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Objective. We tested the hypothesis that postpartum combined oral contraceptive (COC) treatment would induce oxidative stress
via the adenosine deaminase-xanthine oxidase pathway in the kidney. We also sought to determine whether mineralocorticoid
receptor (MR) or glucocorticoid receptor (GR ) blockade would suppress the activities of ADA and xanthine oxidase caused by
postpartum COC treatment in the kidney. Methods. Twenty-four Wistar dams were randomly assigned to 4 groups (n = 6/group).
Dams received vehicle (po), COC (1.0μg ethinylestradiol and 5.0μg levonorgestrel; po), COC with GR blockade (mifepristone;
80.0mg/kg; po), and COC with MR blockade (spironolactone; 0.25mg/kg; po) daily between 3rd and 11th week postpartum.
Results. Data showed that postpartum COC caused increased plasma creatinine and urea, increased renal triglyceride/high-density
lipoprotein ratio, free fatty acid accumulation, alanine aminotransferase, gamma-glutamyltransferase, uric acid, and activities of
renal XO and ADA. On the other hand, postpartum COC resulted in decreased plasma albumin, renal glutathione, and Na+-K+-
ATPase activity with no effect on lactate production. However, MR or GR blockade ameliorated the alterations induced by
postpartum COC treatment. The present results demonstrate that MR or GR blockade ameliorates postpartum COC-induced
increased activities of ADA and xanthine oxidase and restores glutathione-dependent antioxidative defense. Conclusion. These
findings implicate the involvements of GR and MR in renal dysfunctions caused by COC in dams via disrupted glutathione
antioxidative barrier.

1. Introduction

Incidence of chronic kidney disease (CKD) is increasing
globally due to complications associated with the epidemic
of metabolic disturbances [1]. Several factors may contrib-
ute to the progression of CKD including oxidative stress,
inflammation, derangements of renal hemodynamics, and

excess activation of renin–angiotensin–aldosterone system
(RAAS) [2–3].

Aldosterone is a key hormone in mineralocorticoid
receptor (MR) activation. Aldosterone which is also the end
product of RAAS is a significant cause of renal disease [4].
Previous animal study reported that aldosterone participates
in the progression of kidney disease through hemodynamic
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and direct cellular actions [5]. Although aldosterone is well
recognized as the selective physiological ligand for MR, glu-
cocorticoids also bind with high affinity to MR [6]. An earlier
study has it that glucocorticoids are involved in the develop-
ment of renal injury through a mineralocorticoid receptor-
dependent mechanism [7]. Several studies have described a
correlation between loss of renal function and glucocorticoid
receptor (GR) activation by 11β-HSD enzymes [8–9].
Progression of chronic renal failure is related to excess gluco-
corticoid production [10].

Accumulating evidence indicates that MR and GR activa-
tion is associated with oxidative stress [11–13]. In physiolog-
ical condition, there is a balance between oxidant production
and antioxidant defense systems. Hence, condition of oxida-
tive stress occurs when there is increased generation of reac-
tive oxygen species (ROS) and/or depletion of antioxidant
defense system, resulting in tissue damage. The kidney is an
organ highly susceptible to damage caused by ROS. Convinc-
ing evidences have shown that increased ROS activity con-
tributes to the pathophysiology of several kidney diseases
[14–16]. Graded increase in oxidative stress markers is
observed in all stages of renal disease, even in early CKD,
and this could be a result of an increase in ROS as well as a
decrease in antioxidant defense [17]. Adenosine deaminase
(ADA) is an enzyme involved in the metabolism of purine
nucleoside. It catalyzes the irreversible deamination of aden-
osine, an important signalling molecule that exerts antioxi-
dant and anti-inflammatory effects, to inosine [18]. The
ADA enzyme is widely distributed in tissues and plays a vital
role in a numerous physiological systems. However, studies
have reported that ADA activity could be used to monitor
inflammation in patients with CKD [19]. Also, increased
ADA positively correlates with oxidative stress [20]. Inosine
is further metabolized into uric acid by the enzyme xanthine
oxidase (XO), which catalyzes the last two steps of purine
metabolism [21–22]. Previous studies have demonstrated
that activities of XO lead to formation of superoxide anions
which is the lead source of ROS production in tissues [23–
24]. Moreover, earlier studies have reported a relationship
between XO-induced oxidative stress and kidney dysfunction
[25–26]. In the tissues, ROS levels are maintained at a phys-
iological range by the scavenging activities of endogenous
glutathione antioxidant defense mechanism [27]. Hence, in
previous studies, reduction in glutathione, a vital kidney
antioxidant, has been reported in CKD [28–29].

