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Abstract—The most vital information about the electrical
activities of the brain can be obtained with the help
of Electroencephalography (EEG) signals. It is quite
a powerful tool to analyze the neural activities of the
brain and various neurological disorders like epilepsy,
schizophrenia, sleep related disorders, parkinson disease
etc. can be investigated well with the help of EEG signals.
Goal: In this paper, two versatile deep learning methods
are proposed for the efficient classification of epilepsy
and schizophrenia from EEG datasets. Methods: The
main advantage of using deep learning when compared
to other machine learning algorithms is that it has the
capability to accomplish feature engineering on its own.
Swarm intelligence is also a highly useful technique to
solve a wide range of real-world, complex, and non-linear
problems. Therefore, taking advantage of these factors,
the first method proposed is a Sparse Autoencoder (SAE)
with swarm based deep learning method and it is named
as (SASDL) using Particle Swarm Optimization (PSO)
technique, Cuckoo Search Optimization (CSO) technique
and Bat Algorithm (BA) technique; and the second tech-
nique proposed is the Reinforcement Learning based on
Bidirectional Long-Short Term Memory (BiLSTM), Attention
Mechanism, Tree LSTM and Q learning, and it is named
as (RBATQ) technique. Results and Conclusions: Both
these two novel deep learning techniques are tested on
epilepsy and schizophrenia EEG datasets and the results
are analyzed comprehensively, and a good classification
accuracy of more than 93% is obtained for all the datasets.

Index Terms—Deep learning, EEG, PSO, Q-learning, rein-
forcement learning.
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I. INTRODUCTION

THE physical activities of the nervous system can be com-
prehensively reflected by the EEG signals [1]. If there is

any change in the brain function caused due to neurological
disorders, then it can be detected by EEG signals. In the field of
medicine, an objective basis for diagnosing certain disorders is
provided by the information processing of EEG signals, thereby
enabling the clinicians to provide effective treatment for the par-
ticular brain disorder. Earlier, a manual detection and analysis of
the EEG waveforms was done and due to its intensive labor and
long-time consumption, automated classification of EEG signals
to diagnose the neurological disorder came into existence [2].
Therefore, classification of EEG signals is quite a vital task with
respect to the identification, diagnosis and even prevention of
brain related disease. In this paper, the classification of epilepsy
EEG signals and schizophrenia EEG signals are dealt in much
detail. Epilepsy is a chronic disease characterized by sudden
and repeated seizures [3]. Due to various initiating locations
and transmission modes of the abnormal electrical activities
in brain, different clinical manifestation occurs such as loss of
consciousness, limb convulsions, behavioral problems etc [4].
The most prevalent technique to examine the brain activities in
epileptic patients is with the help of EEG. For epileptic patients,
the EEG signals of their brain activity are split into interictal,
pre-ictal and ictal states [5]. An unusual pattern is exhibited
in the EEG signals where the seizure occurs. A distributed
pattern is also sometimes exhibited in the EEG signal where
the seizure occurs. A distinctive pattern is also shown by the
EEG signals of interictal state and preictal state. Therefore, to
differentiate these epileptic states, these patterns in the EEG
signals are highly useful so that the occurrence of a seizure
can be known thereby reducing the deadly effects it has on
the patients [6]. Seizure detection and classification has been
studied for the past two decades with the help of machine
learning and deep learning techniques, and a good survey about
it can be found in [7], [8] enabling the authors not to repeat
the past works again and again. However, the most important
ideas incorporating machine learning and deep learning since

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

58 VOLUME 3, 2022

https://orcid.org/0000-0003-4019-2345
https://orcid.org/0000-0002-6249-4996
mailto:sunilprabhakar22@gmail.com
mailto:sunilprabhakar22@gmail.com
mailto:sw.lee@korea.ac.kr


PRABHAKAR AND LEE: SASDL AND RBATQ: SPARSE AUTOENCODER WITH SWARM BASED DEEP LEARNING AND REINFORCEMENT 59

the past four years is discussed here for the better understanding
of the readers. A transfer learning along with semi-supervised
learning for seizure classification from EEG signals was
proposed by Jiang et al., where the average accuracy was shown
to be higher than 95% in most cases [9]. A tunable Q wavelet
transform dependent on multiscale entropy was proposed for
automated classification of epileptic EEG signals where the
highest accuracy of even 100% was achieved in few cases [10].
A local mean decomposition (LMD)-based feature analysis with
Support Vector Machine (SVM) was utilized by Zhang and
Chen where the classification accuracy reached an accuracy
of 98.10% [11]. In the year 2018, for automated classification
of epilepsy from EEG signals, deep learning approaches was
proposed in [12], [13] and a morphological component analysis
based SVM classification was proposed in [14], and these three
approaches produced a high classification accuracy of more than
95% as per the consideration of their problem requirement. A
scalogram based convolution network from EEG signals was
proposed in [15], a matrix determinant-based approach was
utilized in [16], cross-bispectrum analysis for seizure detection
in [17], a novel random forest model with grid search optimiza-
tion in [18] are some of the famous works in 2019 and almost
all the works have achieved a classification accuracy of 90%
to 100% depending on type of case study. In the year 2020, a
novel convolutional based neural network model [19], improved
Radial Basis Function (RBF) analysis [20], Power Spectral
Density (PSD) based deep CNN [21], imagined EEG signal
analysis through fully convolutional networks [22], empirical
mode decomposition analysis along with its derivative [23], a
bat algorithm based SVM [24] are some of the famous works for
seizure classification from EEG signals with almost all the works
reporting a good classification accuracy of more than 90%. In
2021, a Jacobi polynomial transform based technique with Least
Square SVM (LS-SVM) [25], an adaptive synthetic sampling
approach [26], a fractal-based seizure detection technique [27],
Principal Component Analysis (PCA) based Genetic Algorithm
(GA) [28], significance of channel selection techniques [29] are
utilized for seizure classification from EEG signals where it
reported a classification accuracy of more than 90% for most
of the classification cases. In 2022, sparse analysis with deep
and transfer learning models were developed with an ensemble
cum nature inclined classification for epilepsy classification
reporting classification accuracies of more than 90% for epilepsy
classification [30].

