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Abstract: Hydrogen sulfide (H2S) is a gasotransmitter that exerts numerous physiologic and patho-
physiologic effects. Recently, a role for H2S in DNA repair has been identified, where H2S modulates
cell cycle checkpoint responses, the DNA damage response (DDR), and mitochondrial and nuclear
genomic stability. In addition, several DNA repair proteins modulate cellular H2S concentrations
and cellular sulfur metabolism and, in turn, are regulated by cellular H2S concentrations. Many DDR
proteins are now pharmacologically inhibited in targeted cancer therapies. As H2S and the enzymes
that synthesize it are increased in many human malignancies, it is likely that H2S synthesis inhibition
by these therapies is an underappreciated aspect of these cancer treatments. Moreover, both H2S and
DDR protein activities in cancer and cardiovascular diseases are becoming increasingly apparent,
implicating a DDR–H2S signaling axis in these pathophysiologic processes. Taken together, H2S
and DNA repair likely play a central and presently poorly understood role in both normal cellular
function and a wide array of human pathophysiologic processes. Here, we review the role of H2S in
DNA repair.

Keywords: hydrogen sulfide; DNA repair; cystathionine β-synthase; cystathionine γ-lyase; 3-
mercaptopyruvate sulfurtransferase; ATR; MEK1; autophagy

1. Introduction

The maintenance of genomic stability is essential for life, and cells have evolved
complex and intricate molecular machinery to ensure DNA stability and accurate DNA
replication [1–4]. Eukaryotic cells carry two separate genomes with different evolution-
ary origins [4,5]. The nuclear genome is diploid, linear, and in humans contains roughly
3.3 billion base pairs encoding over 20,000 genes [4,5]. Conversely, the mitochondrial
genome is circular, contains 37 genes in 16,569 base pairs, and occurs in multiple copies
at 100–1000/cell [4,5]. The two genomes extensively interact, with the nuclear genome
encoding roughly 1500 mitochondrial proteins, including those involved in mitochondrial
DNA repair, while mitochondrial genomic damage can initiate apoptotic cell death via
cytochrome c release and can also activate the innate immune response [4–7]. Hydrogen sul-
fide (H2S) is a gasotransmitter that, along with nitric oxide and carbon monoxide, functions
in a vast number of different physiologic and pathophysiologic processes [8,9]. Specifically,
H2S has many physiologic regulatory roles, including in the renal, cardiovascular, central
nervous, and digestive systems, and is also dysregulated in many different pathologic pro-
cesses including cancer, cardiovascular diseases, and neurodegeneration [10–17]. Recently,
H2S has been found to regulate mitochondrial and nuclear DNA stability and repair [11–13].
Here, we review this new area of inquiry and discuss its possible implications for cancer
chemotherapy and cardiovascular diseases.
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2. H2S Chemistry, Synthesis, and Catabolism
2.1. H2S Chemistry

H2S has been known for over 300 years as an environmental toxin with high H2S
concentrations causing damage in multiple organs, difficulty with breathing, shock, and
convulsions, which may lead to death [18]. H2S toxicity occurs following cytochrome c
oxidase, carbonic anhydrase, Na+/K+ ATPase, monoamine oxidase, and possibly ATR
kinase inhibition [12,18–21]. H2S is a colorless, weak diprotic acid with a characteristic
rotten egg smell, with first and second pKa values of 6.76 and 19 at 37 ◦C [18]. At pH 7.4,
H2S is ~70–80% HS−, ~20% H2S, with low very concentrations of S2

− [19]. H2S readily
diffuses across biological membranes [22]. HS− has high nucleophilicity and chemical
reactivity, but it is not membrane permeable, although it may cross membranes due to its
rapid interconversion with H2S or through specific transporters [9,22–24]. The minus two
sulfur oxidation state in H2S renders it an obligatory reductant, and H2S exerts numerous
antioxidant effects [9,24–26]. However, cellular H2S concentrations are low at 10–30 nM,
and H2S reacts too slowly with oxidants, such as H2O2 and hypochlorite, to exert significant
antioxidant effects [14,19,27–29]. Thus, its antioxidants effects are likely mediated through
events such as the H2S-mediated induction of glutathione synthesis and cystine uptake, the
inhibition of mitochondrial free radical production, and Nrf2 induction [9,25,27]. H2S exists
in thermodynamic equilibrium with other sulfur species including persulfides, polysulfides,
and reactive sulfur species. The roles of these compounds in human health and disease
are presently poorly understood and are an area of intense investigation [14]. The cell and
tissue H2S half-lives are short, being only a few minutes [9,19].