Hormone therapy such as combination of estrogen and
progestin are widely used among postpartum women for
both contraceptive and noncontraceptive reasons. Use of
combined oral contraceptive (COC) has been shown to be
associated with increased oxidative stress in premenopausal
women [30]. Also, postpartum COC use elicits uric acid pro-
duction that is suppressed by GR or MR blockade [31]. A
previous study from our laboratory documented that COC
induces hypertension that is accompanied by increased renal
uric acid [32]. Likewise, combined estrogen-progestin has
been linked to increased activity of renin-angiotensin system
that influences blood pressure and renal function [33–35]. A
previous study has demonstrated that COC activates MR
through mineralocorticoid and glucocorticoid pathways

[36]. Combined oral contraceptive has been reported to
increase circulating glucocorticoid and aldosterone [37].
Increased glucocorticoid and aldosterone in turn activates
renin-angiotensin-aldosterone system (RAAS). Activated
RAAS increases generation of reactive oxygen species by acti-
vation of adenosine deaminase and xanthine oxidase [38].

Convincing evidences have shown that COC has effects
on renal functions. Hence, the present study was designed
to test the hypothesis that postpartum COC use would
induce oxidative stress via the ADA/XO pathway in the kid-
ney. We also sought to determine whether MR or GR block-
ade would suppress the activities of ADA and XO caused by
postpartum COC treatment in the kidney.

2. Materials and Methods

2.1. Animals. The investigation was conducted in accordance
with the National Institutes of Health Guide for the Care and
Use of Laboratory Animals and was approved by the Institu-
tional Ethical Review Board of University of Ilorin with pro-
tocol identification number UERC/ASN/2016/486. All efforts
were made to minimize both the number of animals used and
their suffering. Female Wistar rats weighing 130–150 g,
obtained from the animal house of the College of Health Sci-
ences, University of Ilorin, Ilorin, Nigeria, were used for the
study. The animals were maintained under standard envi-
ronmental conditions as follows: temperature of 24 ± 2°C,
humidity of 60 ± 10%, and 12-hour dark/light cycle. Rats
had unrestricted access to standard rat chow and tap water.
After one week of acclimatization, rats were mated to achieve
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Figure 1: Effect of glucocorticoid (GR) and mineralocorticoid (MR)
receptor blockade on kidney weight in Wistar dams exposed to
postpartum combined oral contraceptives (COC). Postpartum
COC treatment, GR, and MR blockade did not affect kidney
weight. Post gestational COC exposure, GR and MR blockade
were carried out for eight weeks after the 3-week postgestational
period. Data were presented as mean ± standard error of mean,
and p < 0:05 was taken as statistically significant. ∗p < 0:05 vs.
DAM; #p < 0:05 vs. DAM+COC. Data were analyzed by one-way
ANOVA and Bonferroni’s post hoc analysis. DAM: control; DAM
+COC: combined oral contraceptive exposure; DAM+COC+GR:
COC exposure with glucocorticoid receptor blockade; DAM+COC
+MR: COC exposure with mineralocorticoid receptor blockade.
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timed pregnancy at a ratio of three female Wistar rats to one
male Wistar rat. The presence of spermatozoa and oestrus
phase (vaginal plug) was taken as gestational day zero (0).
After delivery, the pups were removed from the dams to
eliminate the effects of lactation. Three weeks post delivery,
twenty-four [24] dams were randomly assigned to 4 groups
(n = 6/group).

Control dam (Dam) received distilled water (vehicle; po),
COC-exposed dam (Dam+COC) received estrogen-
progestin COC steroids (1.0μg ethinylestradiol EE and
5.0μg levonorgestrel LN; po), Dam+COC+GR blockade
(Dam+COC+GRB) received combination of COC and glu-
cocorticoid receptor blocker (mifepristone; 80mg/kg; po),
and Dam+COC+MR blockade (Dam+COC+MRB) received
combination of COC and mineralocorticoid receptor blocker
(spironolactone; 0.25mg/kg; po) daily for eight weeks
between 3rd and 11th week postpartum.

