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Single-case experimental designs (SCEDs) involve obtaining repeated measures from one or a few participants before, during, and, some-
times, after treatment implementation. Because they are cost-, time-, and resource-efficient and can provide robust causal evidence for more
large-scale research, SCEDs are gaining popularity in trauma treatment research. However, sophisticated techniques to analyze SCED data
remain underutilized. Herein, we discuss the utility of SCED data for trauma research, provide recommendations for addressing challenges
specific to SCED approaches, and introduce a tutorial for two Bayesian models—the Bayesian interrupted time-series (BITS) model and
the Bayesian unknown change-point (BUCP) model—that can be used to analyze the typically small sample, autocorrelated, SCED data.
Software codes are provided for the ease of guiding readers in estimating these models. Analyses of a dataset from a published article as
well as a trauma-specific simulated dataset are used to illustrate the models and demonstrate the interpretation of the results. We further
discuss the implications of using such small-sample data-analytic techniques for SCEDs specific to trauma research.

Although randomized control trials (RCTs) were once her-
alded as the gold standard of treatment design, researchers and
policymakers have come to recognize that a one-size-fits-all
model is not appropriate for all research. In recent years, single-
case experimental designs (SCEDs), which permit a reason-
ably rigorous experimental evaluation of intervention effects
and provide an avenue to examine causal effects, have become
an increasingly recognized alternative to RCTs for establish-
ing evidence of treatment efficacy and shown their utility as
a method to conduct pilot investigations for large-scale causal
studies (Smith, 2012). For instance, SCEDs are appropriate to
intensely pilot-test new vaccines on small groups of individuals
diagnosed with COVID-19; their progress can be tracked across
time before conducting an RCT in a larger sample. Of note, evi-
dence from a single SCED cannot affirm causation; SCED data
across both studies and researchers is needed to make strong
conclusions regarding treatment efficacy (Kratochwill et al.,
2010). Similarly, SCEDs are not immune to traditional method-
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ology influences regarding the interpretation of causal relations,
such as measurement and construct validity, confounding vari-
ables, and replicability and stability of obtained causal rela-
tions (Brewer, 2000). Advantageously, SCEDs are related to
the goals of personalized (i.e., precision) medicine initiatives
outlined in President Barack Obama’s 2015 State of the Union
address (Office of the Press Secretary, 2015) and are considered
to be at the apex of the evidence hierarchy by the Oxford Centre
for Evidence-Based Medicine (Howick et al., 2018).
Broadly, the goal of SCEDs is to show that the observations

made during a treatment phase are the function of the treat-
ment alone (i.e., there are no alternative explanations for out-
comes). A form of interrupted time-series designs, SCEDs em-
ploy time as the independent variable, with outcome variables
recorded repeatedly for individual participants. They are gen-
erally conducted in phases: a baseline phase to first establish
what is typical for the participant, followed by treatment phases
(Smith, 2012). Moreover, SCEDs meet the high evidence re-
quirements set by the What Works Clearinghouse (WWC; Kra-
tochwill et al., 2010), such as providing evidence of treatment
effects immediately following introduction to and withdrawal
from the treatment (i.e., the immediacy of effect) as well as evi-
dence of consistency and stability within phases and differences
in levels and/or slopes between phases. With their simplistic
yet unique design, SCEDs have wide applicability to trauma
research. Herein, we (a) outline the importance of SCEDs in
trauma research, (b) discuss the challenges of using SCEDs,
and (c) provide a description and tutorial of the Bayesian inter-
rupted time-series (BITS) and Bayesian unknown change-point
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(BUCP) models, using an example from a published study and
simulated data.
There are limitations in existing psychopathology treatment

research, including posttraumatic research. First, large-scale
RCTs require moderate-to-large samples, take time from ini-
tiation or implementation to publication of findings (Ioanni-
dis, 1998), and partly contribute to the concerning time lag
in integrating research findings into actionable clinical prac-
tice (Morris et al., 2011). Second, psychopathology treatment
research, for valid reasons, utilizes homogenous samples and
excludes diagnostically complex cases (e.g., individuals with
suicidal attempts; Kennedy-Martin et al., 2015) as well as par-
ticipants from diverse groups (Triffleman & Pole, 2010). How-
ever, research targeting diagnostically complex and culturally
diverse or difficult-to-access traumatized samples is needed for
evidence-based trauma treatments and to combat the one-size-
fits-all assumption with regard to research and clinical practice
(Steenkamp & Litz, 2013). Third, few existing methodologies
permit the examination of the nuanced and cascading effects
that targeting one symptom can have on other symptoms (e.g.,
the effects of targeting intrusion-related symptoms of posttrau-
matic stress disorder [PTSD] on other PTSD symptoms). Such
a precision-medicine–based approach may be difficult to im-
plement in regular clinical trial methodologies (Kessler et al.,
2018). Finally, existing efficacious trauma treatments have con-
siderable dropout rates (Imel et al., 2013) and lack effectiveness
for all patients (Cusack et al., 2016).
As their design permits an examination of within- and

