performance was slightly worse on the Method
unnatural part set (r = 0.80, F(42, 450) = 19.34, r* = . .
Participants

0.64, p < 0.0005; Figure 8C), compared to the natural
part set (r = 0.84, F(42, 450) =25.18, > =0.71, p <
0.0005; Figure 8D). This difference was statistically
significant as assessed using bootstrap resampling of
the correlation coefficients (p < 0.0005, Wilcoxon
signed-rank test on 492 bootstrap-derived estimates of
correlations). Across all bootstrap-derived samples,
the natural part model correlations were higher than
the unnatural part model correlations about 99% of
the time (Figure 8E). However this comparison is
based on different sets of objects, and the difference
might be due to the objects being different rather than
because of natural or unnatural fragments. We
therefore compared the two models on the 21 object
pairs common to both sets. The natural fragment
model performed slightly but significantly better than
the unnatural fragment model (r =0.73 for natural, r=
0.57 for unnatural; z=3.79, p < 0.005, Wilcoxon’s
ranksum test based on 21 bootstrap derived estimates
of correlations; Figure 8E). Across all bootstrap-
derived samples, the natural part model correlations
were higher than the unnatural part model correla-
tions about 90% of the time. Because the unnatural
part model was still reasonably successful in explain-
ing perceived distances, we surmise that the underlying
process involves contour matching rather than part
matching. However, using natural parts confers a
slight advantage in explaining object distances. We
conclude that the contour matching process is
modulated by part decomposition but not determined
by it.

Experiment 8: Holistic objects

In the previous experiment, we showed that the
manner in which an object is broken down into parts
influences the quality of fit between part relations and
object relations. In this experiment, we wondered
whether the part summation model would work for
objects that cannot be reduced into any perceptually
obvious parts (hereafter denoted as holistic objects).
We were motivated by our observation that objects
such as circles or squares contain no perceptually
obvious parts and appear instead as irreducible wholes.
To investigate this issue, we created a set of objects that
appeared to us to contain no distinctive or perceptually
obvious parts (Figure 9A). More formally, these objects
contain no salient curvature minima that would lead to
unambiguous part parsing (Hoffman & Singh, 1997).
Using this set of objects, we asked can dissimilarities
between holistic objects be understood in terms of their
parts?

Seven subjects (two female) participated in this
experiment. All other details are similar to Experiment 1.

Stimuli

We created seven contours that could be placed on
either the left or right side to make a set of 49 holistic
objects (Figure 9A).

Procedure

Subjects performed visual search on all possible
1,176 (**C,) pairs of holistic objects.

Data analysis

We fit a linear part summation model with 64
parameters as detailed in Experiment 1. The model did
not overfit the data as evidenced by a high cross-
validated correlation (r =0.88 = 0.01). We also found
that the linear model was not significantly different
from a nonlinear model: » =0.89 for linear model and r
= 0.9 for nonlinear model, p =1, F(210, 900) =0.22 for
a partial F test comparing the two models. In addition,
the incidence of search asymmetry was very low (four
out of 1,176 pairs), and hence, we did not explore this
further.

Results

We collected visual search data for all 1,176 pairs
of holistic objects. Subjects were extremely consistent
in their dissimilarities (average corrected split-half
correlation between two random groups of subjects
[mean = SD]: r =0.87 = 0.01, p < 0.00005). As
before, we fit the part summation model to the
observed data and obtained excellent fits (+r = 0.88,
F(63, 1113) = 50.56, p < 0.00005, r* = 0.77; Figure
9B). Here too, part relations were consistent across
locations (corresponding vs. opposite: r =0.91, p <
0.00005 and corresponding vs. within-object: r =0.79,
p < 0.00005; Figure 9C). Thus, distances between
holistic objects also can be understood in terms of
their parts. Likewise, symmetric objects were sys-
tematically more distinct by a constant offset (best-
fitting slope: 0.9 with a 95% confidence interval [0.63
1.18]; intercept: 0.47 with a 95% confidence interval
[0.11 0.82]).