2.2. Sample Preparation.At the end of treatment, pentobarbi-
tal sodium (50mg/kg, i.p.) was used to anesthetized the
animals. Blood was collected into heparinized bottle via car-
diac puncture and centrifuged at 3000 rpm for 5 minutes.
Plasma was stored frozen at 4°C until needed for biochemical
assay. The kidneys were excised, blotted, and weighed imme-
diately. Following weighing, 100mg of tissue was carefully
sectioned and homogenized with a glass homogenizer. The
homogenate was used for subsequent biochemical analysis.

2.3. Biochemical Assay

2.3.1. Lipid Profile. Triglycerides (TG), total cholesterol (TC),
high-density lipoprotein-cholesterol (HDL-C), and free fatty
acid (FFA) were estimated in the renal tissue by standardized
colorimetric methods using reagents obtained from Fortress
Diagnostics Limited, Antrim, UK, following manufacturer’s
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Figure 2: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockade on renal lipid content in Wistar dams exposed to
combined oral contraceptives (COC). GR and MR blockades ameliorated renal TG/HDL-C (triglyceride/high-density lipoprotein) ratio
(a), MR blockade attenuated TC/HDL-C (total cholesterol/high-density lipoprotein) ratio (b), and GR and MR blockades ameliorated
renal FFA (free fatty acid) (c) in COC-treated Wistar rat dams. Post gestational COC exposure, GR and MR blockade were carried out for
eight weeks after the 3-week postgestational period. Data were presented as mean ± standard error of mean, and p < 0:05 was taken as
statistically significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM+COC. Data were analyzed by one-way ANOVA and Bonferroni’s post hoc
analysis. DAM: control; DAM+COC: combined oral contraceptive exposure; DAM+COC+GR: COC exposure with glucocorticoid
receptor blockade; DAM+COC+MR: COC exposure with mineralocorticoid receptor blockade.
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instruction. Ratios of TG/HDL-C and TC/HDL-C were esti-
mated as markers of atherogenic lipid indices.

2.3.2. Redox Biomarkers. Renal nitric oxide (NO) was
measured by a nonenzymatic colorimetric assay kit
obtained from Oxford Biomedical Research Inc., Oxford,
USA, whereas renal malondialdehyde (MDA), glucose-6-
phosphatedehydrogenase (G6PD), oxidized glutathione
(GSSG), and reduced glutathione (GSH) were determined
by standard spectrophotometric methods using reagents
obtained from Fortress Diagnostics Limited, Antrim, UK.
Reduced to oxidized glutathione (GSH/GSSG) ratio was
estimated as an indicator of glutathione antioxidant capac-
ity and oxidative stress. Protein levels were determined

spectrophotometrically according to the Bradford method
(Bradford 1976).

2.3.3. Adenosine Deaminase/Xanthine Oxidase/Uric Acid
Pathway. Renal adenosine and uric acid were estimated using
nonenzymatic colorimetric assay kits obtained from Oxford
Biomedical Research Inc., Oxford, USA, whereas activities
of adenosine deaminase (ADA) and xanthine oxidase (XO)
were estimated by the standard enzymatic colorimetric
method using reagents obtained from Fortress Diagnostics
Limited, Antrim, UK.

2.3.4. Creatinine, Urea, and Albumin. Plasma creatinine,
urea, and albumin were determined by standardized
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Figure 3: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockades on glutathione-dependent antioxidant system in
Wistar dams exposed to combined oral contraceptives (COC). GR and MR blockades increased renal G6PD (glucose-6-phosphate
dehydrogenase) (a), increased NADPH (reduced nicotinamide adenine dinucleotide phosphate) (b), increased GPx (glutathione
peroxidase) (c), and increased GSH/GSSG (reduced glutathione/oxidized glutathione) ratio (d) in COC-treated Wistar rat dams. Post
gestational COC exposure, GR and MR blockades were carried out for eight weeks after the 3-week postgestational period. Data were
presented as mean ± standard error of mean, and p < 0:05 was taken as statistically significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM
+COC. Data were analyzed by one-way ANOVA and Bonferroni’s post hoc analysis. DAM: control; DAM+COC: combined oral
contraceptive exposure; DAM+COC+GR: COC exposure with glucocorticoid receptor blockade; DAM+COC+MR: COC exposure with
mineralocorticoid receptor blockade.
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nonenzymatic colorimetric methods using reagents obtained
from Fortress Diagnostics Limited, Antrim, UK.