between-participant variability, SCEDs lend themselves par-
ticularly well to research on posttraumatic disorders, such as
PTSD, wherein the occurrence of a traumatic event is etiologi-
cally related to symptomatology and in which symptoms fluc-
tuate over time and context. Given that they are idiographic in
nature, SCEDs allow for the examination of individual factors
contributing to treatment response and nonresponse (Au et al.,
2017). This is relevant to PTSD treatment, in which approxi-
mately 54% of treatment-seeking individuals either do not re-
spond to or drop out of treatment (Bradley et al., 2005). Fre-
quent assessments, combined with a baseline phase, can aid
in examining whether certain symptom changes are stable, co-
incide with treatment or trauma-related triggers, or are linked
with other symptoms. In addition, SCEDs can provide evi-
dence of specificity of a posttraumatic intervention; for exam-
ple, Kessler et al. (2018) demonstrated a decrease in specific
intrusions that was associated with targeting those intrusions in
an intervention. Rigorous methodological innovations with im-
mense utility for trauma research and treatments (Bourla et al.,
2018), such as real-time monitoring methods, can be easily in-
tegrated into SCEDs (Bentley et al., 2019).
Supplemental Table S1 in Supplementary Materials S1

presents some examples of SCEDs used in trauma research to
address various trauma-related research issues, such as devel-
oping and/or piloting a new trauma treatment with applications
for individuals who report a unique set of symptoms (e.g., com-
plex PTSD), examining the effects of treatments on specific

posttraumatic symptoms (e.g., intrusive memories), and ob-
taining a nuanced and time-intensive observation of treatment
effects on one trauma-exposed individual. Broadly, SCEDs
have the potential to advance trauma research. To introduce re-
sources for implementing SCEDs in trauma research, we pro-
vide a description of the SCED design, its interpretation, and
related challenges.

Challenges to SCED Analysis

Visual analysis, one of the most commonly used SCED anal-
yses, involves visually inspecting plotted data for consistency
within treatment phases (i.e., baseline, treatment, and post-
treatment) and examining differences in trends between phases
(Gast & Ledford, 2014). Unfortunately, visual analyses have
drawbacks. Immediacy, which is computed as the difference
between the last three to five data points of the previous phase
and the first three to five data-points of the following phase, has
no objective guidelines for interpretation. Although some con-
sensus exists among expert researchers regarding rules to de-
termine treatment effectiveness based on visual analyses (e.g.,
Kratochwill et al., 2010), such rules are not uniformly applied
(Horner et al., 2012). Further, some treatments may not involve
an immediacy effect; alternatively, general effects may not be
apparent visually, despite clinical and statistical effectiveness
(Meadan et al., 2016). Moreover, the presence of autocorre-
lation can confound the findings of visual analyses by con-
tributing to decreased interrater reliability during visual anal-
yses (Brossart et al., 2006) and more Type I errors (Maggin &
Chafouleas, 2013). Thus, quantitative methods beyond visual
analysis are needed to ascertain treatment effects for SCEDs
(Maggin et al., 2011). However, common inferential statistical
analyses fail with SCEDs because the time series are often too
short (i.e., five to seven data points per phase), and data are auto-
correlated and often presented as count or percentage estimates
(Shadish & Sullivan, 2011). Most parametric analyses are inap-
propriate, as they assume independence of observations. More-
over, ordinary least squares (OLS) interval estimates of auto-
correlations have severe undercoverage (Shadish et al., 2013).
Maximum likelihood estimation of autocorrelated data is pos-
sible only with large datasets.
Recently, methodologists have begun investigating how