2.2. H2S Synthesis

Biological H2S synthesis was first identified in bacteria in 1895, and it was not until
1996 that endogenous H2S as a biological modulator in humans was identified [10,30].
In mammals H2S is primarily synthesized by three systems which contribute unequally
to the sulfur pool: (1) enzymatic synthesis, (2) non-enzymatic synthesis, and (3) micro-
biome production. Enzymatic H2S synthesis occurs through three enzymes: cystathion-
ine γ-lyase (CSE), cystathionine β-synthase (CBS), and 3-mercaptopyruvate sulfurtrans-
ferase (3-MST, [9]). These enzymes show tissue and organ-specific distributions pat-
terns [8,10,31,32]. CSE is predominantly found within the vasculature, while CBS occurs
in the liver, brain, and nervous system, and 3-MST occurs mainly in the vasculature and
the brain [10,31,32]. CSE and CBS are predominantly cytosolic pyridoxal-5′-phosphate-
dependent hemeproteins, while 3-MST is mainly mitochondrial and synthesizes roughly
90% of brain H2S [10,31–33].

The enzymatic synthesis of H2S in mammals requires methionine and cysteine, with
methionine being derived solely from the diet, as it cannot be synthesized in mammalian
tissues [19,34]. These amino acids are converted into homocysteine by the transsulfura-
tion pathway [19,34]. CBS synthesizes H2S by catalyzing homocysteine and L-cysteine to
form cystathionine and H2S [19,35]. CBS generates H2S through a β-replacement reaction
also producing serine. In the presence of homocysteine H2S synthesis increases 23-fold
compared to the reaction with L-cysteine alone [19,36]. CBS also catalyzes the condensa-
tion of L-serine and homocysteine, forming cystathionine and H2O, a significant step in
L-cysteine biosynthesis [37]. CSE catalyzes homocysteine, generating H2S, α-ketobutyrate,
and NH3 [9,19,38]. Interestingly, at physiologic L-cysteine and homocysteine concen-
trations, roughly 70% of the H2S synthesized for the CSE-mediated α,β-elimination of
L-cysteine, while the α,γ-elimination of homocysteine contributes approximately 29% of
the total H2S content; however, roughly 90% of the H2S is derived from the α,γ-elimination
of homocysteine when its levels are increased to those seen in hyperhomocysteinemia [38].
3-MST H2S synthesis requires cysteine aminotransferase to convert L-cysteine into 3-
mercaptopyruvate, which is then catalyzed by 3-MST into H2S and pyruvate [39]. D-
cysteine can be converted to 3-mercaptopyruvate by the peroxisome-located D-amino acid
oxidase, which, once imported into the mitochondrion, is converted into H2S by 3-MST. As
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D-amino acid oxidase expression is limited to the brain and kidneys, this H2S synthesis
pathway is likely limited to those organs [40].

Based on its chemistry, the molecular mechanisms of H2S reactivity have been placed
into three categories: (1) chemical interfacing/scavenging with reactive oxygen and nitro-
gen species, (2) chemical modification of protein cysteines to persulfides, and (3) binding
to and/or redox reactions with metal centers [9]. Intracellular H2S exists as free H2S, acid-
labile sulfide, and bound sulfane sulfur [19]. The acid-labile sulfide faction consists of sulfur
present in iron–sulfur clusters contained within iron–sulfur proteins (non-heme), which
are ubiquitous and include ferredoxins, rubredoxins, aconitase, and succinate dehydroge-
nase [19]. The sulfane sulfur fraction consists of sulfur atoms bound only to other sulfur
atoms, these include thiosulfate S2O3

2–, persulfides, R–S–SH, thiosulfonates R–S(O)–S–R’,
polysulfides R–Sn–R, polythionates SnO6

2–, and elemental sulfur S0 [19]. Free cellular H2S
represents less than 1% of the potentially available sulfide, indicating that the endogenous
sulfide pool likely has significant buffering capacity [9].