2.3.5. Tissue Injury Biomarkers. Renal lactate and lactate
dehydrogenase (LDH) activity was measured by standard-
ized enzymatic colorimetric method using an assay kit
obtained from Fortress Diagnostics Limited, Antrim, UK.
Also, gamma-glutamyltransferase (GGT), alanine transami-

nase (ALT), aspartate aminotransferase (AST), and alkaline
phosphatase (ALP) were measured by a standardized enzy-
matic colorimetric method using an assay kit obtained from
Fortress Diagnostics Limited, Antrim, UK.

2.3.6. Na+-K+-ATPase Activity. Renal Na+-K+-ATPase activ-
ity was determined by a spectrophotometric method using
reagents from Randox Laboratory Ltd. (Co. Antrim, UK).
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Figure 4: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockade on renal lipid peroxidation and nitric oxide in Wistar
dams exposed to combined oral contraceptives (COC). GR and MR blockade reduced renal MDA (malondialdehyde) (a) and increased renal
NO (nitric oxide) (b) in COC-treatedWistar rat dams. Post gestational COC exposure, GR andMR blockades were carried out for eight weeks
after the 3-week postgestational period. Data were presented as mean ± standard error of mean, and p < 0:05 was taken as statistically
significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM+COC. Data were analyzed by one-way ANOVA and Bonferroni’s post hoc analysis.
DAM: control; DAM+COC: combined oral contraceptive exposure; DAM+COC+GR: COC exposure with glucocorticoid receptor
blockade; DAM+COC+MR: COC exposure with mineralocorticoid receptor blockade.
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Figure 5: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockades on renal lactate and lactate dehydrogenase in Wistar
dams exposed to combined oral contraceptives (COC). GR but not MR blockade reduced renal lactate (a), and MR but not GR blockade
reduced renal LDH (lactate dehydrogenase) (b) in COC-treated Wistar rat dams. Post gestational COC exposure, GR and MR blockades
were carried out for eight weeks after the 3-week postgestational period. Data were presented as mean ± standard error of mean, and p <
0:05 was taken as statistically significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM+COC. Data were analyzed by one-way ANOVA and
Bonferroni’s post hoc analysis. DAM: control; DAM+COC: combined oral contraceptive exposure; DAM+COC+GR: COC exposure with
glucocorticoid receptor blockade; DAM+COC+MR: COC exposure with mineralocorticoid receptor blockade.
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2.3.7. Statistical Analysis. Statistical analysis was performed
using the SPSS software (Version 22; SPSS Inc. IL., USA),
and values were expressed as mean ± SEM of 6 rats per
group. One-way analysis of variance (ANOVA) was used to
compare the mean values of variables among the groups.
Bonferroni’s post hoc test was used to identify the signifi-
cance of pair wise comparison of mean values among the
groups. Statistically significant differences were accepted at
p < 0:05.

3. Results

3.1. Mineralocorticoid and Glucocorticoid Receptor Blockades
Did Not Affect Kidney Weight Phenotype in Combined Oral
Contraceptive-Exposed Wistar Rat Dams. Combined oral
contraceptive (COC) treatment did not change kidney
weight compared with control group (Figure 1). Mineralo-
corticoid and glucocorticoid receptor blockades did not alter
kidney weight compared with both control and animals
treated with COC (Figure 1).

3.2. Mineralocorticoid and Glucocorticoid Receptor Blockades
Altered Renal Lipid Content in Combined Oral Contraceptive-
Exposed Wistar Rat Dams. There was a significant increase in
renal triglyceride/high-density lipoprotein (TG/HDL) ratio
and free fatty acid (FFA) but reduction in total cholesterol/-
high-density lipoprotein (TC/HDL) ratio in combined oral
contraceptive- (COC-) treated rats compared with control
(Figures 2(a)–2(c)). Glucocorticoid and mineralocorticoid
receptor blockades in COC-treated dams did not alter renal
TG/HDL ratio but increased renal FFA compared with con-
trol. There was reduction in TC/HDL ratio in animals
exposed to postpartum COC that received MR but not GR
blocker compared with control. Both MR and GR blockades
in COC-treated dams reduced TG/HDL ratio and increased
TC/HDL ratio compared with COC-treated dams without
receptor blockade. Only MR blockade in COC-treated dams
increased FFA compared with COC-treated dams without
receptor blockade.