Bayesian methods can be deployed to overcome the analytical
challenges presented by SCED data. Bayesian methods are
appropriate to analyze SCED data because they (a) work well
with small samples (Gelman et al., 2013), (b) provide accurate
interval estimates of autocorrelation (Shadish et al., 2013),
(c) are flexible to model with autocorrelated small-sample
data (Kruschke, 2013; Natesan & Hedges, 2017), (d) provide
reliable estimates of uncertainty (Natesan & Hedges, 2019),
(e) work with count estimates for autocorrelated small sample
data (Natesan Batley, Shukla Mehta, et al., 2020), and (f) pro-
duce credible intervals that can be interpreted probabilistically
(Gelman et al., 2013). Natesan and Hedges (2017) proposed an
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Figure 1
Single Case Experimental Design Plot as an Interrupted Time-Series Design

Note. PTCI.SB refers to Posttraumatic Cognitions Inventory Self-Blame

analytic model—the BUCP model—to measure effect sizes for
count data and extended the model to a multiple-phase design
to overcome the small-data and autocorrelation challenges
of SCEDs (Natesan Batley, Minka, et al., 2020). Natesan
Batley, Minka, et al. (2020) applied the BITS model for count
data, which are more common in SCEDs. The BUCP model
is an extension of the BITS model (Natesan, 2019), which
requires at least eight data points per phase and a standardized
mean difference of 3 for a reasonably accurate estimation of
the parameters (Natesan & Hedges, 2017). Whether samples
are defined as “small” and “large” varies based on statistical
application. However, five to eight data points per phase,
common in SCEDs (Shadish & Sullivan, 2011), can still be
considered a small sample scenario based on the requirement
of the presence of at least three data points to discern a pattern
in the regression framework. To encourage the application
of these recent analytical developments to real-world SCED
data among trauma researchers, we next present a detailed
overview of the BITS and BUCP models. Syntax and data files
can be downloaded from Github, and a primer to Bayesian
methodology is included in Supplementary Materials S2.

BITS Model and Tutorial

The BITS model is a simple interrupted time-series model
that consists of at least two phases (i.e., baseline and treatment),
with the treatment acting as the “interruption” (Figure 1). The
simplest BITS model applied to SCED data consists of two
phases, baseline (A) and treatment (B), and is called an “AB
design.” In Phase A, the participant is observed for several time
points to obtain a baseline against which treatment effects can
be compared; this baseline essentially serves as the control con-
dition. In Phase B, the treatment is implemented. The researcher

fits independent lines of best fit to each phase, and, to examine
treatment effectiveness, compares the intercepts, and computes
the effect size as the difference between the intercepts.
In the current tutorial, we demonstrate the BITS and BUCP

models using an example from a study by Au et al., (2017).
In this study, a community sample of trauma-exposed adults
(n = 10) underwent six weekly sessions of a novel, brief
compassion-based therapy aimed to reduce trauma-related
shame and PTSD symptoms. Participants were randomly as-
signed to a 2-, 4-, or 6-week baseline phase and completed
weekly measures throughout the baseline and treatment phases.
For this tutorial, we used data from the Posttraumatic Cog-
nitions Inventory Self-Blame subscale (PTCI-SB; Foa et al.,
1999) data for Participant P7. The PTCI (Foa et al., 1999) is
a 36-item self-report measure that is used to assess trauma-
related patterns of thinking. Response options range from 1 (to-
tally disagree) to 7 (totally agree). The measure yields three
subscales: Negative Cognitions about the Self, Negative Cog-
nitions about the World, and Self-Blame. Presented data from
the Au et al. (2017) study are on an interval scale.
This leads to a general discussion about the reliability and va-

lidity of SCEDs. Effect replication is a mechanism for control-
ling threats to internal validity and is commonly implemented
in four SCED designs: multiple baseline (i.e. with at least three
participants), multiphase (i.e., ABAB designs), changing crite-
rion, and alternating treatments designs. Possible internal valid-
ity threats for SCEDs include ambiguous temporal precedence,
selection bias, history- and maturation-related effects, statisti-
cal regression toward the mean, attrition, testing, instrumenta-
tion, and additive or interactive effects of other threats to inter-
nal validity (Shadish et al., 2014). To address these concerns,
the WWC requires that SCEDs demonstrate evidence of inter-
rater reliability and include three demonstrations of treatment
effect, a systematically manipulated independent variable, and
a minimum of three data points per phase (Kratochwill et al.,
2010). Evidence of an association between independent and
outcome variables is established by documenting the consis-
tency of trend, level, and variability within each phase, among
other things; this serves as a rough reliability measure.
Readers are encouraged to peruse the R script file called