The results of the previous experiment are counter-
intuitive because they suggest that distances between
holistic objects can also be explained using their parts.
There are two possible interpretations: First, it is
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possible that the salience signal that drives searches
involving holistic objects depends on a contour-
matching process that is independent of whether the
object is decomposed into parts. Second, it is possible
that the viewing of holistic objects with other objects
that share their parts resulted in the objects themselves
being perceived as containing parts. This would imply
that the perception of these objects as being holistic is
pliable by the context in which they occur. We assessed
this possibility in Experiment 9.

The findings of Experiment 8 show that dissimi-
larities between holistic objects can be explained
using their parts. However the searches in Experi-
ment 8§ frequently involved holistic objects that

shared a part of their contour with the distracters,
and this context could have caused subjects to
perceive the holistic objects as containing these
shared parts. To assess this possibility, we measured
dissimilarities between the holistic objects in an
independent group of subjects who never saw objects
with shared parts.

Method
Participants

Eight subjects (one female) participated in the
experiment. Two of these subjects had participated in
Experiment 8 (holistic objects), but their data did not
differ qualitatively with the other subjects. Therefore,
the analyses below are based on data from all
subjects.
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Stimuli

We chose all seven vertically symmetric objects
and seven asymmetric objects from Experiment 8
(marked in Figure 9) along with seven two-part
objects from Experiment 1. The asymmetric and
two-part objects were chosen such that none of the
parts were shared between two objects on the same
side.

Procedure

Subjects performed visual search involving pairs of
objects in each stimulus set in separate blocks that were
counterbalanced across subjects. Each block consisted
of searches involving 21 object pairs with two trials
each as before. In all, subjects performed 126 correct
trials of visual search (3 blocks X 42 trials per block).
All other details are as before.

Results

The main goal of this experiment was to test
whether the experimental context of viewing objects
with shared parts influenced the perceived dissimilar-
ity between objects. To this end, we measured the
dissimilarities of three groups of seven objects each:
holistic objects with vertical symmetry (marked with a
star in Figure 9), holistic asymmetric objects (marked
with a # in Figure 9), and two-part objects from
Experiment 1. Importantly, objects in each group were
chosen so that they did not share any part or contour
with other objects.

Subjects were highly consistent in their search
performance across all three groups of searches
(corrected split-half correlations: symmetric object
pairs: r=0.92 £ 0.03, p < 0.00005; asymmetric pairs:
r=0.94 = 0.01, p < 0.00005; two-part object pairs: r
=0.78 = 0.06, p < 0.00005). We then asked whether
predicted dissimilarities from the part summation
model (based on models estimated in the previous
experiments from an independent set of subjects)
would predict the dissimilarities observed in this
experiment. Model predictions were striking across
all three groups with no qualitative difference
(model-data correlations: symmetric pairs: r = 0.88,
r* =0.77; asymmetric pairs: r = 0.92, r* = 0.85; and
two-part pairs: r=0.88, r*=0.77; all correlations p <
0.00005). Thus, object dissimilarities were unaffected
by the experimental context in which objects were
observed. We conclude that holistic objects are
explained by the part summation model because the
dissimilarities are fundamentally driven by a con-
tour-matching process.
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The results of the preceding sections were all based
on testing shape attributes. Here, we wondered whether
this result would generalize to other object properties as
well. Specifically, we asked whether dissimilarities
between objects that differed in both shape and texture
could be explained using shape and texture dissimilar-
1ties.

Method
Participants

Eight subjects (four female) participated in the
experiment. All other details were identical to Exper-
iment 1.

Stimuli

A total of 36 stimuli were created by combining six
shapes with six textures in a combinatorial fashion.
This resulted in a total of *°C, search conditions
involving every pair of stimuli. We also measured
dissimilarities between all possible pairs (°C, = 15) of
shapes and between all possible pairs of textures ("C, =
15). For the shape-only conditions, shapes were shown
as silhouettes with a uniform white fill. For the texture-
only pairs, the textures were shown as squares filled
with the corresponding textures. Examples of these
searches are shown in Figure 8.