3.3. Mineralocorticoid and Glucocorticoid Receptor Blockades
Improved Renal Glutathione-Dependent Antioxidant Defense
in Combined Oral Contraceptive-Exposed Wistar Rat Dams.
Combined oral contraceptive (COC) treatment in dams
resulted in reduced renal glucose-6-phosphate dehydrogenase
(G6PD) activity, reduced nicotinamide adenine dinucleotide
phosphate (NADPH), glutathione peroxidase (GPx) activity,
and reduced glutathione/oxidized glutathione (GSH/GSSG)
ratio. Renal G6PD, NADPH, GPx activity, and GSH/GSSG
ratio in COC-treated dams were all increased in by MR and
GR blockades compared with dam COC exposure without
receptor blockade (Figure 3), but only the GSH/GSSG ratio
was increased in COC-treated dams with both MR and GR
blockades compared with control (Figure 3(d)).

3.4. Mineralocorticoid and Glucocorticoid Receptor Blockades
Ameliorate Renal Lipid Peroxidation and Augmented Nitric
Oxide Production in Combined Oral Contraceptive-Exposed
Wistar Rat Dams. Combined oral contraceptive (COC) treat-
ment increased renal malondialdehyde (MDA) and reduced

renal nitric oxide (NO) compared with control. However,
MR and GR blockades reduced renal MDA and restored
NO (Figures 4(a) and 4(b)) compared with COC-treated ani-
mals without receptor blockade. Compared with control, GR
blockade in COC-treated animals had lower renal NO
(Figure 4(b)) but not MDA (Figure 4(a)), and MR blockade
in COC-treated dams had unaltered renal MDA and NO.

3.5. Mineralocorticoid and Glucocorticoid Receptor Blockades
Altered Renal Lactate Production in Combined Oral
Contraceptive-Exposed Wistar Rat Dams. Combined oral
contraceptive (COC) did not alter both renal lactate and lac-
tate dehydrogenase (LDH) compared with control
(Figures 5(a) and 5(b)). However, GR blockade in COC-
treated dams reduced renal lactate compared with both con-
trol and COC-treated dams without receptor blockade and
did not alter LDH compared with control but reduced it
compared with COC-treated dams without receptor block-
ade (Figure 5). Also, MR blockade in COC-treated dams
reduced renal LDH compared with both control and COC-
treated dams without receptor blockade but did not alter
renal lactate but reduced LDH in COC-treated animals
(Figure 5(b)).

3.6. Mineralocorticoid and Glucocorticoid Receptor Blockades
Enhanced Renal Na+-K+ ATPase Activity in Combined Oral
Contraceptive-Exposed Wistar Rat Dam. There was
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Figure 6: Effect of glucocorticoid (GR) and mineralocorticoid (MR)
receptor blockades on renal sodium-potassium ATPase in Wistar
dams exposed to combined oral contraceptives (COC). GR and
MR blockades restored renal Na+-K+ ATPase (sodium-potassium
ATPase) in COC-treated Wistar rat dams. Post gestational COC
exposure, GR and MR blockades were carried out for eight weeks
after the 3-week postgestational period. Data were presented as
mean ± standard error of mean, and p < 0:05 was taken as
statistically significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM
+COC. Data were analyzed by one-way ANOVA and Bonferroni’s
post hoc analysis. DAM: control; DAM+COC: combined oral
contraceptive exposure; DAM+COC+GR: COC exposure with
glucocorticoid receptor blockade; DAM+COC+MR: COC
exposure with mineralocorticoid receptor blockade.
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significant reduction in renal Na+-K+ ATPase activity of
COC-treated dams compared with control. However, MR
and GR blockades in COC-treated dams increased renal
Na+-K+ ATPase activity compared with dams treated with
COC without receptor blockade but not control (Figure 6).

3.7. Mineralocorticoid and Glucocorticoid Receptor Blockades
Attenuate Circulating Creatinine and Urea and Altered
Albumin in Combined Oral Contraceptive-Exposed Wistar
Rat Dams. Plasma creatinine and urea were elevated, but
albumin was reduced in COC-treated rats compared with
control. However, MR and GR blockades reduced plasma
creatinine and urea compared with COC-treated dams with-
out receptor blockade (Figure 7). Plasma creatinine and albu-
min were reduced in COC-treated dams with GR blockade

compared with control but only MR blockade increased
plasma albumin compared with COC-treated dams without
receptor blockade (Figure 7(c)).