BITS.R as they read through this section. Before running
the analyses, R (R Core Team, 2017) and JAGS (Plummer,
2003) need to be installed along with the R packages “run-
jags” (Denwood, 2016) and “rjags” (Plummer et al., 2019).
Data for Participants P7, P8, and P9 are in a .csv file called
Au_Figure2_SelfBlame.csv that is stored in the same folder as
the R script file (see Supplementary Materials). The data are
read using the syntax in S1:

filename <− ‘Au_Figure2_SelfBlame‘
data <− as.matrix (read.csv (paste0 (filename, “.csv”) , header = T))

(S1)

We extracted data for the first participant, P7, and stored
them in a 2 × 6 matrix, with “2” representing the number of
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Table 1
Self-Blame Data for Participant P7

Phase Dependent variable

y[1,] 4.77 4.78 2.96 4.79 3.99 4.00
y[2,] 3.18 2.78 2.99 2.79 2.79 2.20

Note. The first row represents baseline-phase data. The second row represents treatment-phase data.

rows and phases and “6” representing the number of columns
and observations (Line 2, S1). Consider a continuous, normally
distributed dependent variable ypt at time point t belonging to
phase p. In this case, y represents self-blame scores and was
computed as the mean of the six-item PTCI-SB subscale. The
y values look like those shown in Table 1. Of note, the number
of baseline and treatment phase observations do not have to be
equal; when this occurs, the phase with fewer observations will
be filled with NA (i.e., the missing data value) for the rest of
the cells. The number of baseline and treatment phase obser-
vations are represented as Tb and Tt, respectively. We can plot
these data sourcing the prewritten function plot_SSD and Syn-
tax S2. The plot is saved with the name of the participant (i.e.
P7_SB-SSDplot.jpg).

source
(
‘plot_SSD.R′)

plot_SSD (y, paste0 (colnames (data) [2] , “ − SSDplot.jpg”))
(S2)

BITS Model Definition

For the model, assume that the observed value of self-blame
at yp1 follows a normal distribution; the mean of the expected
value of self-blame at Time 1 is ŷp1, and the standard deviation
is σε, as shown in Equation 1 (Natesan & Hedges, 2017).

yp1 ∼ norm
(
ŷp1, σ

2
ε

)
(1)

This syntax is given in S3 for the two phases.

y [1, 1] ∼ dnorm (yhat [1, 1] , tau)
y [1, 2] ∼ dnorm (yhat [1, 2] , tau)

(S3)

In JAGS, we use the dnorm function to indicate drawing from
a normal distribution, and the parameters within parentheses
are the mean and precision (i.e., the reciprocal of variance), re-
spectively. Here, tau is the precision. The predicted values of
self-blame scores in the following time points, t, are given as:

ypt = ŷpt + ρ
(
ypt−1 − ŷpt−1

) + ε (2)

In Equation 2, the random error, ε, has a variance σ 2
ε and ρ,

which is the autocorrelation between adjacent time points. This
is given by Syntax S4 within a “for” loop that runs from Time

2 to Tb (i.e., for all baseline observations).

y [1, i] ∼ dnorm
(
yhat [1, i] + rho∗ (y [1, (i− 1)] − yhat [1, (i− 1)]) , tau

)
(S4)

In Syntax S4, rho is used to denote the autocorrelation value
which is given by Equation 3. A similar syntax is applied for the
treatment phase within a loop that runs from Time 2 to Tt. If e is
the white noise with variance σe, it is created by a combination
of autocorrelation and random error, and the relation between
ρ, σe, and σε is given in Equation 3 as:

σe = σε√
1 − ρ2

(3)

In SCEDs, the time series is typically expected to follow a
linear procedure with lag-1 autocorrelated errors (e.g., Natesan
& Hedges, 2017). A lag-1 autocorrelated error indicates that
the error at a given time point is correlated with the error at the
immediate subsequent time point and not with the error two or
more time points away. The expected values of self-blame for
phase p and the serial dependency of the residual (et) can be
expressed respectively as

ŷpt = βp1 (4)

ept = ρept−1 + ε (5)

In Equation 4, βp1 is the intercept of the linear regression
model for phase p; ept is the error at time t for phase p; ε is
the independently distributed error, and the value of p can be
either 1 or 2, indicating the baseline and treatment phases, re-
spectively. Thus, the syntax for Equation 4 is given as yhat[1, i]
<− beta[1, 1] for all values in the baseline phase, and a similar
syntax is applied for the treatment phase. The autocorrelation is
traditionally set to be the same for all phases in a SCED. Effect
size is defined as the standardized mean difference between the
two phases, as given in Syntax S5.