2.3. Non-Enzymatic H2S Synthesis

H2S is also synthesized through non-enzymatic mechanisms and occurs by an iron
and vitamin B6-mediated catalysis of L- or D-cysteine producing pyruvate, NH3, and
H2S [41]. This H2S synthesizing pathway likely plays a role in maintaining basal H2S levels
and may be an important H2S source in iron overload and hemorrhagic disorders [41].
Lastly, the mammalian microbiome regulates systemic H2S bioavailability and metabolism.
Germ-free mice show significantly lower plasma and gastrointestinal H2S and 50–80%
lower plasma, adipose, and lung tissue bound sulfane sulfur compared to conventionally
housed mice. Interestingly, CSE activity was reduced in many organs of the germ-free mice,
while tissue cysteine levels were elevated [42].

2.4. H2S Catabolism

High cellular H2S concentrations can be toxic, and excess H2S is predominately re-
moved by the stringently regulated mitochondrial sulfur oxidation pathway [43]. H2S
catabolism is initiated by the mitochondrial matrix flavoprotein sulfide quinone oxidore-
ductase (SQR), which oxidizes H2S to form an SQR-persulfide intermediate. The persulfide
is then transferred to glutathione to form glutathione persulfide, which is further oxidized
by the ethylmalonic encephalopathy 1 or thiosulfate sulfurtransferase proteins to form sul-
fite or thiosulfate, respectively [43–45]. The sulfite and thiosulfate are ultimately excreted
in the urine [46]. The electrons released by SQR enter complex III of the electron transport
chain and are used to generate ATP, making H2S an inorganic compound capable driving
mitochondrial ATP synthesis [47]. Outside of this review, however, polysulfides can be
synthesized by all three H2S-sythesizing enzymes and increasingly have been found to
play important functions in many physiologic and pathophysiologic processes [29,48,49].

3. Life’s Origin and H2S
3.1. Life’s Origin and H2S

Biochemical, fossil, and molecular clock dating methods indicate that life first ap-
peared 3.7 to 4.2 billion years ago in a reducing, ferruginous, and euxinic environment
probably at hydrothermal vents rich in NH3, N2, CO2, CO, CH4, H2, H2S, and dissolved
metals, especially Fe2+ and Mn2+ [50–55]. Due to the fact of its ubiquity on the early Earth
and versatile chemistry, H2S likely played an essential role in prebiotic chemistry and
the emergence of life [52,54,55]. Support for this comes from analyses demonstrating that
reactive oxygen and reactive sulfur species detoxifying mechanisms have been present
since the origin of life, some four billion years ago, and have continued to the present in
the biochemistry of the Archaea, Bacteria, and Eukarya [50–56]. Since genomic stability
maintenance is an ancient and absolute requirement for life, and H2S biochemistry is simi-
larly ancient and ubiquitous, it is very likely that H2S functioned in the earliest biochemical
pathways including in those regulating genomic stability [1–3,11–13,17,52–58].
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3.2. H2S and the DNA Damage Response

The DNA damage response (DDR) comprises a complex network of cellular pathways
that cooperatively detect DNA damage, signals its presence, and promotes DNA repair,
maintaining genomic stability [1–3]. Phylogenomic analyses indicate that many elements
of the Eukaryotic DDR are ancient, appearing in the first Metazoa and subsequently
undergoing evolutionary diversification [59].

Extensive evidence indicates that H2S affects cell DNA stability, impinging on the DDR
and cell viability. For example, when the nuclei from Chinese hamster ovary cells were
treated 2 h with 1 µM Na2S, they exhibited significant DNA damage that was attenuated by
treatment with the antioxidant butyl-hydroxyanisole [60]. Treatment of two glioblastoma
cell lines with a high amount of Na2S (476 µM) for 4 h, increased DNA damage, oxidative
stress levels, and increased γ-H2AX foci formation [61]. Additionally, treatment of human
intestinal epithelial cells with very high (1–2 mM) Na2S induced DNA breaks as measured
by the comet assay [62]. Similarly, human lung fibroblasts treated 12 h with 10 µM NaHS
showed micronuclei formation, increased p21, p53, Bax, cytochrome c, Ku-70 and Ku-80
expression, and a G1 checkpoint response [63]. These studies implicate H2S in the DDR
as; (1) broken DNA activates the DDR, (2) γ-H2AX foci formation requires the activities
of the DDR proteins ATM, ATR, and DNA-PK, (3) the Ku70/Ku80 heterodimer associates
with DNA-PK to promote DNA repair, and (4) the ATM kinase is required for the oxidative
stress-induced G1 checkpoint response and rapid p53 induction [1–3,64].