3.8. Mineralocorticoid and Glucocorticoid Receptor
Blockades Ameliorated Tissue Injury Markers in
Combined Oral Contraceptive-Exposed Wistar Rat Dams.
Renal AST and ALP were not altered across the groups
(Figures 8(a) and 8(b)). However, combined oral contra-
ceptive (COC) treatment increased renal ALT and GGT
compared with control. Both MR and GR blockades in
COC-treated animals reduced ALT and GGT compared
with those treated with COC without receptor blockade
(Figures 8(c) and 8(d)).
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Figure 7: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockades on plasma creatinine, urea, and albumin in Wistar
dams exposed to combined oral contraceptives (COC). GR and MR blockades reduced plasma creatinine (a), GR and MR blockades
reduced plasma urea (b), and GR and MR blockades increased plasma albumin (c) in COC-treated Wistar rat dams. Post gestational COC
exposure, GR and MR blockades were carried out for eight weeks after the 3-week postgestational period. Data were presented as mean ±
standard error of mean, and p < 0:05 was taken as statistically significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM+COC. Data were
analyzed by one-way ANOVA and Bonferroni’s post hoc analysis. DAM: control; DAM+COC: combined oral contraceptive exposure;
DAM+COC+GR: COC exposure with glucocorticoid receptor blockade; DAM+COC+MR: COC exposure with mineralocorticoid receptor
blockade.
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3.9. Mineralocorticoid and Glucocorticoid Receptor Blockades
Ameliorate Renal Uric Acid Production in Oral
Contraceptive-Exposed Wistar Rat Dams. Combined oral
contraceptive treatment reduced renal adenosine but
increased adenosine deaminase (ADA), xanthine oxidase
(XO), and uric acid (UA) compared with control. Mineralo-
corticoid and glucocorticoid receptor blockades increased
renal adenosine but reduced renal XO compared with both
control and COC-treated dams without receptor blockade
and ADA compared dams treated with COC without recep-
tor blockade but not control (Figures 9(a)–9(d)). Uric acid
was reduced in COC-treated animals with either MR or GR
blockade compared with COC-treated animals without
receptor blockade, but only MR blockade increased renal
UA compared with control (Figure 9(d)).

4. Discussion

In the present study, we demonstrated that postpartum COC
treatment elicits elevated plasma urea and creatinine produc-
tion, renal adenosine and xanthine oxidase activities,
TG/HDL-C, and lipid peroxidation and disrupts nitric oxide
production, Na+-K+ ATPase, and glutathione antioxidant
defense in the kidney. Results from the present study further
reveal that mineralocorticoid or glucocorticoid blockade
attenuates urea and creatinine production, renal adenosine
and xanthine oxidase activities, TG/HDL-C, and lipid perox-
idation but restores renal nitric oxide, Na+-K+ ATPase, and
glutathione antioxidant defense.

There is a link between lipid accumulation and renal
diseases. Accumulation of lipids into nonadipose tissues such
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Figure 8: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockades on renal markers of tissue injury in Wistar rat dams
exposed to combined oral contraceptives (COC). GR and MR blockades did not alter renal AST (aspartate transaminase) (a) and renal ALP
(alkaline phosphatase) (b), and GR and MR blockades reduced renal ALT (alanine aminotransferase) (c) and GGT (gamma-
glutamyltransferase) (d) in COC-treated Wistar rat dams. Post gestational COC exposure, GR and MR blockades were carried out for
eight weeks after the 3-week postgestational period. Data were presented as mean ± standard error of mean, and p < 0:05 was taken as
statistically significant. ∗p < 0:05 vs. DAM; #p < 0:05 vs. DAM+COC. Data were analyzed by one-way ANOVA and Bonferroni’s post hoc
analysis. DAM: control; DAM+COC: combined oral contraceptive exposure; DAM+COC+GR: COC exposure with glucocorticoid
receptor blockade; DAM+COC+MR: COC exposure with mineralocorticoid receptor blockade.
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as the kidneys, an occurrence known as ectopic lipid accumu-
lation, leads to the development and progression of renal
dysfunction [39–40]. Lipids can be deposited in nearly all cell
types of the kidney, ranging from mesangial cells to podo-
cytes and proximal tubule epithelial cells, as well as damage
these cells [41–42]. Excess free fatty acids (FFA) are especially
detrimental to the kidneys. It can damage all the cells of the
kidney via diverse means such as increased ROS production,
NADPH oxidase activation, elevated lipid peroxidation, tis-
sue inflammation, and mitochondrial damage [42–43]. A
recent report has shown that administration of COC caused
lipid influx into the kidneys [44]. However, in the current
study, postpartum COC treatment led to increase renal
TG/HDL-C ratio and FFA, suggesting that postpartum
COC treatment induced lipid nephrotoxicity. On the other
hand, MR or GR blockade alleviated excessive TG levels with