es <− (beta [1, 1] − beta [2, 1])∗ sqrt (tau) (S5)

Next, we define the distributions from which statistics will
be drawn. In Bayesian, we specify the prior distributions (i.e.,
possible values parameters might take). In the BITS model, the
priors are defined as follows. For the beta values, beta[i, 1]
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∼ dnorm(mu[i], 1) for both phases, beta is drawn from a distri-
butionwithmeanmu and precision 1, withmu differing in value
for both phases. The parameter mu, in turn, is drawn from a dis-
tribution with mean 5 and precision .05 as mu[i] ∼ dnorm(5,
.05). The mean value of 5 was selected because 5 is within the
range of possible mean values for the PTCI-SB subscale. To
be as pessimistic as possible regarding the potential influence
of the priors on the parameter estimates, we have (a) placed
a prior on a prior—that is, beta is drawn from dnorm(mu, 1),
and mu, in turn, is drawn from dnorm(5, .05); and (b) set the
precision of the distribution to be very small, which means the
variance will be 20, a rather large value that flattens the prior
distribution. Thus, weminimize the influence of the prior on the
parameter estimates. Readers may change the priors to evaluate
whether the results vary significantly. Of note, the specification
of priors on priors is called “hyperpriors” or “hierarchical pri-
ors.” Regarding tau, we draw the square root of its reciprocal—
that is, the standard deviation from a less-informative prior, as
sigma ∼ dunif(0.1, 5). Again, autocorrelation is drawn from a
less-informative prior, as rho ∼ dunif(−1, 1). The simulated
example in Supplementary Material S3 tests the performance
of these models for three different prior specifications. Ideally,
we want the estimates of betap1, rho, and tau to be indepen-
dent of the prior specifications, which is what we found for the
simulated dataset. This program is available as Simulation Ex-
ample.R on Github.

BITS Model Execution

For the model specified in the previous step, parallel chains
with different starting values are run for many iterations until
convergence is indicated. Convergence means that the param-
eter estimates do not fluctuate significantly. Although it is not
possible to prove convergence, many statistics are used to indi-
cate convergence. Two such convergence diagnostics were used
in the present study: the multivariate potential scale reduction
factor (MPSRF; Brooks & Gelman, 1998) and Heidelberger
and Welch’s (1983) convergence diagnostic. The package
“runjags” conveniently calls the JAGS program, runs parallel
chains, and iterates the model estimates until convergence is
indicated. In the syntax presented later, four parallel chains are
run, with starting values (i.e., random values of parameters as-
signed to a chain) independently generated for each chain from
the prior distribution. Credible starting values can speed conver-
gence. However, to negate the effects of starting values on the fi-
nal posterior distribution, estimates from the first few thousand
iterations in each chain are not included in the posterior dis-
tribution; this process is called “burn-in” and is automatically
done in the Syntax S6. Posterior distribution is the distribution
that contains all possible values of the estimated parameter.
In Syntax S6, the model is defined for BITS and stored in an
object called BITS.model1; input data are y (i.e., observations
in the form of a two-row matrix), P (i.e., number of phases), Tb

(i.e., number of baseline observations), and Tt (i.e., number of
treatment observations). Beta, sigma, rho, and es are the param-

eters of interest to obtain and monitor convergence. The syntax
is set to run four chains; after burning in, we obtain another
30,000 iterations per chain, on which convergence is assessed,
and we provide starting values using the function called “inits.”

results <− autorun.jags(model = BITS.model1,
data = list (y = y, P = P,Tb = Tb,Tt = Tt) ,

monitor = c (“beta”, “sigma”, “rho”, “es”) , n.chains = 4,
startsample = 30000, inits = function()

{list (beta = rbind (rnorm (1, beta1, 1) , rnorm (1, beta2, 1)) , ))
((sigma = runif (1, 0.1, 5) , rho = runif (1, −1, 1))} ,

method = “rjparallel”) (S6)

Results are stored in an object called “results;” the results
summary will contain the summary statistics of the posteriors
of all estimated parameters. This can be checked by simply ex-
ecuting the “results” statement. The values can be saved in a
.csv file using the following syntax.

write.csv (results$summaries, paste0 (filename, “ − BITSresults.csv”))
(S7)

Our next goal is to check the posterior of the effect size (es),
which is a simple standardized mean difference effect size. We
combine the values from all four chains and all iterations to
finally obtain all estimated values of es using Syntax S8.