Other studies have shown that H2S can increase/preserve DNA stability. For example,
in a murine model, a unilateral nephrectomy with contralateral ureteral obstruction sup-
pressed H2S kidney levels and caused more DNA damage in CSE deficient mice compared
to wild-type mice, indicating that CSE expression plays a role in maintaining DNA stability
upon ischemia/reperfusion injury [65]. Additionally, daily injection of the H2S donor
diallyl sulfide intraperitoneally into female rats at 50 mg/kg induced p53, Gadd45a, PCNA,
and DNA polymerase δ in their breast tissue, suggesting that H2S enhances breast tissue
DNA repair capacity [66]. Interestingly, exogenous H2S also affects the mitochondrial
genome. For example, CSE deficient murine smooth muscle and aortic tissue showed
reduced mitochondrial DNA copy numbers, mitochondrial content, mitochondrial-specific
mRNAs (MT-CO1, CytB, and Atp 6), and mitochondrial transcription factor A (TFAM)
mRNA and protein expression, and it elevated DNA methyltransferase 3A (Dnmt3a)
expression, accompanied by increased global DNA methylation with increased TFAM
promoter methylation [67]. Treatment with 30 and 60 µM NaSH for 48 h reversed these
effects, with increased mitochondrial marker expression (mitochondrial DNA copy num-
bers, mRNAs, and mitochondrial content) and decreased Dnmt3a and TFAM promoter
methylation, increasing TFAM expression [67]. This study indicates that CSE-derived
H2S plays an important role in the maintenance of mitochondrial function and genomic
stability. Lastly, 30–100 nM concentrations of AP39, a mitochondria-targeted H2S donor,
increased endothelial cell H2S levels and stimulated mitochondrial electron transport and
bioenergetic functions. Treatment of the endothelial cells with oxidative stress increased
reactive oxygen species (ROS), reduced cell viability, suppressed cellular bioenergetics, and
increased mitochondrial DNA damage, events reversed by 100 nM AP39 treatment [68].
Taken together, these studies indicate that under different conditions H2S can increase
DNA damage or suppress it and also impinges on the DDR. A caveat to keep in mind
is that many experimental procedures in these studies used high concentrations of H2S
donors that are likely non-physiologic [61,62]. Additionally, many studies of H2S biology
use H2S synthesis inhibitors that have low specificity, complicating experimental result
interpretation (reviewed in [69]).

4. H2S and Mitochondrial DNA Repair

The mitochondria are the major cellular site for ROS generation, and the mitochondrial
genome is subject to significant DNA, protein, and lipid oxidative damage [70]. Mitochon-
drial DNA repair is distinct from and, in general, less complex than the nuclear DNA repair
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systems. For example, base-excision repair (BER) predominates, while nucleotide excision
repair (NER) is absent [5,71]. Moreover, mitochondrial genomes with double-stranded
DNA (dsDNA) breaks are usually rapidly degraded, leading to a drop in genome copy
number, which are replaced through non-cleaved genome replication, often leading to
a shift in heteroplasmy [5]. A role for H2S in mitochondrial function is well established
with, for example, the mitochondrial H2S donor AP39 promoting mitochondrial bioen-
ergetics and genomic stability and in the face of exogenous oxidants [68]. Additionally,
in ovarian cancer cell lines, CBS expression maintains mitofusin-2 expression, with CBS
knockdown lowering mitofusin-2 expression, causing mitochondrial fragmentation with
a fused spherical morphology and increased unbranched mitochondria [72]. Mitofusin-2
exerts anti-apoptotic effects, and its ablation is lethal in mice [73]. Interestingly, its expres-
sion is lower in obesity, diabetes, and in animal models prone to atherosclerosis, and is
increased by weight loss and exercise [73].