respect to protective HDL-C, but the FFA levels remained
elevated with either MR or GR treatment. There is plausibil-
ity that increased FFA in the kidney of COC-treated dams
with MR or GR blockade could be a result of de novo lipolysis
which breaks down TG leading to reduction in TG/HDL-C
ratio compared with COC-treated animals without MR or
GR blockade. The lipolytic action of MR or GR blockade
could be through activation of peroxisome proliferator-
activated receptor-α (PPARα) which has been shown to
enhance renal lipolysis and β-oxidation and combat oxida-
tive stress [45]. Also, substances like fenofibrate that activate
PPARα also combat mineralocorticoid-dependent cardiac
dysfunctions in animal models [46].

The kidneys are typically exposed to high levels of oxi-
dants; for this reason, they depend on sufficient supply of
glutathione to continue normal function [47]. Convincing
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Figure 9: Effect of glucocorticoid (GR) and mineralocorticoid (MR) receptor blockades on renal adenosine deaminase-xanthine oxidase
pathway of uric acid production in Wistar dams exposed to combined oral contraceptives (COC). GR and MR blockades increased renal
adenosine (a), both GR and MR blockades reduced renal ADA (adenosine deaminase) (b), XO (xanthine oxidase) (c) and UA (uric acid)
(d) in COC-treated Wistar rat dams. Post gestational COC exposure, GR and MR blockades were carried out for eight weeks after the 3-
week postgestational period. Data were presented as mean ± standard error of mean, and p < 0:05 was taken as statistically significant. ∗p <
0:05 vs. DAM; #p < 0:05 vs. DAM+COC. Data were analyzed by one-way ANOVA and Bonferroni’s post hoc analysis. DAM: control;
DAM+COC: combined oral contraceptive exposure; DAM+COC+GR: COC exposure with glucocorticoid receptor blockade; DAM+COC
+MR: COC exposure with mineralocorticoid receptor blockade.
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evidence has shown that oxidative stress, resulting from an
imbalance between prooxidant and antioxidant systems,
largely contributes to development and progression of renal
injury [15–16]. Glutathione-dependent antioxidant pathway
is one of the body’s endogenous means of defending the
kidney from oxidative damage [28]. Glucose 6-phosphate
dehydrogenase (G6PD) is the main source of nicotinamide
adenine dinucleotide phosphate (NADPH) which is an
essential cellular reductant in the glutathione system.
NADPH is further utilized by glutathione reductase (GR) to
reduce oxidized glutathione (GSSG) to reduced glutathione
(GSH) [48]. Decreased G6PD activity and its resulting
decreased NADPH level have been associated with diabetic
kidney disease and altered nitric oxide production [49].
Nitric oxide is a vital antioxidant that plays a protective role
in tissue injury, and its reduction has been linked to defi-
ciency of G6PD activity [50]. Also, decreased intracellular
antioxidants such as GPx and GSH have been reported in
patients with CKD [51]. In an earlier study, decreased
G6PD activity that was altered by hyperglycemia was
restored by spironolactone, a MR blocker [52]. From our
findings from the present study, postpartum COC treatment
decreased renal NO, G6PD, NADPH, GPx, and GSH/GSSG
ratio. This suggests the involvement of postpartum COC
treatment in the alteration of nitric oxide and glutathione-
dependent antioxidant pathway. This finding is in conso-
nance with a recent report that showed that COC treatment
reduced G6PD activity and glutathione content in female rats
[44]. However, the current findings further show that MR or
GR blockade restores renal nitric oxide and glutathione-
dependent antioxidant pathway that was altered by postpar-
tum COC treatment.

