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Abstract T cell expansion and differentiation are critically dependent on the transcription factor

c-Myc (Myc). Herein we use quantitative mass-spectrometry to reveal how Myc controls antigen

receptor driven cell growth and proteome restructuring in murine T cells. Analysis of copy numbers

per cell of >7000 proteins provides new understanding of the selective role of Myc in controlling

the protein machinery that govern T cell fate. The data identify both Myc dependent and

independent metabolic processes in immune activated T cells. We uncover that a primary function

of Myc is to control expression of multiple amino acid transporters and that loss of a single Myc-

controlled amino acid transporter effectively phenocopies the impact of Myc deletion. This study

provides a comprehensive map of how Myc selectively shapes T cell phenotypes, revealing that

Myc induction of amino acid transport is pivotal for subsequent bioenergetic and biosynthetic

programs and licences T cell receptor driven proteome reprogramming.

Introduction
Immune activation transcriptionally reprograms T lymphocytes and initiates changes in cell metabo-

lism and protein synthesis that are required for proliferation and effector differentiation.

The signalling pathways that control T cell metabolism are not fully characterised but it has been

shown that the transcription factor Myc has a necessary role (Wang et al., 2011). In T cells, Myc is

rapidly induced in response to engagement of the T cell antigen receptor (TCR) and Myc expression

is then sustained by costimulatory receptors and cytokines such as interleukin-2 (IL-2) (Au-

Yeung et al., 2017; Heinzel et al., 2017; Preston et al., 2015). The TCR acts as a digital switch for

Myc mRNA expression, in that the strength of the antigen stimulus determines the frequency of T

cells that switch on Myc mRNA expression (Preston et al., 2015). Antigen receptor, costimulation

and cytokine driven processes also post-transcriptionally control Myc protein: constant phosphoryla-

tion on Thr58 by glycogen synthase kinase 3 (GSK3) and subsequent proteasomal degradation

results in a short cellular half-life of Myc protein (Preston et al., 2015). O-GlcNAcylation of Myc at

this same residue (Chou et al., 1995), fuelled by the hexosamine biosynthesis pathway, blocks this

degradation and allows Myc to accumulate (Swamy et al., 2016). In activated lymphocytes the sus-

tained expression of Myc is also dependent on the rate of protein synthesis and availability of amino

acids (Loftus et al., 2018; Sinclair et al., 2013; Swamy et al., 2016; Verbist et al., 2016). Myc

expression is thus tightly controlled at the population and single cell level during immune responses.

The expression of Myc is essential for T cell immune responses and mature T cells with Myc alleles

deleted cannot respond to antigen receptor engagement to proliferate and differentiate

(Preston et al., 2015; Trumpp et al., 2001; Wang et al., 2011). Myc-deficient T cells have defects

in glucose and glutamine metabolism (Wang et al., 2011); however, the full molecular details of

how Myc regulates T cell metabolic pathways and other aspects of T cell function is not fully under-

stood. In this context there are different models of how Myc works and divergent opinions as to
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whether or not Myc acts a general amplifier of active gene transcription (Lewis et al., 2018;

Lin et al., 2012; Nie et al., 2012) or has more selective actions (Sabò et al., 2014; Tesi et al.,

2019). There is also evidence Myc can act post transcriptionally, controlling mRNA cap methylation

and broadly enhancing mRNA translation (Cowling and Cole, 2007; Ruggero, 2009; Singh et al.,

2019). The salient point is that there appear to be no universal models of Myc action that can be

applied to all cell lineages. As an example, it is reported that oncogenic Myc mutants control amino

acid transporter expression in tumour cells (Yue et al., 2017) whereas analysis of endogenous Myc

function in immune activated primary B cells found no such role (Tesi et al., 2019). These discepan-

cies highlight the neccessity for direct experimental analysis to understand how Myc controls T lym-

phocyte function rather than simply being able to extrapolate from other cell models. In this

context, T lymphocytes are critical cells of the adaptive immune response and understanding the sig-

nalling checkpoints that control T cell function is fundamental for any strategy to manipulate T cell

function for immunotherapy or immunosuppression.