The apyrimidinic/apurinic endonuclease 1 (APE1), exonuclease G (EXOG), DNA
Ligase III (LIG3), and DNA polymerase gamma (Pol γ) play central roles in mitochondrial
BER [4,11,74–76]. Loss of these proteins has severe often lethal effects. For example, EXOG
depletion induces persistent single-stranded DNA breaks leading to apoptosis, while APE1
ablation is embryonic lethal, and its removal by Cre expression causes apoptotic cell death
within 24 h [74,75]. In the A549 lung adenocarcinoma cell line, siRNA knockdown of
CBS, CSE, or 3-MST or treatment with the CSE-specific inhibitor D, L-propargylglycine
(PAG) combined with exogenous oxidative stress significantly increased mitochondrial
DNA damage [11]. Interestingly, the interactions of EXOG with APE1, LIG3, and POL
were all attenuated with CBS, CSE, or 3-MST knockdown or pharmacologic CBS inhibition
by aminooxyacetic acid (AOAA) [11]. The interactions of EXOG with APE1 or LIG3
following AOAA treatment were restored and mitochondrial DNA damage was reduced
with AP39 co-treatment, demonstrating that mitochondrial H2S restored these interactions
and increased mitochondrial genomic stability [11]. Mass spectrometric analysis revealed
that EXOG Cys 76 was sulfhydrated, with the H2S donor NaHS increasing EXOC and
APE1 interactions. Mutation of EXOG Cys 76 to alanine lowered its interactions with
APE1 and made the interaction insensitive to NaHS treatment [11]. Thus, this elegant
study demonstrated that mitochondrial H2S plays a central role in mitochondrial genomic
stability and DNA repair.

5. H2S and Nuclear DNA Repair: ATR and MEK1
5.1. ATR

Nuclear DNA repair and the DDR involve at least five major pathways comprising
BER, NER, mismatch excision repair, homologous recombination, and non-homologous end
joining [1–3]. The ataxia-telangiectasia mutated, and RAD3-related serine/threonine protein
kinase (ATR) plays a central role in the DDR, where it stabilizes single-stranded DNA
(ssDNA) at stalled replication forks, lowers replication stress, initiates cell cycle checkpoints,
and promotes faithful anaphase chromosomal segregation [1–3,12]. Interestingly, increased
ATR/phospho-ATR expression is a poor prognostic factor in breast, bladder, and ovarian
cancers [77–79]. Analysis of a colon adenocarcinoma cell lines with wild-type and biallelic
knock-in hypomorphic ATR Seckel syndrome 1 genes revealed lower cellular H2S levels in
the mutant cells compared to the wild type [12]. ATR inhibition with the pharmacologic
ATR inhibitor NU6027 also significantly lowered cellular H2S levels in the wild-type but
not the mutant cells [12]. Treatment of both cell lines with the CBS/CSE inhibitor β-cyano-
L-alanine suppressed H2S levels in both cell types, demonstrating that cellular H2S levels
are regulated by CBS/CSE and ATR, which form separate regulatory foci [12].

Interestingly, ATR activation correlates with serine 435 phosphorylation, an event also
required for ATR-XPA dimer formation and subsequent NER [12,80]. Treatment of the
colon adenocarcinoma cell lines with β-cyano-L-alanine increased this phosphorylation,
while treatment with the H2S donor diallyl trisulfide significantly suppressed it in the wild-
type but not mutant cells. UV light and oxidative stress treatments similarly induced this
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phosphorylation in the wild-type but not mutant cells [12]. Activated ATR phosphorylates
the CHK1 kinase serine 345, leading to its activation [1–3,12]. When the cells lines were
pretreated with β-cyano-L-alanine, followed by a low concentration of oxidative stress,
oxidative stress-induced CHK1 phosphorylation increased with H2S synthesis inhibition,
an event again not seen in the mutant cells [12]. Lastly, to examine the effects of these events
on genomic stability, oxidative stress-induced dsDNA breaks were quantified in both cell
types with and without H2S synthesis inhibition by β-cyano-L-alanine treatment. H2S
synthesis inhibition caused low levels of oxidative stress to significantly induce dsDNA
breaks, where otherwise they were not increased [12]. The mutant cells also showed
increased breaks compare to the wild-type cells [12]. Taken together, these finding indicate
that ATR regulates cellular H2S levels and H2S, in turn, regulates ATR phosphorylation,
ATR kinase activity, and nuclear genomic stability [12].