Procedure
All other details were identical to Experiment 1.

Data analysis

We used a linear model with 31 parameters (15 shape
dissimilarities, 15 texture dissimilarities, and a constant
term) to fit the observed data. We confirmed that the
linear model is not overfitting the data (cross-validated
correlation coefficient: »r =0.9 = 0.01). In addition, we
also found that there was only one search asymmetry
and, hence, did not explore the effect of search
asymmetry on model performance.

Results

We measured 630 (°°C,) pair-wise dissimilarities
between 36 objects differing in both shape and
texture using visual search (Figure 10). In addition,
we measured 15 (°C,) shape—shape dissimilarities
and 15 texture—texture dissimilarities to confirm
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model predictions. Subjects were extremely consis-
tent in their responses (average split-half correlation
between dissimilarities across two random groups of
subjects: r = 0.88 £ 0.01, p < 0.001). An example
search in which the target differed in both shape and
texture is shown in Figure 10A. It can be seen that
this search is slightly easier than searches in which
the target differs only in shape (Figure 10B) or in
texture (Figure 10C). Thus, both shape and texture
differences combine in visual search, and we set out
to investigate the precise functional manner in
which they combine using a similar model as before.
In the model, the net dissimilarity between two
objects different in both shape and texture is the
sum of the dissimilarity between the shapes of the
two objects and the dissimilarity between the
textures of the two objects. The model parameters
(31 parameters, 15 each for shape and texture and a
constant term) were estimated using linear regres-
sion as before. Observed dissimilarities were ex-
plained extremely well by the model (r = 0.91, F(30,
630) = 66.11, r* = 0.83, p < 0.001; Figure 10F). To
visualize the underlying shape and texture relations,
we performed multidimensional scaling as before.
These revealed systematic patterns of shape and
texture distances, which underlie the observed
dissimilarities (Figure 10D, E). We then compared
the shape and texture relations estimated by the
model with those observed using the shape-only and

texture-only conditions in visual search. These
model parameters were strongly correlated with
their observed counterparts (r = 0.87 for shape—
shape dissimilarities; r = 0.86 for texture—texture
dissimilarities; p < 0.001). We conclude that shape
and texture sum linearly in object vision.

Experiment 11: Global properties |

In Experiment 1, we found that symmetry—a global
attribute—combines additively with local part rela-
tions. In this and the next experiment, we investigated
whether this result would generalize to other global
attributes. We took pairs of three-part objects that
differed in at least one part. We then asked how the
perceived distance between two objects would change
when one of the objects differed by a global attribute.
We considered two global attributes in this experiment:
a change in global orientation and a change in the
length of the stem connecting one of the parts to the
rest of the object. We consider these properties global
because they affect the overall appearance of the object
without affecting local part identity. We specifically
chose relatively subtle changes in appearance in order
to study how these properties combine with local
properties in visual search.
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Method
Participants

Sixteen subjects (eight female, aged 20-30 years)
participated in this experiment.

Stimuli

The stimuli consisted of objects with three parts in a
T-like configuration. We selected six of the seven parts
used in Experiment 1. Parts on the left and right sides
of the object were created as in the previous experi-
ment. In addition, the third part at the bottom of the
object was created by 90° clockwise rotation of the
right-side equivalent of the part. We selected 60
random pairs of three-part objects for further manip-
ulation. For each pair, we created additional variants in
which one object in the pair differed in one of two
global attributes: orientation (6° or 9°) or stem length of
the middle part (50% or 75% increase). These
manipulations can be seen for a few example pairs in
Figure 11.

Procedure

All other details were identical to Experiment 1 with
the exception that subjects performed four correct trials
per search condition (2 with either object as target X 2
with target on the left and right). There were a total of
300 (60 normal + 60 X 4 variant conditions) unique
pairs of objects, and subjects had to perform a total of
1,200 correct trials (300 conditions X 4 repetition per
condition).