As the paper discusses schizophrenia classification also from
EEG signals, recent literature about it is also discussed in the pa-
per as follows. Schizophrenia is a serious mental disorder where
people interpret reality in an abnormal manner Schizophrenia re-
sults in a combination of delusion, hallucination, and disordered
thinking thereby the daily functions are severely impaired [31].
Therefore, schizophrenia involves a range of problems with cog-
nition, emotion, and behaviour. An exact cause of schizophrenia
is not known, but a combination of brain chemistry, genetics
and environmental factors may contribute to the development
of this disease [32]. EEG signals are a great boon to analyze
this disorder and some of the famous works are utilized in
this field are as follows. For schizophrenia EEG analysis, the

EEG series splitting reported an accuracy of 92.91% [33], deep
convolutional neural networks reported 98.07% for non-subject
based testing and 81.26% for subject based testing [34], spectral
based analysis reporting 96.77% [35], swarm computing tech-
niques with classifiers reporting 92.l7% [31], Short Time Fourier
Transform (STFT) with CNN reporting 97.00% [36], Partial
Least Squares technique reporting 98.77% [37], multivariate
Empirical Mode Decomposition (EMD) reporting 93.00% [38],
continuous wavelet transform (CWT) with CNN reporting an
accuracy of 98.60% [39], a simple CNN reporting 98.96% [40],
sparse depiction with nature inclined classification and deep cum
transfer learning reporting 98.72% [30] and Collatz pattern re-
porting an accuracy of 99.47% [41] are some of the most famous
works proposed recently. In this work, the key contributions are
as follows and no previous works have been reported in literature
using the two developed novel deep learning models.

i) Initially a sparse autoencoder with swarm based deep
neural network using PSO was developed for classifying
epilepsy and schizophrenia datasets.

ii) Secondly, reinforcement learning based on Q-learning
was implemented successfully to classify epilepsy and
schizophrenia datasets.

The organization of the work is as follows. Section II explains
the development of the SASDL, and Section III explains the
RBATQ model. Section IV explains the results and discussion
and Section V gives the conclusion.

II. DEVELOPMENT OF SASDL MODEL

An autoencoder model is developed to mitigate the dimen-
sionality of the input [42]. A feedforward neural network is
utilized by this form of unsupervised learning and the autoen-
coder has both encoding and decoding plan An input x is usually
trained and x′ is reconstructed to be quite similar to the input x
as much as possible. Many kinds of autoencoders are available
in literature such as sparse autoencoder, denoising autoencoder,
stacked autoencoder etc [42]. When there is a huge data space,
the reconstruction of the raw data by the autoencoder can fail
as it might fall into replication of the tasks. The sparse autoen-
coder has usually lower output dimensions and it persuades the
autoencoder in reconstructing the raw data from the most useful
features instead of replicating it once again. In this study, a sparse
autoencoder is chosen which helps to extract the highly useful
patterns which would have a very low dimensionality. These
feature vectors are once again selected by the PSO/CSO/BA and
finally fed into a simple deep neural network which comprises
of two hidden layers along with a Softmax output layer. The
input vector to the PSO/CSO/BA is given from the bottleneck
of the sparse autoencoder. The bias units are the neurons termed
as (+1) and these are added to the feed forward neural network
with the help of cost function. In order to get a most preferable
reconstruction of the input x, this step is highly useful, and it
can be achieved without overfitting. The cost function of the
autoencoder comprises of three steps. Assuming a dataset with a
total ofN training samples (x1, x2, . . . , xn), where the ith input
is indicated by xi. The reconstruction of the input xi is trained
by the developed SAE with the help of function hW,b(xi) so that
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its proximity to xi is very close. The squared error, sparsity term
and the weight decay are the three important sections of the cost
function. The weight decay aids to avoid overfitting. For all N
training samples, the mean square error along with the weight
decay and sparsity term is expressed as:

Jsparse(W, b) =
1

N

N∑
i=1

1

2

∥∥hW,b(x
i)− xi
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+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W l
ji)

2 + β

sl∑
j=1

KL(p‖p̂j)

(1)

where the sparse penalty term is represented by β, KL indicates
the Kullback–Leibler divergence. The value of λ should be
carefully chosen because a low value of it leads to overfitting
and a high value of λ leads to underfitting. Here ReLU is chosen
as the activation function represented as a, which expresses the
average activated value of the hidden layer, and it is represented
as:

p̂j =
1

N

N∑
i=1

(a2j (x
i)) (2)

where p represents the sparsity parameter. The calculation of the
sparsity term is usually done to make p̂j look identical and close
to p as much as possible. Activation and deactivation of neurons
on the hidden layer is done by this parameter.

A. PSO

A famous population-based algorithm utilized to solve opti-
mization problems is PSO [43]. The number of particles consti-
tute the total population, and each particle indicates a candidate.
The best solution is searched for by means of updating the
velocity and particle vectors as per the equation:

vid(t+ 1) = w ∗ vid(t) + c1 ∗ r1 ∗ (Pid − xid(t)) + c2 ∗ r2
∗ (Pgd − xid(t)) (3)

xid(t+ 1) = xid(t) + vid(t+ 1) (4)

The velocity of the particle i in the dth dimension is represented
as vid. The position of the particle i in the dth dimension is
represented as xid. In the dth dimension,Pid represents the local
best and Pgd represents the global best. The random numbers
between 0 and 1 is represented by r1, r2. The w represents the
inertia weight and c1, c2 represents the acceleration coefficient
for both exploitation and exploration purposes. Due to its ver-
satility as proven in literature, PSO is chosen here in this work
and is shown in Algorithm 1.

B. CSO

When dealing with CSO, the following tree main rules are
used in expressing the cuckoo search process [44]. Firstly, one
egg is laid by a cuckoo at a particular time and its egg is dropped
in a randomly chosen nest. Secondly, only the best nests which
possess high quality eggs is progressed and carried on to the
next generation. Thirdly, with a fixed number of available host

nest, the host birds discover the egg laid by the cuckoo with a
probability pa ∈ [0, 1]. The host bird can then decide to either
eliminate the egg or even abandon the nest completely. The
algorithm of the cuckoo search is developed using these three
rules and is shown in Algorithm 2. A levy flight is generally
implemented when new solutions x(t+1) are generating for a
cuckoo ‘c’ and is expressed as:

x
(t+1)
i = x

(t)
i + α⊕ Levy(λ) (5)

where α > 0 denotes the step size. Generally, α = O(L/10) is
utilized in most cases, where L denotes the characteristic scale
of the problem of interest. For a random walk, the (5) is projected
as a stochastic equation. Depending on the current location and
the transition probability, the random walk in a Markov Chain
is modeled. The entry wise multiplications are expressed by the
product ⊕. To explore the search space here, the random walk
through Levy flight process is more efficient as it has a longer
step length. With the help of a Levy distribution, a random walk
where random step length is obtained is provided by the Levy
flight and is projected as:

Levy ∼ u = t−λ, (1 < λ ≤ 3) (6)

C. BA

In this process, for a typical bat algorithm, the following
idealized rules are utilized [45]. In order to sense the distance,
echo location is used by the bats and the difference between the
prey and the different background barriers are known by the bats.
In a random manner the bats can fly with a particular velocity
vi at a position xi. The wavelength of their emitted pulses is
adjusted quickly. Based on the proximity of the target, the rate
of pulse emission r ∈ [0, 1] can be adjusted. The loudness varies
from a large positive valueA0 to a minimum valueAmin, though
in many ways the loudness can vary. For simplicity purposes,
the following approximations can be utilized. Generally, the
frequency factor f in a specific range [fmin, fmax] correlates to a
specific wavelength range [λmin, λmax]. For an easy implemen-
tation, any wavelength can be used depending on the specific
problem. By means of adjusting the frequencies the range of
the wavelength can be adjusted. While fixing the wavelength λ,
the frequency too can be varied as λ and f are closely related.
For simplicity reasons, it is assumed that f ∈ [0, fmax]. It is well
known that higher frequencies possess short wavelength and can
travel only a shorter distance. The typical range is only a few
meters for bats and the rate of pulse is in the range of [0, 1],
where 1 implies the highest pulse emission rate and 0 implies
no pulses and the procedure of it is shown in Algorithm 3.

D. Overall Framework of the Work

The overall framework with testing and training using the
SASDL is depicted from Figs. 1 and 2. Initially, the dataset is
split into a training set and test set. The training set is passed
to SAE and the bottleneck output of the SAE is fed to the
PSO/CSO/BA and then the respective output of it is fed to the
DNN. The PSO/CSO/BA is used to select the best particles with
the help of Algorithms 1, 2 and 3 respectively.
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Fig. 1. Training of the proposed SASDL method.

Fig. 2. Testing of the proposed SASDL method.

As far as the PSO is concerned, the inertia weight is considered
as 0.64. The acceleration coefficient c1 and c2 is considered as
1.524 and the population size is set as 30 and the total number of
generations is assigned as 30. All the values were finally chosen
after several trial and error-based experimentation efforts.

As far as the CSO is concerned, to fasten up the local search,
the generations of the new solutions by using Levy walk is
utilized. The parameters used in our experiments are as follows,
nests n = 20, α = 1.5 and pα = 0.45.

As far as BA is concerned, the choosing of the parameters
requires some trial-and-error experimentation in this process.
By means of randomization, every bat should possess different
values of both pulse emission rate and loudness. In this exper-
iment, the initial loudness A0

i is considered as 1 and the initial
emission rate r0i is chosen as 0.5 as the values can be between
r0i ∈ [0, 1]. If there is an improvement in the new solution, there
will naturally be an updation of the loudness and emission rates,

Algorithm 1: PSO Implementation to the DNN.
Input: Population Size Populsize, generation gen
popul← Initialize the particles randomly until the total
number of particles reach Populsize;
gbest,i ← Empty, 0
while i < gen do
for particle p in popul do

p← Position updation of p using standard PSO
operation.

fitness← Compute the fitness for p using the standard
fitness evaluation critic

Fitness updation of p by fitness
if fitness > fitness of the personal best then

Update the personal best of p with the p;
end if

end for
gbest ← Best particle updation among the current gbest
and pop
i← i+ 1;

end while
Return gbest
Post process it by sending it to the DNN.

implying that the bats are progressing towards reaching the
optimal solution. In our experiment, the value ofn is chosen as 40
virtual bats.

III. DEVELOPMENT OF RBATQ MODEL

To analyze the decision process of reinforcement learning,
in this paper, three deep learning techniques are utilized such
as Bidirectional LSTM, attention mechanism along with Tree
LSTM. To get the control policy, Q-learning algorithm is utilized
here in this work.
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Algorithm 2: CSO Implementation to the DNN.

Input : Objective function f(x), x = (x1, . . . , xd)
T and the

initial population generation with host nests xc

while (t < MaxGeneration)
Random generation of a solution by Levy flight
Evaluation of the fitness Fc by the cuckoo
Random choosing of the nest among n, say d

if (Fc > Fd)
New solution replaces j

end if
Abandon a fraction (pα) of worse nests
Generate new nests and its respective solutions
Project only the best or quality solutions
Analyze the current best by ranking the solutions

end while
Post processes it by sending it to the DNN.

Algorithm 3: BA Implementation to the DNN.
Input : Bat population initialization xi and vi
(i = 1, 2, . . . , n)

Frequency initialization fi, pulse rate initialization ri,
loudness initialization Ai

while (t < Max number of iterations)
Generation of new solutions by frequency adjustment
Velocity updation is done
The location/solutions updation is also done

if (rand > ri)
Best solution is selected among a set of solutions
Local solution is generated among the best solutions

end if
New solution generation by random flying

if (rand < Aiandf(xi) < f(x0))
Acquire the new solutions
Enhance ri and mitigate Ai

end if
Ranking of bats to find the current best x∗

end while
Post process it by sending it to the DNN

A. Reinforcement Learning (RL)

In order to learn the control policies of the agent in an efficient
manner, the most commonly used framework is RL, and it is
done by means of active interaction with its environment [46].

State: Three states such as the initial state s1, transition
state s2 along with the end state se is present in the internal
state S of the environment. Representing the state directly from
the signal is quite a difficult task as there are no appropriate
measures to assess it and therefore to extract the features of
signal, deep learning techniques are used which helps to indicate
the circumstances in the decision process. Initially, to realize
the feature extraction, a bidirectional LSTM [47] is used and to
generate the initial state, attention-based methods [48] are used
and it is represented as s1 = Att(X; θ1). To create the transition
state s2, Tree-LSTM [49] is utilized here, and it is represented as

s2 = Tree(X; θ2). X indicates the features of the input signal
and the state parameters are expressed by θ1 and θ2 respectively.

Action: In the environment, there are quite a collection of pre-
defined actions denoted byA, such as action a1, action a2, action
a3 respectively. The initial decision decides to consider a1 or
a2, and the next decision decides to consider a3 or a4. For every
action, the reward obtained is represented by R = r1, r2, r3, r4.
In a state S, an action ‘a’ is usually considered by the agent and
a reward ‘r’ is received from the environment. The transition
adaption of the decision procedure is chosen accordingly.