Disruption in the antioxidant defense system produces
oxidative stress which consequently generates the inflamma-

tory response shown by concomitant increased ADA activity
[53]. ADA, an enzyme that is a mediator in the formation of
some defense cells and acts as a marker of inflammation is
associated with oxidative stress [54, 21, 55]. Also, it has been
documented that ADA amplifies the release of toxic oxygen
radicals [56]. On the other hand, ADA diminishes adenosine,
a protective molecule that exerts antioxidant, anti-
inflammatory properties. In the kidney, adenosine regulates
renin release, glomerular filtration rate, tubular glomerular
feedback, and renal vascular tone [57]. In a previous study
from our laboratory, COC treatment induced hepatic ADA
[58]. Our result from the present study showed that postpar-
tum COC led to increased renal ADA and reduced adeno-
sine. However, MR or GR blockade suppressed renal ADA
and restored the renal adenosine that was altered by postpar-
tum COC treatment. Increased levels of ADA could result in
increased XO activity, which oxidizes xanthine into uric acid
and concomitant generation of ROS [18]. Xanthine oxidase is
a form of xanthine oxidoreductase, a house-keeping enzyme
that generates ROS [24]. Elevated XO activity and its result-
ing increased uric acid level have been implicated in the path-
ogenesis and progression of ROS-induced renal diseases [26].
Malondialdehyde (MDA), a frequently used indicator of oxi-
dative damage to tissues, is linked to uric acid production in
preeclamptic women [59]. Also, overproduction of MDA
resulting from increased FFA has been observed in condition
of renal injury [60]. However, in the present study, postpar-
tum COC treatment led to increased renal XO activity, uric
acid, and MDA levels. Taken together, these findings from
the present study imply that COC treatment after three
weeks postpartum activates the ADA and XO activities with
concomitant increase in uric acid production, suggesting that
postpartum COC use led to ROS-induced renal tissue dys-
function. Interestingly, MR or GR blockade reversed elevated

COC

GRMR
MRB GRB

ADA/XO/UA

Renal
dysfunction

Defective
antioxidant barrier

Figure 10: Graphical summary of the deleterious effect of COC on renal uric acid production (ADA/XO/UA) and the role of
mineralocorticoid (MRB) and glucocorticoid (GRB) receptor blockades.
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renal ADA/XO activities as well as renal uric acid and MDA
production caused by postpartum COC treatment.

Impaired kidney function is indicated by elevated circu-
lating creatinine and urea levels due to poor clearance by
the kidneys. Kidney diseases such as CKD or acute kidney
injury are associated with elevated plasma creatinine and
urea concentrations [61]. Additionally, reduced level of cir-
culating albumin, due to decreased production in the liver
or increased loss in the kidney, is common in patients with
end-stage renal disease [62]. Data from the current study that
showed that postpartum COC-induced oxidative stress
caused increased plasma creatinine and urea levels, but
reduced albumin signifies impaired kidney function. On the
other hand, MR or GR blockade restored plasma albumin
and reduced elevated plasma creatinine and urea caused by
postpartum COC treatment.

The current study also showed that postpartum COC-
induced oxidative stress in the kidney led to increased release
of tissue injury enzymes such as renal ALT and GGT; how-
ever, these were reversed by GR or MR blockade. In previous
study, elevated XO activity has been linked to increase ALT
and lactate production [63]. During oxygen insufficiency in
the tissues, LDH, an intracellular enzyme in energy metabo-
lism, catalyzes the conversion of pyruvate to lactate. Hence,
increased tissue LDH and lactate suggest low resting oxida-
tive capacity that has been linked with tissue injury [64].
Also, in an earlier study, elevated LDH has been used as a
biomarker for early renal damage [65]. However, in the
present study, postpartum COC treatment did not affect
renal LDH activity and lactate production suggesting that
postpartum COC-induced renal insufficiency is not associ-
ated with oxygen deficit.

Previous study has linked impaired Na+-K+-ATPase
activity to renal tubular injury that was induced by elevated
uric acid [66]. Also, in earlier studies, estrogen-progestin oral
contraceptive treatment has been documented to reduce
Na+-K+-ATPase activity in the heart and kidney [44, 67].
Similarly, in the current study, postpartum COC treatment
led to impaired renal Na+-K+-ATPase activity that was
restored by either MR or GR blockade.

The present results demonstrate that depleted
glutathione-induced renal dysfunction is accompanied by
increased activities of renal ADA and XO in postpartum
COC-treated dam. The study further shows that MR or GR
blockade suppressed ADA and XO activities and restores glu-
tathione antioxidative mechanism disrupted by postpartum
COC treatment suggesting the possible involvement of GR
and MR in renal dysfunction via impaired glutathione-
dependent antioxidant barrier and increased ADA and XO
activities (Figure 10).
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