Results

To investigate the impact of global attribute differ-
ences on object dissimilarities, we compared search times
for object pairs that did or did not differ in global
attributes. This allowed us to infer in a model-free
manner the impact of global attributes on object pairs
differing in local features. Subjects were extremely
consistent in their performance (average corrected split-
half correlation between dissimilarities across random
groups of subjects across all 300 searches: r =0.94 *
0.01, p < 0.001). We selected for further analysis the
object pairs that showed a significant difference in RT
between the normal and variant conditions (p < 0.05 for
a main effect of variant type in an ANOVA with subject
and variant type as factors). This yielded 32 pairs for the
6° change and 50 pairs for the 9° orientation and 19 and
39 pairs for the 50% and 75% changes in length. We
speculate that the remaining pairs did not show an effect
because of signal-to-noise issues—in other words, that
they would also show a significant effect with a larger
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number of individual trials. Testing this systematically is
beyond the scope of this study given the limited number
of trials (n = 4) per search.

For the orientation variants, search times for the
variant pairs were consistently smaller than the normal
pairs (Figure 11A), indicating that the orientation change
contributed to the overall dissimilarity. But interestingly,
the perceived distances (1/RT) of the variant pairs
differed from the normal pairs by a fixed constant offset
that increased with orientation (Figure 11B). To further
confirm this trend, we examined the slope and offset of
the best-fitting line for both levels of orientation and
length after removing four extreme points from each set
to prevent the best-fitting line from being biased by the
outliers (we obtained qualitatively similar results on
varying this choice). The slopes hovered around unity
(i.e., with confidence intervals always including one) for
changes in orientation as well as stem length (Figure
11C). In contrast, the offset changed systematically with
an increase in length or orientation (Figure 11D). The
difference in offset was significant for both the orienta-
tion change and the length change (p < 0.001, Wilcoxon
signed-rank test on bootstrap-derived offset values equal
in number to the data points).

Our finding that dissimilarity increases systemati-
cally with increasing orientation is reminiscent of the
classic mental rotation experiments in which subjects
take longer to match more rotated views of the same
object (Shepard & Metzler, 1971). The systematic
change in offset with increasing orientation or with
changing stem length implies that there is a global
registration process that brings the objects into
alignment, and the net dissimilarity is driven both by
the amount of alignment required and the local part
differences (as evidenced by the correlation between
normal and variant pairs).

Here we investigated how a change in another global
property—the relative position of parts in an object—
would modify the overall dissimilarity between objects.

Method
Participants

Eight subjects (seven female, aged 20-31 years)
participated in this experiment.

Stimuli

The stimuli consisted of objects with two parts joined
together in a U-like configuration (Figure 12). We
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Figure 11. Orientation and stem length combine additively with local features (Experiment 11). (A) Search times for variant object
pairs plotted against search times for normal pairs. The pairs are chosen such that the search times for variant object pairs are
significantly different from normal pairs (p < 0.05). Variant object pairs contained the same local parts as the normal pairs but
differed in global orientation that was either 6° (gray filled circles) or 9° (red unfilled circles). Lines of the corresponding color indicate
the best-fitting line for the data. (B) Same data as in (A) but now using search dissimilarity (1/RT). The resulting plot shows that
introducing a global orientation difference increases dissimilarity by a constant value. This offset is larger for 9° than for 6°
differences. (C) Slopes of the best-fitting lines from (B) for two levels of orientation change (dark gray for 6° and pink for 9°) and for
two levels of change in length of the middle stem (50% and 75% increase in length, light gray bars). Error bars indicate 95%
confidence intervals from the linear fit. (D) Offsets of the best-fitting lines from (B) for the same conditions as in (C).

chose six out of the seven parts used in Experiment 1 to
create stimuli. Objects were created by attaching parts
measuring 0.6° onto a rectangular base (3.5° X 0.6°).
There were two types of object pairs: In each normal
object pair, the two objects had parts separated by 1.2°.
Each variant pair contained the same parts, but one
object had parts separated by 1.2° and the other had
parts separated by 2.4°. Thus, the variant pair has the
same part differences as the normal pair but, in
addition, differed in a global property. We selected 100
normal and variant pairs for further testing.