Transition and Reward function: The agent considering a1 at
s1 is then transmitted to se by means of effectively utilizing a
state transition tuple (s1, a1, r1, se). An agent usually receives
a reward r1 if the judgement of a1 is correct. If the judgement
of a1 is incorrect, then in order to push the utilizing judgement
of the initial decision, r1 can be set accordingly. The rest of the
state transition tuples and its respective reward function can be
assigned in a similar manner.

B. BiLSTM Layer

Every LSTM component in the BiLSTM layer comprises of
three multiplicative gates such as input gate it, forget gate ft and
output gate ot. The proportion of information can be controlled
by these gates and helps it to progress on to the next time step.
In each LSTM unit, a memory cell ct is also kept which helps
to analyze the preceding state thereby the features of the current
input signal can be well memorized. For every LSTM unit, the
data sources are as follows: the feature vectorxt at time t, hidden
state vector ht−1 and ht+1 (before and after time t, along with
the cell vector ct−1). The implementation of forward passes are
as follows:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (7)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf ) (8)

gt = tanh(Wxcxt +Whcht−1 +Wccct−1 + bc) (9)

ct = itgt + ftct−1 (10)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (11)

ht = ot tanh(ct) (12)

where the weight matrices are represented by W , bias vectors
are represented as b. The subscripts indicate the meaning as per
the name suggestion as it is commonly represented in BiLSTM
concept [47]. The logistic function is indicated by σ. The exe-
cution of the backward passes with respect to time are carried
out in a same fashion as the forward passes. At a time t, the
hidden state vectors of two directions ht and h′t are computed
simultaneously in the BiLSTM layer, therefore past features and
future features can be efficiently utilized in a specific time frame.
The hidden state vectors of two directions ht and h′t is passed
to a Softmax layer at a particular time t and it is represented as:

yt = soft max(Whyht +Wh′yh
′
t + by) (13)

Here the weight matrices are expressed by W and the bias
vector is represented by b. Attention mechanism is applied to
the BiLSTM.
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C. Tree LSTM

This concept was implemented in the field of natural language
processing (NLP) however, the idea has been tried to biosignal
processing for the first time in this paper. The development
of the tree LSTM starts from its leaf node, and it is done in
a recursive manner up to the root [49]. On the hidden state
vector of the antecedent element, the non-linear transformation
is carried out so that s2 is generated. It serves as an important
transition predicament in the decision process and therefore
s2 is denoted as: s2 = Tree(X; θ2) where θ2 indicates all the
essential criterion in the Tree-LSTM. Once the transition state
s2 is generated, it is progressed to a Softmax output layer so that
yr is obtained which indicates the probability of various kinds
for a relation mention. A category with the highest probability
is chosen, so that a3 or a4 can be determined easily.

yr = softmax(Wsys2 + by) (14)

Here the weight metric is represented by W and the bias vector
is specified by b. A softmax layer is utilized at every dependency
tree so that the category for the root node is predicted when the
given inputs X are discovered at its respective children nodes.

D. Q-Learning

An approved form of reinforcement learning technique is
Q-learning algorithm [50]. For the agent, an optimal state-action
value function Q(s, a) can be easily used to learn it. By means
of consultation of Q(s, a), the agent considers an action a in
state s, which is nothing but the simple estimation of the action’s
anticipated long-term reward. By means of analyzing a sequence
of actions, some cumulative rewards can be maximized. For
every state-action pairs, it is quite difficult to obtain Q(s, a)
as the state space is infinite in the decision process. There-
fore, using a novel network, Q(s, a) is approximated which
can specify Q(s, a) as a parameterized outcome represented as
Qη(s, a) = MLP (ϕ(X; θ), a, η). s1 = Att(X; θ1) is referred
by s1 = ϕ(X; θ1) and s2 = Tree(X; θ2), where θ is calculated
by means of pretraining the deep learning models. The parameter
in the neural network is represented by η and it is learnt by
implementing the famous stochastic gradient descent step with
the help of RMSprop. The degree of approximation is measured
with respect to the least squares error in order to estimate the
real value function Qπ as follows:

Eη = E[(Qπ(s, a)−Qη(s, a))
2] (15)

where E represents the least square value. Instead of the real
value functionQπ(s, a), the estimated value functionQη(s, a) is
used by the Q-learning. In the middle of the estimation Qη(s, a)
and the expectation Qπ(s, a), the discrepancy is reduced when
the parameters are updated during every epoch. There is a
continuous updation of values when the agent progresses from
a random Qη(s, a) by means of utilizing the decisions and
obtains the suitable reward. By carefully selecting the actions
with the highest Qη(s, a

′′), the agent can expand its future
rewards accordingly. Ultimately, the control policy π is obtained
by the Q-learning algorithm. When the training procedure is
carried out, BiLSTM, attention layer along with Tree-LSTM are

Algorithm 4: Q-Learning Training Procedure for the Pro-
posed RBATQ Method.
Start BiLSTM, Attention mechanism and Tree-LSTM with
random parameters
η = 0
Pre-training of BiLSTM, Attention mechanism and
Tree-LSTM process

For every epoch = 1,2 do
For every input signal X do

Utilize deep learning model for automated feature
extraction of X and produce S1 and S2

For t = 1,2 do
r, s′ = reward and state after considering the action
π(s)

a′ = π(s′)
Implement Gradient descent step:

−∂Eη

∂η
= E

[
2(Qπ(s, a)−Qη(s, a))

∂Qη(s, a)

∂η

]

Qπ(s, a) =
1

t
r +

t− 1

t
Qπ(s,′ a′)

Updation Process:

η = η + α

(
1

t
r +

t− 1

t
Qn(s,

′ a′)−Qη(s, a)
∂Qη(s, a)

∂η

)

α = update step, r = reward function
(s,′ a′) = state action pair
π(s) = argmaxa′′ Qη(s, a

′′)
s = s,′ a = a′

End for
End for

End for

pre-trained initially. All the parameters in BiLSTM are indicated
as θ0, all the parameters in attention layer are specified as θ1 and
all the parameters in Tree-LSTM is indicated as θ2 are these
are the main training parameters used. Deep learning is used to
represent the features and RL is used to combine these three tasks
in the final decision process. The standard conventional pipeline
architectures fail to enable the information to flow in a sequential
manner, but this RL method combines all the tasks in a sequential
manner and allows to make decisions too. The decisions may
have problems initially but after several epochs, a good stability
can be obtained. A global updation of the parameters s is done
in this architecture and therefore an eventual convergence is
achieved later. Hence the feedback from decision-making can
be obtained easily by the RL method thereby enabling the data
to progress easily in the global architecture. The Q-learning
training procedure is expressed in Algorithm 4.