samples <− combine.mcmc (results$mcmc)
es <− samples [“‘es”]

(S8)

The effect size obtained from this approach automatically
incorporates small-sample correction, unlike the approach de-
scribed by Hedges et al. (2012), which uses a small-sample
correction factor. Using predefined function plots, we can now
check the percentage of the values in the posterior of es that
are greater than a researcher-specified value of, say, 0.5; this
is called the region of practical equivalence (ROPE; Kruschke,
2013). In this case, 98% of the effect size estimates are above
0.5, which means that of the 120,000 obtained effect size esti-
mates, 98% of them were above 0.5. Syntax S9 plots the poste-
rior distribution and the essential details of ROPE.

plots(es, compVal = 1, ropeRad = 0.5,maintitle = “effectsize”,

HDImass = .95, plotname = paste0 (colnames (data) [2] , “ − effectsizerope”))

(S9)

In this syntax, compVal – ropeRad is the lowest value of ef-
fect size that the researcher would accept as having a practi-
cally significant treatment effect. The plot is saved under the file
name P7_SB-effect size rope.jpg (Figure 2, Panel A). Of note,
if we compare the 95% credible interval of es [0.65, 4.00] to
the 95% confidence interval [0.66, 1.96] computed by Au et al.
(2017), we find that the interval width for the latter is smaller.
This could be in line with the possible undercoverage of esti-
mates found by Shadish et al. (2013). Alternatively, the wider
credible interval for the Bayesian estimate could also be due
to the relatively noninformative priors specified in the syntax.
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Figure 2
Posterior and Region of Practical Equivalence for Standardized Mean Differ-
ence Effect Size for Self-Blame Data for Participant P7 (a) and Trace Plots
and Histograms of All Estimated Parameters From the Bayesian Interrupted
Time-Series Model for Participant P7 (b)

Now, we can obtain and examine visual plots of the posteriors
of other parameters and their convergence using Syntax S10.

plot (results, layout = c (5, 2) , plot.type = c (“trace”, “histogram”))
(S10)

Syntax S10 plots the trace plot, which contains information
about all the estimates for a given parameter at a given iteration,
and a histogram of these estimates (i.e., posterior distribution;
Figure 2, Panel b). The posterior estimates indicate that the es-
timated mean values of the baseline and treatment phases are
close to the observed mean of these phases, respectively. The
autocorrelation posterior distribution is quite widely spread and
includes 0, which means that whether these data are autocorre-
lated remains questionable. Readers are encouraged to run the

syntax, which has been automated for multiple participants un-
der the file name BITS-looped.R.

BITS Model Interpretation

Although the estimates obtained from the BITS model and
the change score model Au et al. (2017) could not be directly
compared due to differences in the models, broadly, a differ-
ence was observed in the magnitude of the treatment effect
across both methods. Treatment was found to have a substantial
effect on self-blame for Participant P7 with the BITS model
versus Au et al.’s (2017) change score method. Specifically, the
BITS model revealed a statistically significant treatment effect
greater than 0.65 (i.e., the lower CI limit), with the posterior
mean estimated to be 2.33 (SD= 0.8), 95%CI [0.65, 4.00], rep-
resenting a medium-to-large effect size. In contrast, according
to the change-score model, the treatment effect was not sta-
tistically different from 0 (i.e., 95% CI [0.00, 3.60], contained
0). These differences could be attributed to autocorrelations
in the change-score method, which are accounted for in the
BITS model. In the context of the study by Au et al. (2017), the
results indicated that their developed 6-week self-compassion
intervention was effective for this participant in reducing
posttraumatic self-blame cognitions. Thus, for this specific in-
dividual, with their unique sociocultural and psychiatric history
and via reduced self-blame in the context of their experienced
traumatic event, the examined self-compassion interven-
tion may have promise in reducing overall PTSD symptom
severity.
In addition, Au et al. (2017) found an overall effect size

of 1.31, 95% CI [0.66, 1.96], for all participants, based on a
method described by Shadish et al. (2014) that considers auto-
correlations and implements a small-sample correction. Thus,
although the treatment was not effective for Participant P7,
it was effective overall. Again, we cannot compare the ef-
fect size from the BITS model, which produces individual ef-
fect size estimates, to this overall effect size for all partici-
pants. We note here that the Shadish et al. (2014) effect size
does not consider trends in the data (i.e., growth or declining
patterns), but the BITS model can accommodate such model
specifications.