Procedure

All details were identical to Experiment 1 except that
subjects performed eight correct trials per search
condition (2 with either object as target X 2 with target
on the left and right X 2 repeats). There were a total of
200 object pairs (100 normal, 100 variant), and subjects
had to perform a total of 1,600 correct trials (200
conditions X § repetitions).

Results
Subjects were extremely consistent in their perfor-

mance (average corrected split-half correlation between
dissimilarities across two random groups of subjects: r

=0.93 = 0.01, p < 0.00005). As in the previous
experiment, we selected for further analysis only those
objects that showed a significant difference in the
search times between normal and variant conditions (p
< 0.05 for main effect of pair type in an ANOVA with
subject and pair type as factors). This procedure
yielded 51 pairs of objects. Searches involving variant
pairs were always easier than searches involving normal
pairs as expected because the variant pairs differed
both in local and global attributes (Figure 12A). As
observed in the previous experiment, search dissimi-
larities for variant pairs were greater than search
dissimilarities for normal pairs by a constant offset
(Figure 12B). The slope of the best-fitting line did not
differ from unity (slope = 1.08 with 95% confidence
interval [0.99 1.17]), and the intercept was significantly
different from zero (intercept = 0.11 with 95%
confidence interval [0.08 0.15]). Thus, a change in
spatial separation of parts introduced a fixed offset to
the dissimilarity already present due to local part
differences. The fixed offset shows that this global
attribute combines additively with local features.

General discussion

To summarize our findings: We have shown that the
dissimilarity between two objects is a linear sum of
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Figure 12. Part location combines additively with local features (Experiment 12). (A) Search times for variant object pairs plotted
against search times for normal pairs. Variant object pairs contained the same local parts as the normal pairs but differed in their
relative part positions. The red line indicates the best-fitting line for the data. (B) Same data as in (A) but now using search
dissimilarity (1/RT). Inset: Slope and offset of the best-fitting line. Error bars indicate 95% confidence intervals.

local feature differences (Experiments 1, 2, and 3).
These feature difference operations are spatially tuned
as evidenced by weaker influences of more distant parts
(Experiment 5). These difference computations are
modulated by part decomposition (Experiments 7, 8,
and 9). They are fundamentally altered when parts are
disconnected, implying that parts behave differently
within an object and when isolated (Experiment 6).
Symmetry and part repetition make objects appear
more distinct than expected through local feature
summation and, importantly, combine additively with
local feature differences (Experiments 1, 3, and 4).
Texture differences add linearly to shape differences
(Experiment 10). Finally, we have shown that altering
global attributes such as global orientation, stem
length, or part position all increase dissimilarity due to
local features by a fixed amount, implying that they
combine additively (Experiments 11 and 12).

The above findings are indicative of a remarkably
simple additive rule by which object attributes combine
in visual search. According to this rule, the perceptual
distance between two objects is a linear sum of local
part differences, texture differences, and global prop-
erty differences. This model performed remarkably well
in a variety of situations and yielded novel insights into
the nature of the computations that underlie perceived
object dissimilarity. Below we review our key findings
in the context of the existing literature.

Finding 1: Local features combine additively
Our main set of findings (Experiments 1-10) show

that the net dissimilarity between objects can be
understood as a linear sum of part dissimilarities. The

model produced extremely striking fits and in most
cases approached the consistency of the data itself,
suggesting that it explained nearly all the explainable
variance in the data. To our knowledge, this is by far
the most successful quantitative model of perceived
dissimilarity.