IV. RESULTS AND DISCUSSION

The proposed deep learning models has been initially eval-
uated on the University of Bonn dataset where it deals with
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TABLE I
PERFORMANCE ANALYSIS OF THE PROPOSED DEEP LEARNING TECHNIQUES

epilepsy classification. Then the proposed deep learning mod-
els has been evaluated on the dataset obtained for Institute of
Psychiatry and Neurology, Poland. As far as the Bonn dataset is
concerned, the epilepsy datasets are categorized into A, B, C, D
and E sets. The normal category dataset is present in set A and set
B, the interictal category dataset is present in set C and set D and
the ictal category dataset is present in set E. The classification
problems discussed here are A-E, B-E, C-E, D-E, AB-E, AC-E,
CD-E, ACD-E, ABCD-E. As far as the schizophrenia dataset
is considered, it is just normal case versus schizophrenia case.
All the explicit datasets for it are given in the reference [51],
[52]. In the epilepsy dataset, 100 single channel EEG recordings
are present which has a sampling rate of 173.61 Hz along with
a time duration of 23.6 seconds. The sampling of these time
series is done into 4097 data points and then all these 4097
data points are further split into 23 chunks, here about 2300
samples are present in each category. For the deep learning
techniques, the 2300 EEG signals are randomly divided into
ten non-overlapping folds due to the adoption of a 10-fold cross
validation technique utilized here for evaluation. When dealing
with schizophrenia datasets, each channel has about 225,000
samples and therefore the data is specified into a matrix format
of [5000× 45]. As it has about 19 channels, it is specified
exactly as [5000× 45× 19]. When the implementation of deep

learning techniques happens, the schizophrenia EEG samples
are randomly divided into ten non-overlapping folds due to
the adoption of a 10-fold cross validation technique here. The
dimensionality representation of the input is reduced by SAE
where the size of the input is about (4097× 100) for epileptic
dataset and (5000× 45) for schizophrenia dataset. It is reduced
to about (2500× 50) for epileptic dataset and (5000× 15) for
schizophrenia dataset. These useful features are provided by the
bottleneck of the SAE that is fed to the PSO/CSO/BA. The size
of the bottleneck comprises of 9000 hidden units. After it is
passed to PSO/CSO/BA, a total of 4500 features are obtained.
The classifier comprises of two hidden layers and an output
layer where the sizes of units are expressed as 2250, 500 and 2
respectively. To specify the probability of each class, Softmax
regression is utilized in the output layer. In between the fully
connected neural networks, dropout is utilized to prevent the
overfitting. In between the two classes, the maximum probability
is chosen as the final decision of the classifier. To compute
the cost function of the classifier, cross entropy is utilized and
then a weight decay term was added to it subsequently. The
cost function is minimized by the SAE and the PSO/CSO/BA
selects the most important features as it is given as input to the
DNN. The completion of the training process is done in about
50 iterations and the batch size was set as 10. The value of
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the sparsity parameter p is chosen as 0.08, the weight decay
λ is set as 0.01 and the sparse penalty term β was chosen as 4
respectively. To adjust the classifier parameters, fine tuning of the
deep neural network classifier was done on the last 20 iterations
so that the cost function of the Softmax was minimized. For
parameter updation, Adam optimizer is used. The evaluation of
the model was done using a 10-fold cross validation technique.
As for the RBATQ deep learning model, the hyperparameters
implemented are as follows. The state size for all the LSTM
units is set as 250 and the dimension of the hidden layer is fixed
as 100. The non-linear function utilized is tanh. The dropout
rate is set as 0.75, initial learning rate is 0.002. Mini batch size
is set as 25 and the constraint of maximum norm regularization is
set as 3. The performance metrics analyzed here are sensitivity,
specificity, and accuracy and is tabulated in Table I.

On analyzing Table I, it is inferred that for the epilep-
tic dataset (A-E), a good classification accuracy of 97.75%
is obtained when utilizing RBATQ model, 98.55% accuracy
with SASDL-PSO model, 98.50% accuracy with SASDL-CSO
model, 98.26% accuracy with SASDL-BA model and 96.52%
for SAE with DNN model. For the epileptic dataset (B-E),
a good classification accuracy of 97.42% is obtained when
utilizing RBATQ model, 97.85% accuracy with SASDL-PSO
model, 97.64% accuracy with SASDL-CSO model, 97.55%
accuracy with SASDL-BA model and 98.03% for SAE with
DNN model. For the epileptic dataset (C-E), a good classification
accuracy of 94.57% is obtained when utilizing RBATQ model,
98.11% accuracy with SASDL-PSO model, 96.62% accuracy
with SASDL-CSO model, 96.18% accuracy with SASDL-BA
model and 95.8% for SAE with DNN model. For the epilep-
tic dataset (D-E), a good classification accuracy of 94.74%
is obtained when utilizing RBATQ model, 97.52% accuracy
with SASDL-PSO model, 96.56% accuracy with SASDL-CSO
model, 96.74% accuracy with SASDL-BA model and 95.91%
for SAE with DNN model. For the epileptic dataset (AB-E),
a good classification accuracy of 94.4% is obtained when
utilizing RBATQ model, 98.4% accuracy with SASDL-PSO
model, 98.04% accuracy with SASDL-CSO model, 97.96%
accuracy with SASDL-BA model and 98% for SAE with DNN
model. For the epileptic dataset (CD-E), a good classification
accuracy of 94.29% is obtained when utilizing RBATQ model,
98.55% accuracy with SASDL-PSO model, 96.57% accuracy
with SASDL-CSO model, 95.46% accuracy with SASDL-BA
model and 95.22% for SAE with DNN model. For the epilep-
tic dataset (AC-E), a good classification accuracy of 94.4%
is obtained when utilizing RBATQ model, 97.25% accuracy
with SASDL-PSO model, 95.90% accuracy with SASDL-CSO
model, 95.51% accuracy with SASDL-BA model and 95.49%
for SAE with DNN model. For the epileptic dataset (ACD-E),
a good classification accuracy of 93.89% is obtained when
utilizing RBATQ model, 97.89% accuracy with SASDL-PSO
model, 96.63% accuracy with SASDL-CSO model, 95.87% ac-
curacy with SASDL-BA model and 95.45% for SAE with DNN
model. For the epileptic dataset (ABCD-E), a good classification
accuracy of 94.04% is obtained when utilizing RBATQ model,
98.48% accuracy with SASDL-PSO model, 96.99% accuracy
with SASDL-CSO model, 95.95% accuracy with SASDL-BA
model and 95.64 % for SAE with DNN model. For the epileptic

Fig. 3. Performance analysis of Good Detection Rate (GDR) %.