BUCP Model and Tutorial

The BUCP model, an extension of the BITS model, can
be used to model interrupted time-series SCED data with
only a few autocorrelated data points. The presented BUCP
model is a confirmatory approach that allows the data to speak
for themselves. In a two-phase design, it assumes that the
change point (i.e., the point at which the treatment is in-
troduced) is unknown. If the algorithm estimates the change
point accurately with a narrow credible interval (i.e., the
Bayesian equivalent of a confidence interval), there is suffi-
cient confirmatory evidence of both immediacy and treatment
effects.
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BUCP Model Definition and Execution

The program is given in the R script titled BUCP.R. The in-
tercept βp1 can be modeled as:

βp1 = β11dummy+ β21 (1 − dummy) (6)

where

dummy =
{
1, if t ≤ tb
0, otherwise

(7)

Earlier, we used two “for” loops, one each for the baseline
and treatment phases. However, to use a for loop in most pro-
grams, the user needs to know the bounds of the loop a priori
(e.g., 1 to 10). However, popular Bayesian packages such as
JAGS and BUGS (Lunn et al., 2009) use the function called
“step” to circumvent this problem. We create two dummy vari-
ables, one called “dummy” that is used to indicate the phase,
using the Syntax S11.

dummy [i]<− step (CP − i) (S11)

This means that if the given time point i is less than the
change point CP, step will assign a value of 1 to dummy and
0 otherwise. Based on this, another dummy variable called
“temp” is used to compute the mean of the distribution from
which the dependent variable (i.e., self-blame) needs to be
drawn. This is given in Syntax S12

temp [i]<− dummy [i] ∗beta [1, 1] + (1 − dummy [i]) ∗beta [2, 1]
(S12)

When the dummy is 1, the data will belong to the baseline
phase, and the second half of the right-hand side of this syntax
will vanish as it is being multiplied by 1-dummy (i.e., 0). When
the dummy is 0, the data will belong to the treatment phase, as
the first half of the right-hand side of this syntax will vanish, as
it is being multiplied by 0.
The only other new parameter in this model is the change

point, which is estimated as a categorical variable with integer
values ranging from 4 to (T – 3). These bounds are specified
because we need at least three observations to create a pattern
in which the change point cannot happen during the first three
time points or the last three time points of the experiment. The
posterior of the change point in Figure 3 indicates that although
values from 4 to 9 are all possible values, Time 6 is the most
probable value for the change point. This shows support for the
treatment effect. The top panel of Figure 3 shows part of the
trace plot for the change point. Because the graph remains in
the same region from 5,000 to 35,000 iterations, the estimates
possibly converged to stationarity. Alternatively, we consider
the posterior means for the baseline and treatment phases for
the BITS and BUCP models which were similar in value; the
results indicate that Time 6 is a good estimate of the change
point. As with BITS, the program called BUCP-looped.R runs
these analyses for multiple participants. Summaries of posterior

Figure 3
Trace Plot (a) and Histogram (b) of Change Point (CP) for Self-Blame for
Participant P7

Table 2
Summaries of Posteriors of Bayesian Interrupted Time Series and
Bayesian Unknown Change-Point Models

95% CI

Parameter Lower limit Median Upper limit M SD

BITS model
beta[1,1] 3.60 4.22 4.91 4.24 0.33
beta[2,1] 2.17 2.81 3.49 2.82 0.33
sigma 0.35 0.62 1.05 0.66 0.20
rho −0.96 −0.21 0.65 −0.17 0.41
es 0.65 2.34 4.00 2.33 0.85

BUCP model
CP 4.00 6.00 9.00 6.17 1.25
beta[1,1] 3.15 4.06 4.82 4.03 0.42
beta[2,1] 1.98 2.84 3.70 2.84 0.43
sigma 0.40 0.72 1.24 0.77 0.24
rho −0.22 0.12 0.51 0.13 0.18
es 0.89 2.63 4.20 2.65 0.83

Note. BITS = Bayesian interrupted time series; BUCP = Bayesian unknown
change point; es = effect size, CP = change point.

distributions of Participant P7’s self-blame data from BITS and
BUCP models are given in Table 2.