5.2. MEK1

An important initial and required step in the DDR is carried out by poly (ADP-ribose)
polymerases (PARPS) that transfer ADP-ribose from NAD+ to glutamic acid residues on a
protein acceptor, creating ADP-ribose polymers at sights of DNA damage [1–3,81]. These
chains function in the recruitment of factors involved in DNA repair such as polymerase
β, XRCC1, and ligase IIIα [1–3,82]. PARP activation is tightly regulated by a cascade of
kinases including the MEK/ERK signaling pathway [1–3,82–84]. In an interesting study,
treatment of human endothelial cells for 2 h with 10 µM NaHS increased MEK1 Cys
341 S-sulfhydration. This event resulted in ERK1/2 phosphorylation and its subsequent
translocation into the nucleus, where it activated PARP-1 through a direct interaction [13].
Mutation of MEK1 Cys 341 to Gly blocked these events.

Next HEK293 cells were treated with methyl methanesulfonate (MMS), which induces
ssDNA and dsDNA breaks and activates PARP-1 activity, with PARP-1 then recruiting
XRCC1 and DNA ligase III to initiate DNA repair [13,83–85]. MMS treatment of the
HEK293 cells resulted in MEK1 Cys 341 S-sulfhydration, but not in cells carrying the Gly
341 mutated MEK1 [13]. This S-sulfhydration increased in CSE over-expressing HEK293
cells. Lastly, application of MMS to human endothelial cells, with and without co-treatment
with 0.1–10 µM NaHS, increased PARP-1 activity in a dose-dependent manner, with PARP-
1 activation detectable at 5 min with NaHS treatment and only at 30 min without NaHS
treatment [13]. NaHS treatment also reduced the amount of HEK293 cell DNA damage and
increased the amounts of XRCC1 and DNA ligase III recruited [13]. This study indicates
that CSE-generated H2S acts as a DNA damage protectant, S-sulfhydrating MEK1 Cys 341,
activating ERK1/2 and PARP-1 to repair DNA damage [13].

These studies on the roles of ATR and MEK1 in nuclear DNA repair demonstrate
that H2S plays an important and, as yet, poorly defined role in nuclear DNA repair
regulation [12,13]. Interestingly, low cellular H2S concentrations activate ATR, as measured
by its kinase activity towards CHK1 [12]. Conversely, MEK1 activity in DNA repair is
increased with increased H2S concentrations, as supplied either by exogenous NaHS or
increased CSE expression [13]. Thus, these studies imply that nuclear DNA repair is
likely modulated by both increased and decreased cellular H2S concentrations [12,13].
Additionally, CBS and CSE knockdown both attenuated the mitochondrial interactions
of EXOG with APE1, LIG3, and POL γ, implying that ATR may also indirectly regulate
mitochondrial BER [11,12].

6. H2S, Autophagy, and the DDR

Recently, Jiang et al. employed a high-content screen of ~12,000 with diversified
chemical structures and molecular targets, screening for compounds that increased cellular
H2S expression > 1.4 with a concomitant >50% cell survival compared to DMSO treated
controls [85]. Interestingly, the largest activating compound class screened consisted of
genotoxic compounds, with the most active compounds being the topoisomerase inhibitors
irinotecan and teniposide, the nucleoside analog trifluridine, and bleomycin. Additionally,
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UVC light, ionizing radiation, and NER deficiency were also strong intracellular H2S
inducers. Intriguingly, teniposide and UVC treatment increased the cellular sulfane sulfur
fraction, indicating that the larger sulfur pool was also altered by genotoxic stress [85].
To further characterize the role of the DDR in these responses, immortalized murine
embryonic fibroblasts (MEFs), with and without PARP-1 expression, were treated with
UVC or teniposide [85]. PARP-1 loss significantly decreased H2S induction by either agent,
strongly implicating a role for early DDR events in H2S induction [85].

Autophagy is a significant part of the DDR [86]. In MEFs knockdown of ATG5 and
ATG7, two autophagy regulators, attenuated LC3I to LC3II conversion (also an autophagy
marker) initiated by teniposide. Importantly, this was accompanied by a concomitant
decrease in H2S induction, linking H2S induction, the DDR, and autophagy [85]. ATG5
knockout MEF viability (which showed teniposide hypersensitivity) was partially rescued
from teniposide toxicity by concomitant AP39 treatment, indicating that H2S plays a cellular
protective role in genotoxic exposure [85]. AMPK is activated by PARP-1 and is another
DDR mediator [86]. In AMPK, double α1/α2 subunit knockout MEFs, H2S and autophagy
induction with teniposide were also attenuated, again consistent with a requirement for
autophagy in maximal H2S induction by genoclastic agents [85].