Fig. 4. Performance analysis of error rate (%).

dataset (BCD-E), a good classification accuracy of 93.68%
is obtained when utilizing RBATQ model, 98.07% accuracy
with SASDL-PSO model, 97.46% accuracy with SASDL-CSO
model, 97.21% accuracy with SASDL-BA model and 97.6% for
SAE with DNN model. For the schizophrenia dataset, a good
classification accuracy of 94.97% is obtained when utilizing
RBATQ model, 97.95% accuracy with SASDL-PSO model,
96.22% accuracy with SASDL-CSO model, 96% accuracy with
SASDL-BA model and 96% for SAE with DNN model.

The Good Detection Rate (GDR) and Error Rate Analysis for
the Deep learning models is plotted in Figs. 3 and 4 respectively.
As inferred from Fig. 3 for the proposed SASDL-PSO model
produces a high GDR and then it is followed by the proposed
SASDL-CSO model and the SASDL-BA model. The proposed
RBATQ model and the ordinary SAE-DNN model produce a
comparatively low GDR when compared to the other classifiers.
As inferred from Fig. 4, a low error rate is obtained for the
proposed SASDL-PSO model. A high error rate is obtained for
the SAE-DNN model, and the remaining three models too have a
slightly higher error rate than the proposed SASDL-PSO model.

A. Comparison With Previous Works for Epilepsy
Bonn Dataset and Schizophrenia Dataset

Though thousands of papers are published online every year in
epilepsy and schizophrenia classification, a few selected impor-
tant and recent works which have analyzed many combinations
of the epilepsy problem has been considered and the results have



66 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 3, 2022

TABLE II
COMPARISON WITH PREVIOUS RESULTS FOR THE EPILEPSY BONN DATASET

TABLE III
COMPARISON WITH PREVIOUS RESULTS FOR THE SCHIZOPHRENIA DATASET

been compared with them and reported in Tables II and III. The
best result of 98.55% has been obtained for the A-E problem with
the proposed SASDL-PSO model, 98.03% for B-E problem with
the SAE-DNN model, 98.11% for the C-E problem with the
proposed SASDL-PSO model, 97.52% for D-E problem with
the proposed SASDL-PSO model, 98.4% for AB-E problem
with the proposed SASDL-PSO model, 98.55% for CD-E prob-
lem with the proposed SASDL-PSO model, 97.25% for AC-E
problem with the proposed SASDL-PSO model, 97.89% for
ACD-E problem with the proposed SASDL-PSO model, 98.48%
for ABCD-E problem with the proposed SASDL-PSO model,
and 98.07% for BCD-E problem with the proposed SASDL-
PSO model. For schizophrenia classification, the best result of
97.95% is obtained with the proposed SASDL-PSO model. The
proposed results have more or less reached the similar results
when compared to the previous state of the art results, sometimes
giving more classification accuracy than the previous results and

sometimes giving less classification accuracy than the previous
results by a minor margin. The main intention of this work is
to analyze a swarm based deep neural networks along with a
Reinforcement based Q-learning for epilepsy and schizophrenia
datasets and the results are projected.

V. CONCLUSION

To study and analyze the neuronal dynamics within the human
brain, the most standard tool utilized by the researchers and
clinicians is EEG. For the EEG dependent analysis of various
neurological disorders, visual inspection of these huge datasets
is very difficult. Therefore, feature extraction techniques and
automated classification schemes have been developed in the
past. With the advent of deep learning, manual feature extraction
is not necessary as it is aided by the deep learning process itself.
In this paper, two novel deep learning techniques one with the
help of swarm intelligence and another with the help of Rein-
forcement learning such as SASDL and RBATQ are proposed
in this paper and tested for two EEG datasets such as epilepsy
dataset and schizophrenia dataset. The highest classification ac-
curacy of 98.55% was obtained with the proposed SASDL-PSO
method and 97.75% was obtained with the proposed RBATQ
method for epilepsy dataset. The highest classification accuracy
of 97.95% was obtained with the proposed SASDL-PSO method
and 94.97% was obtained with the proposed RBATQ method
for schizophrenia dataset. Future works aim to develop more
interesting deep learning models to classify the EEG datasets
with a high classification accuracy. Moreover, these developed
deep learning models are planned to be implemented for other
biosignal datasets such as Electrocardiogram (ECG), Photo-
plethysmogram (PPG), Electrooculogram (EOG) etc for the
diagnosis of various medical disorders.

REFERENCES

[1] H.-I. Suk and S.-W. Lee, “Subject and class specific frequency bands
selection for multi-class motor imagery classification,” Int. J. Imag. Syst.
Technol., vol. 21, no 2, pp. 123–130, 2011.



PRABHAKAR AND LEE: SASDL AND RBATQ: SPARSE AUTOENCODER WITH SWARM BASED DEEP LEARNING AND REINFORCEMENT 67

[2] M.-H. Lee et al., “EEG dataset and OpenBMI toolbox for three BCI
paradigms: An investigation into BCI illiteracy,” Giga Sci., vol. 8, no 5,
pp. 1–16, 2019.

[3] R. Hussein, H. Palangi, R. K. Ward, and Z. J. Wang, “Optimized deep
neural network architecture for robust detection of epileptic seizures using
EEG signals,” Clin. Neuriophysiol., vol. 130, no. 1, pp. 25–37, 2019.

[4] A. Subasi and M. Ismail Gursoy, “EEG signal classification using PCA,
ICA, LDA and support vector machines,” Expert Syst. Appl., vol. 37, no. 12,
pp. 8659–8666, 2010.

[5] N. Zahra, N. Kanwal, N. S. Rehman, S. Ehsan, and K. D. McDonald-Maier,
“Seizure detection from EEG signals using multivariate empirical mode
decomposition,” Comput. Biol. Med., vol. 88, pp. 132–141, 2017.