The general principle behind our model is consistent
with the theoretical framework proposed by Tversky
(1977) for conceptual similarity in general. In Tversky’s
framework, the dissimilarity between two objects is
increased by feature differences between the two objects
and decreased by features shared by the two objects.
Our findings are analogous: Part differences in general
sum linearly, and objects with shared parts will be less
dissimilar because the corresponding part terms are
Zero.

Our finding that local part and texture differences
sum linearly is consistent with recent studies in monkey
inferotemporal neurons showing that color and shape
signals (McMahon & Olson, 2009) and part responses
within whole objects sum linearly (Sripati & Olson,
2010). It is also consistent with our earlier finding that
simple features combine additively in visual search
(Pramod & Arun, 2014). Our model provides several
additional insights into how part relations combine in
object perception. First, we have shown that part
relations decay with distance, implying a spatially
tuned matching process between parts. Second, we have
shown that objects with similar parts tend to become
more distinctive. This effect is analogous to the finding
that search becomes easy when distracters become
homogenous (Duncan & Humphreys, 1989; Vighnesh-
vel & Arun, 2013). Third, we have shown that distances
between objects can be explained better using their
natural parts compared to their unnatural parts. It is
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consistent with the finding that search for a broken
object among unbroken objects is harder when the cut
occurs at a local concavity minimum than elsewhere
(Xu & Singh, 2002). Finally, we have shown that even
for objects that appear holistic, their dissimilarities can
be understood as a linear sum of their parts. We
conclude that, at least in visual search, dissimilarity is
driven by a contour-matching process that is spatially
tuned.

Finding 2: Global features add to local features

Our second set of findings (Experiments 11 and 12)
concern how global properties combine with local
properties. By a global property, we mean one that
modifies all features of the object rather than making a
local change in features. We tested two such properties:
global rotation (which modifies the orientation of all
features) and global configuration of parts (which
modifies the relative positions of all features). A change
in global orientation, stem length, or position of parts
of one object in a pair led to a fixed increase in search
distance regardless of the object pair. This fixed offset
increased systematically with orientation and length.
Taken together, our findings show that several global
attributes combine additively with existing local part
differences. This remarkably simple result suggests a
unified framework for understanding global attributes
in object vision.

Our approach in general can be used as a
quantitative framework to study many classic phe-
nomena in object vision. In the classic finding about
global precedence, subjects are faster to detect a
global shape than the local shape of a hierarchical
stimulus (Kimchi, 1992; Navon, 1977; Sripati &
Olson, 2009). This effect could be simply due to
stimulus size or due to hierarchical level (Kimchi,
1992; Sripati & Olson, 2009). These findings only
indicate the relative strength of global and local
features but do not explain how they might combine.
This issue can be addressed by measuring dissimilar-
ities between stimuli differing in global and local
shape and asking whether the part summation model
can explain these data.

In the classic example of configural superiority
effects, search for a “(” among “)” is hard, but adding
the fixed context “)” makes the resulting search for “()”
among “))” easy (Kimchi & Bloch, 1998; Pomerantz &
Portillo, 2011; Pomerantz & Pristach, 1989; Pomerantz
et al., 1977). Our results suggest a systematic method to
study emergent features. Consider for instance two
objects AB and AC that share a common part A.
According to the part summation model, their dissim-
ilarity is given by d(AB,AC) =daa + dpc + Xac+ XaB —
wag + wac. Any emergent feature present in the objects
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AB and AC would result in a failure of the model to
predict the observed dissimilarity because the model
only considers each part in isolation. This approach
offers a quantitative framework to identify emergent
features and study how they combine with other
features.

Finding 3: Repeated parts and symmetry add to
other attributes

Our finding that symmetry, a global property, adds a
fixed extra distinctiveness to objects was only possible
because the part summation model provided an
appropriate baseline to factor out the influence of local
features. Our finding indicates that symmetry is an
independent property that is computed in visual cortex
that combines additively with other features. It explains
several observations about symmetric objects: (a)
symmetric objects are easier to find in repetition
detection (McMahon & Olson, 2007) and (b) a
deviation from symmetry is easy to detect (Wagemans,
1997; Wagemans et al., 2012a) because loss of
symmetry reduces distinctiveness.