BUCP Model Interpretation

The BUCP model results show that although values be-
tween 4 and 9 are probable candidates (i.e., estimates) for the
changepoint, 6 is the most commonly estimated change-point
value. Because 6 is also the true time point the intervention
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was introduced, there is medium evidence of immediacy effect,
a required piece of evidence of an intervention effect. The
effect sizes of the BITS and BUCP models were comparable.
Although the data pattern in the study by Au et al. (2017) pro-
vided a medium level of evidence of immediate impacts of the
self-compassion intervention on posttraumatic self-blame, the
effect size between the two phases was medium to large, sup-
porting further consideration for professionals interested in this
self-compassion intervention. Au et al. (2017) did not compute
immediacy. When immediacy was computed as the difference
between the medians of the last three observations of the
baseline phase and the first three observations of the treatment
phase, we obtained a value of 1.01. However, as mentioned,
there is no rule of thumb for how to interpret the magnitude
of this statistic, unlike the change point, whose posterior shape
and 95% credible interval indicate the strength of immediacy.
In the simulated example (Supplementary Material S3), all

estimated values were close to the true values for both the BITS
and the BUCP models regardless of the prior specification. The
change point was estimated accurately, showing support for im-
mediacy. The data showed support for a treatment effect, as the
posterior mean of the effect size was between 6.17 and 6.59 for
all models and priors, which is considered a large standardized
mean difference effect size (Harrington & Velicer, 2015).

Discussion

Herein, we have presented an overview, description, and tuto-
rial of the BITS and BUCP models to evaluate trauma-specific
treatment data published by Au et al. (2017) as well as trauma-
specific simulated data. We included detailed syntax associated
with thesemodels in R (available onGithub) to equip trauma re-
searchers with cutting-edge statistical tools with which to ana-
lyze SCED data. Trauma researchers and clinicians would ben-
efit from understanding and capitalizing on the value of SCEDs
to pilot new posttrauma treatments or modify or augment an
existing treatment to aid diverse individuals presenting with
complex or low base-rate symptomatology. If used in conjunc-
tion with robust statistical approaches such as BITS and BUCP
models, SCED data can reduce costs toward treatment research
and implementation by funneling effort and resources toward
trauma treatments that estimate the magnitude as well as the
immediacy of effects in pilot studies. In fact, the immediacy
of treatment effects may be more pertinent to trauma-exposed
individuals because of the higher levels of functional impair-
ment seen in this population (Norman et al., 2007). Further,
Bayesian analyses, although computationally intensive, work
for small-sample data as generated by SCED in a time-effective
manner. We encourage educational programs to impart training
in Bayesian approaches to enhance competencies in this tech-
nique; Bayesian approaches may be seen as a good alternative
to frequentist methods by gatekeepers of research, such as fund-
ing agencies and journal editors (Natesan Batley, Boedeker,
et al., 2020). Finally, SCEDs are a clinically valid method for

identifying the differences in efficacy between treatment form
or dosage with a small number of participants.
This said, we highlight a few caveats to this statistical ap-

proach. First, there is a learning curve associated with Bayesian
methods; this can be overcome with more training, editorial
policies, and tutorial papers, such as the present study. Second,
the programs are not a “point-and-click” solution like those
some researchers may be used to. Third, SCEDs may be bur-
densome for researchers who want to implement treatment im-
mediately, as they tend to have a shorter time series, and these
Bayesian models require at least eight data points per phase.
Fourth, as stated in the WWC standards (Kratochwill et al.,
2010), confidence in the evidence of treatment effects produced
by SCEDs is enhanced by the replication of effects across dif-
ferent studies, cases, and research groups (Horner et al., 2012).
Thus, the evidence from a single study, such as that demon-
strated in this paper, must be interpreted with caution. Fifth,
SCEDs do not concern themselves with lasting treatment ef-
fects, even after the treatment is removed. Thus, the persis-
tence of these effects is not tested in the models currently in
use for SCED analyses. However, future research should con-
sider the incorporation of posttreatment follow-up and the long-
term effects in SCEDs, as this would be a more sustainable
and clinically relevant model. Finally, some considerations spe-
cific to trauma research may interact with these aforementioned
caveats; these include high dropout rates in trauma treatment
studies (Imel et al., 2013), the impact of high-level of distress
in trauma-exposed individuals regarding their ability or willing-
ness to wait to start treatment while participating in the baseline
phase (Stecker et al., 2013), and fluctuations in posttraumatic
symptoms on a daily (i.e., short-term) basis (Chun, 2016), ren-
dering it difficult to get a stable baseline estimate before imple-
menting trauma treatment. In conclusion, the ability of SCEDs
to examine individual factors related to the development or non-
development of pathology following trauma exposure and treat-
ment outcomes and remission provides tremendous value for
preventive and remedial trauma intervention research.
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