[6] H. Ocak, “Automatic detection of epileptic seizures in EEG using discrete
wavelet transform and approximate entropy,” Expert Syst. Appl., vol. 36,
no. 2, pp. 2027–2036, 2009.

[7] S. Saminu et al., “A recent investigation on detection and classification of
epileptic seizure techniques using EEG signal,” Brain Sci., vol. 11, no. 5,
2021, Art. no. 668.

[8] A. Shoeibi et al., “Application of deep learning techniques for automated
detection of epileptic seizures: A review,” Int. J. Environ. Res. Public
Health, vol. 18, no. 11, 2021, Art. no. 5780.

[9] Y. Jiang et al., “Seizure classification from EEG signals using transfer
learning, semi-supervised learning and TSK fuzzy system,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 25, no. 12, pp. 2270–2284, Dec. 2017,
doi: 10.1109/TNSRE.2017.2748388.

[10] A. Bhattacharyya et al., “Tunable-q wavelet transform based multiscale
entropy measure for automated classification of epileptic EEG signals,”
Appl. Sci., vol. 7, no. 4, 2017, Art. no. 385.

[11] T. Zhang and W. Chen, “LMD based features for the automatic
seizure detection of EEG signals using SVM,” IEEE Trans. Neural
Syst. Rehabil. Eng., vol. 25, no. 8, pp. 1100–1108, Aug. 2017,
doi: 10.1109/TNSRE.2016.2611601.

[12] M. Ullah Hussain, E.-U.-H. Qazi, and H. Aboalsamh, “An automated
system for epilepsy detection using EEG brain signals based on deep
learning approach,” Expert Syst. Appl., vol. 107, pp. 61–71, 2018.

[13] X. Wei et al., “Automatic seizure detection using three-dimensional CNN
based on multi-channel EEG,” BMC Med. Informat. Decis. Mak., vol. 18,
2018, Art. no. 111. [Online]. Available: https://doi.org/10.1186/s12911-
018-0693-8

[14] A. G. Mahapatra et al., “Epilepsy EEG classification using morpholog-
ical component analysis,” EURASIP J. Adv. Signal Process., vol. 2018,
2018, Art. no. 52. [Online]. Available: https://doi.org/10.1186/s13634-
018-0568-2

[15] Ö. Turk and M. S. Ozerdem, “Epilepsy detection by using scalogram based
convolutional neural network from EEG signals,” Brain Sci., vol. 9, no. 5,
2019, Art. no. 115.

[16] S. Raghu, N. Sriraam, A. S. Hegde, and P. L. Kubben, “A novel approach
for classification of epileptic seizures using matrix determinant,” Expert
Syst. Appl., vol. 127, pp. 323–341, Aug. 2019.

[17] N. Mahmoodian, A. Boese, M. Friebe, and J. Haddadnia, “Epileptic
seizure detection using cross-bispectrum of electroencephalogram signal,”
Seiuzre: Eur. J. Epilepsy, vol. 66, pp. 4–11, 2019.

[18] X. Wang, G. Gong, N. Li, and S. Qiu, “Detection analysis of epileptic EEG
using a novel random forest model combined with grid search optimiza-
tion,” Front. Hum. Neurosci., vol. 13, 2019, Art. no. 52. doi: 10.3389/fn-
hum.2019.00052.

[19] W. Zhao et al., “A novel deep neural network for robust detection of
seizures using EEG signals,” Comput. Math. Models Med., vol. 2020, 2020,
Art. no. 9689821.

[20] D. Zhou and X. Li, “Epilepsy EEG signal classification algorithm
based on improved RBF,” Front. Neurosci. vol. 14, 2020, Art. no. 606.
doi: 10.3389/fnins.2020.00606.

[21] Y. Gao, B. Gao, Q. Chen, J. Liu, and Y. Zhang, “Deep convo-
lutional neural network-based epileptic electroencephalogram (EEG)
signal classification,” Front. Neurol., vol. 11, 2020, Art. no. 375.
doi: 10.3389/fneur.2020.00375.

[22] C. Gómez et al., “Automatic seizure detection based on imaged-EEG
signals through fully convolutional networks,” Sci. Rep., vol. 10, 2020,
Art. no. 21833. [Online]. Available: https://doi.org/10.1038/s41598-020-
78784-3

[23] O. K. Cura et al., “Epileptic seizure classifications using empirical mode
decomposition and its derivative,” BioMed. Eng. OnLine, vol. 19, 2020,
Art. no. 10. [Online]. Available: https://doi.org/10.1186/s12938-020-
0754-y

[24] A. Naser, M. Tantawi, H. A. Shedeed, and M. F. Tolba, “Automated EEG-
based epilepsy detection using BA-SVM classifiers,” Int. J. Med. Eng.
Informat., vol. 12, no. 6, pp. 620–625, 2020.

[25] L. C. D. Nkengfack, D. Tchiotsop, R. Atangana, V. L. Door, and D. Wolf,
“Classification of EEG signals for epileptic seizures detection and eye
states identification using jacobi polynomial transforms-based measures
of complexity and least-squares support vector machines,” Informat. Med.
Unlocked, vol. 23, 2021, Art. no. 100536.

[26] A. Alhudhaif, “A novel multi-class imbalanced EEG signals classification
based on the adaptive synthetic sampling (ADASYN) approach,” Peer J
Comput. Sci., vol. 7, 2021, Art. no. e523.

[27] A. Humairani, B. S. Atmojo, I. Wijayanto, and S. Hadiyoso, “Fractal based
feature extraction method for epileptic seizure detection in long-term EEG
recording,” in Proc. 2nd Int. Conf. Sci. Technol., 2021, pp. 1–10.

[28] M. K. M. Rabby, A. K. M. K. Islam, S. Belkasim, and M. U. Bikdash,
“Epileptic seizures classification in EEG using PCA based genetic algo-
rithm through machine learning,” in Proc. ACM Southeast Conf., 2021,
pp. 17–24.

[29] A. A. Ein Shoka et al., “Automated seizure diagnosis system based on fea-
ture extraction and channel selection using EEG signals,” Brain Inf., vol. 8,
2021, Art. no. 1. [Online]. Available: https://doi.org/10.1186/s40708-021-
00123-7

[30] S. K. Prabhakar and S.-W. Lee, “ENIC: Ensemble and nature in-
clined classification with sparse depiction based deep and transfer learn-
ing for biosignal classification,” Appl. Soft Comput., vol. 117, 2022,
Art. no. 108416.