We have further found that the fixed increase in
dissimilarity for symmetric objects was present not
only for bilaterally symmetric objects but also for
objects with repeated parts (i.e., a kind of translational
symmetry). This is consistent with the fact that
symmetry and repetition can be detected equally fast
in displays that are spatially separated (Corballis &
Roldan, 1974). Humans are extremely good at
detecting a variety of symmetries. High-level visual
areas but not early visual areas show differences in
activation between symmetric and asymmetric dis-
plays (Bertamini & Makin, 2014). A recent transcra-
nial magnetic stimulation study has causally
implicated the lateral occipital complex in symmetry
detection (Bona, Herbert, Toneatto, Silvanto, &
Cattaneo, 2014). Thus, the likely locus for the
representation of symmetry is high-level visual cortex.
Our results add to the existing literature on symmetry
by showing that symmetry causes objects to be more
distinctive and also combines additively with local
part differences.

Finding 4: Perceptual space can be understood
without knowing the features

A central goal of object perception is to understand
the features and principles governing perceptual space.
Our results demonstrate that certain principles gov-
erning perceptual space can be inferred without
knowing the underlying features. In Experiments 1-10,
we have shown that the distance between two objects
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AB and CD can be expressed as a linear sum of the
constituent part—part dissimilarities dac, dgp, dap, dpc,
dap, and dcp. In Experiments 11 and 12, we have
shown that if object AB is rotated or its part
configuration is altered, the distance between AB and
CD increases by a fixed amount. These findings place
constraints on how objects may be represented in the
brain. For instance, if objects AB and CD are
represented as vectors in an underlying multidimen-
sional space, then the distance between these two
vectors, according to our findings, is not a simple
vector distance. Rather, it is a complex function that is
influenced systematically by (a) spatially tuned part-
matching processes and (b) changes in global attributes.
Thus, our results challenge the commonly held view
that objects can be thought of as vectors in some
multidimensional space.

Linearity in perceptual space

The central claim of our study—that object attri-
butes combine additively in visual search—raises the
interesting possibility that distances in perceptual space
are linear. For a one-dimensional function, linearity
implies (a) additivity, i.e., f{x +y) = f(x) + f(y), and (b)
scaling, i.e., f(ax) = af(x). In our context, if object AB
was represented by vectors a and b, and CD was
represented using vectors ¢ and d, then we have shown
that d({a,b},{c,d}) = wid(a,c) + wd(b,d) + wod(a,d) +
wad(b,c) — wsd(a,b) — wid(e,d), where d is a distance
metric on features, and wy, w,, w3 represent the relative
weights associated with each type of comparison. Thus,
our results show that the perceived distance between
two collections of features is a linear sum of pair-wise
distances between all features. Thus, we have demon-
strated that perceived distance has an additivity
property, but we have not demonstrated scaling. This is
impossible in our study because we do not assume any
explicit parts-based representation, rendering mean-
ingless any notion of scaling.

However, the scaling property can be demonstrated
when the underlying features are known. For instance,
if orientation is taken as a feature, then we have
previously shown that, short of an intercept term, the
perceptual distance between two lines differing by an
angle of A0 is given by d(A0) = kA0, where k is a
constant (Arun, 2012). This, in turn, implies that
d(aA0) = kaAO = ad(A0), which confirms scaling. More
recently, we have shown this to be true for several other
features such as length, intensity, and aspect ratio
(Pramod & Arun, 2014). Thus, these results together
with our present findings confirm both additivity and
scaling of distances in perceptual space, indicative of
full linearity.
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Conclusions

Taken together, our results indicate a remarkably
simple additive rule by which a variety of object
attributes combine in object vision. This rule can
potentially enable the discovery of novel features by
requiring them to combine additively with existing
ones. It also places powerful constraints on computa-
tional models of object vision by requiring emergent
features to sum linearly.

Keywords: object recognition, visual search, percep-
tual space
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