Lastly, teniposide treatment significantly induced CSE mRNA and protein in MEFs.
CSE expression ablation resulted in a small but significant decrease in cellular H2S levels
with teniposide treatment, indicating a possible role of CSE in the DDR [85]. Under
genotoxic stress CSE mRNA is induced by the ATF4 transcription factor [87]. In MEFs,
ATF4 expression ablation resulted in both attenuated CSE induction and lowered cellular
H2S levels following teniposide treatment. Additionally, treatment of wild-type and ATG5
knockout MEFs with PAG decreased teniposide-induced H2S in both cell types. These
results suggest an additive role for ATF4-mediated CSE expression and autophagy in H2S
induction upon genotoxic stress [85]. These interactions are summarized in Figure 1.
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7. Conclusions and Future Directions: Cancer Therapy and Cardiovascular Disease

The role of H2S in DNA repair and the DDR is an established, but as yet under
researched area with few studies on the subject [11–13,85]. Due to the importance of
genomic stability maintenance, DNA repair, and H2S in normal and pathophysiology, a
better understanding of this area will undoubtedly lead to a greater understanding of the
molecular pathology underlying many human diseases. For example, increased DNA
damage in the vasculature is a major cardiovascular disease risk factor, and H2S is a major
regulator of cardiovascular functions [14,88]. However, there is relatively little data on
the role of the DDR and DNA repair in the cardiovascular system, although intriguingly
murine models of defective NER show premature vascular senescence, increased vascular
stiffness, and elevated blood pressure [89]. As the ATR kinase regulates NER, there may
be an as yet undiscovered role for ATR in vascular diseases [1–3,12,89]. Additionally, the
DDR protein ATM plays a poorly defined role in cardiovascular disease, with individuals
and mice with only one functional ATM gene showing elevated cardiovascular disease,
while a high fat diet suppresses ATM protein expression in wild-type animals [90,91]. A
role for ATM in H2S metabolism has not yet been identified.

Increased H2S synthesis and CBS, CSE, and/or 3-MST expression promote cancer
progression in several human malignancies, and H2S synthesis inhibitors have been pro-
posed as a cancer treatment [5,11,12,17,69,92,93]. In addition, ATR inhibitors are showing
promise in phase I and II clinical trials for lung, ovarian, cervical, urothelial, and ad-
vanced sold tumors [93]. Since ATR inhibition lowers cellular H2S concentrations, this may
be an unexamined aspect of ATR inhibition in cancer therapeutics [12,92,93]. Similarly,
lowered cellular H2S levels with ATR inhibition could, in turn, lower MEK1 and EXOG
sulfhydration and activation, attenuating mitochondrial DNA repair and nuclear DNA
repair mediated by the MEK1–ERK1/2–PARP-1 axis [11–13]. Interestingly, ATR inhibition
increases the effectiveness of PARP inhibitors in cancer therapy, supporting this hypothe-
sis [94–96]. Thus, H2S may form a molecular link uniting different aspects of DNA repair
(summarized in Figure 1).

Previously, we reviewed the role of H2S in DNA repair with an emphasis on ATR
function [69]. Here, we extended this review, as current data strongly implicate a role for
other DDR proteins, especially ATM in H2S regulation [1–3,62–64]. Additionally, the data
by Jiang et al. demonstrate that H2S, autophagy, and the DDR are intricately intercon-
nected, further highlighting the function of H2S in the most basic functions regulating cell
survival [85]. Support for this also comes from the known roles of the DDR proteins in
regulating autophagy [85,97].

ATR, ATM, and DNA-PK are central to the DRR and DNA repair [1–3,95,96]. All three
proteins share extensive sequence and substrate overlap, and synthetic lethal relationships
exist between them [1–3,96]. Moreover, all three proteins regulate autophagy and mito-
chondrial function and viability [97–100]. These observations, combined with the ancient
and parallel origins of H2S biochemistry and DNA repair, and with H2S now linked to
mitochondrial and nuclear DNA repair, suggest that ATM and DNA-PK may also regulate
aspects of H2S metabolism [1–3,11–13,17,52–58]. Although only hypotheses, these ideas
could be easily tested. In summary, the role of H2S in the regulation of the DDR and DNA
repair is a new and exciting area of inquiry and should give useful and profound insights
into normal and pathophysiology.
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