[31] S. K. Prabhakar, H. Rajaguru, and S.-H. Kim, “Schizophrenia EEG signal
classification based on swarm intelligence computing,” Comput. Intell.
Neurosci., vol. 2020, 2020, Art. no. 8853835. [Online]. Available: https:
//doi.org/10.1155/2020/8853835

[32] L. Cardoso et al., “Abstract computation in schizophrenia detection
through artificial neural network based systems,” Sci. World J., vol. 2015,
2015, Art. no. 467178. [Online]. Available: https://doi.org/10.1155/2015/
467178

[33] V. Jahmunah et al., “Automated detection of schizophrenia using non-
linear signal processing methods,” Artif. Intell. Med., vol. 100, 2019,
Art. no. 101698.

[34] S. L. Oh, J. Vicnesh, E. J. Ciaccio, R. Yuvaraj, and U. R. Acharya,
“Deep convolutional neural network model for automated diagnosis of
schizophrenia using EEG signals,” Appl. Sci., vol. 9, 2019, Art. no. 2870.

[35] R. Buettner, D. Beil, S. Scholtz, and A. Djemai, “Development of a
machine learning based algorithm to accurately detect schizophrenia based
on one-minute EEG recordings,” in Proc. 53rd Hawaii Int. Conf. Syst. Sci.,
2020.

[36] Z. Aslan and M. Akin, “Automatic detection of schizophrenia by applying
deep learning over spectrogram images of EEG signals,” Traitement du
Signal, vol. 37, no. 2, pp. 235–244, 2020.

[37] S. K. Prabhakar, H. Rajaguru, and S.-W. Lee, “A framework for
schizophrenia EEG signal classification with nature inspired optimization
algorithms,” IEEE Access, vol. 8, pp. 39875–39897, 2020.

[38] P. T. Krishnan, A. N. Joseph Raj, P. Balasubramanian, and Y.
Chen, “Schizophrenia detection using multivariate empirical mode de-
composition and entropy measures from multichannel EEG signal,”
Biocybernet. Biomed. Eng., vol. 40, no. 3, pp. 1124–1139, 2020.

[39] A. Shalbaf, S. Bagherzadeh, and A. Maghsoudi, “Transfer learning with
deep convolutional neural network for automated detection of schizophre-
nia from EEG signals,” Phys. Eng. Sci. Med., vol. 43, pp. 1229–1239,
2020.

[40] K. Singh, S. Singh, and J. Malhotra, “Spectral features based convolutional
neural network for accurate and prompt identification of schizophrenic
patients,” Proc. Inst. Mech. Eng., vol. 235, no. 2, pp. 167–184, 2021.

[41] M. Baygin, O. Yaman, T. Tuncer, S. Dogan, P. D. Barua, and U. R. Acharya,
“Automated accurate schizophrenia detection system using collatz pattern
technique with EEG signals,” Biomed. Signal Process. Control, vol. 70,
Sep. 2021, Art. no. 102936.

[42] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi, “Deep learning
approach combining sparse autoencoder with SVM for network intrusion
detection,” IEEE Access, vol. 6, pp. 52843–52856, 2018.

[43] J. Guan and L. Jia, “A multi-objective particle swarm optimization algo-
rithm for solving human resource allocation problem,” IPPTA: Quart. J.
Indian Pulp Paper Tech. Assoc., vol. 30, no. 8, pp. 144–149, 2018.

[44] J. Zhao, S. Liu, M. Zhou, X. Guo, and L. Qi, “An improved binary cuckoo
search algorithm for solving unit commitment problems: Methodological
description,” IEEE Access, vol. 6, pp. 43535–43545, 2018.

https://dx.doi.org/10.1109/TNSRE.2017.2748388
https://dx.doi.org/10.1109/TNSRE.2016.2611601
https://doi.org/10.1186/s12911-018-0693-8
https://doi.org/10.1186/s12911-018-0693-8
https://doi.org/10.1186/s13634-018-0568-2
https://doi.org/10.1186/s13634-018-0568-2
https://dx.doi.org/10.3389/fnhum.2019.00052
https://dx.doi.org/10.3389/fnhum.2019.00052
https://dx.doi.org/10.3389/fnins.2020.00606
https://dx.doi.org/10.3389/fneur.2020.00375
https://doi.org/10.1038/s41598-020-78784-3
https://doi.org/10.1038/s41598-020-78784-3
https://doi.org/10.1186/s12938-020-0754-y
https://doi.org/10.1186/s12938-020-0754-y
https://doi.org/10.1186/s40708-021-00123-7
https://doi.org/10.1186/s40708-021-00123-7
https://doi.org/10.1155/2020/8853835
https://doi.org/10.1155/2020/8853835
https://doi.org/10.1155/2015/467178
https://doi.org/10.1155/2015/467178


68 IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, VOL. 3, 2022

[45] L. F. Zhu, J. S. Wang, H. Y. Wang, S. S. Guo, M. W. Guo, and W. Xie, “Data
clustering method based on improved bat algorithm with six convergence
factors and local search operators,” IEEE Access, vol. 8, pp. 80536–80560,
2020.

[46] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
Cambridge, MA, USA: MIT Press, 1998.

[47] W. J. Lu et al., “A CNN-BiLSTM-AM method for stock price prediction,”
Neural Comput. Appl., vol. 33, pp. 4741–4753, 2020.

[48] H. Ge, Z. Yan, W. Yu, and L. Sun, “An attention mechanism based
convolutional LSTM network for video action recognition,” Multimedia
Tools Appl., vol. 78, no. 14, pp. 20533–20556, 2019.

[49] K. S. Tai, R. Socher, and C. D. Manning, “Improved semantic representa-
tions from tree-structured long short-term memory networks,” May 2015,
arXiv:1503.00075v3.

[50] D. Pandey and P. Pandey, “Approximate q-learning: An introduction,”
in Proc. 2nd Int. Conf. Mach. Learn. Comput., Bangalore, India, 2010,
pp. 317–320.

[51] R. G. Andrzejak, K. C. Lehnertz, F. Rieke, P. Mormann, and C. E. Elger,
“Indications of nonlinear deterministic and finite dimensional structures
in time series of brain electrical activity: Dependence on recording region
and brain state,” Phys. Rev. E., Stat. Nonlinear Soft Matter Phys., vol. 64,
2001, Art. no. 061907.

[52] E. Olejarczyk and W. Jernajczyk, “Graph-based analysis of brain connec-
tivity in schizophrenia,” PLoS One, vol. 12, 2017, Art. no. e018862.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