T cell immune activation is associated with increases in mRNA translation, amino acid transport

and protein synthesis all of which shape the execution of the T cell transcriptional program and

completely reshape the T cell proteome (Araki et al., 2017; Geiger et al., 2016; Howden et al.,

2019; Ricciardi et al., 2018; Sinclair et al., 2013). Hence, one way to gain a full and unbiased

understanding of how Myc controls T cell metabolism and T cell function is an in-depth analysis of

how Myc shapes T cell proteomes. Accordingly, we have used high-resolution mass-spectrometry to

perform a quantitative analysis of the impact of Myc deficiency on the proteomes of immune acti-

vated CD4+ and CD8+ T cells. These data reveal a selectivity of Myc action in co-ordinating T cell

proteomes and identify both Myc dependent and Myc independent remodelling of T cell metabolic

eLife digest T cells are white blood cells that form an important part of our immune defence,

acting to attack disease-causing microbes and cancer and directing other immune cells to help in

this fight. T cells spend most of their time in a resting state, small and inactive, but when an infection

strikes, they transform into large, active ’effector’ cells. This change involves a dramatic increase in

protein production, accompanied by high energy demands. To fully activate, T cells need to boost

their metabolism and take in extra amino acids, the building blocks of proteins. For this, they

depend upon a protein called Myc.

The Myc protein works as a genetic switch, controlling several kinds of cell metabolism, but the

molecular details of its effects in T cells remain unclear. Most studies looking to understand Myc

have focussed on its role in cancer cells. Here its main job is thought to be driving the use of sugar

to make energy. However, it has also been shown to control the levels of transporters that carry

amino acids into cells and thus provide the raw materials for protein production. It is possible that

Myc plays a similar role in T cells as it does in cancer cells, but this might not be the case because

cancer cells have strange biology and do not always accurately represent healthy cells.

To find out what role Myc plays in T cell activation, Marchingo et al. compared T cells with and

without Myc. The cells lacking Myc were much smaller than their normal counterparts and counts of

their proteins revealed why. Without Myc, protein production had stalled. In normal T cells, the

number of amino acid transporters increased up to 100 times as cells transformed from a resting to

an active state. But, without Myc, this did not happen. The loss of Myc cut off the supply of amino

acids, halting protein production. For T cells, the most important amino acid transporter is a protein

called System-L transporter Slc7a5. It supplies several essential amino acids, including methionine –

the amino acid that starts every single protein. To confirm the role of amino acid transporters in T

cell activation, Marchingo et al. deleted the gene for the System-L transporter Slc7a5 directly. This

had the same effect as deleting the gene for Myc itself, demonstrating that a key role of Myc in T

cell activation is to increase the number of amino acid transporters.

Understanding the role of Myc in T cell activation is an important step towards controlling the

immune system. At the moment, many research groups are investigating how best to use T cells to

fight diseases like cancer. Further analysis of the link between Myc and amino acid transporters

could in the future aid the design of such immunotherapies.
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programs. The data uncover that a primary function of Myc in T lymphocytes is control of amino acid

transporter expression which affords new insight about how Myc controls T cell biosynthetic and bio-

energetic programs.

Results

Selective remodelling of T cell proteomes by Myc
To explore how Myc controls T cell function we used a Cd4Cre+Mycfl/fl (MyccKO) mouse model in

which Myc is conditionally deleted during late thymic development (Dose et al., 2009;

Mycko et al., 2009; Trumpp et al., 2001). As shown previously (Wang et al., 2011), Myc-deficient

CD4+ and CD8+ T cells do not substantially increase cell size or proliferate in response to immune

activation with anti-CD3/anti-CD28 agonist antibodies (Figure 1A, Figure 1—figure supplement

1A). To examine how Myc loss impacts proteome remodelling during immune activation we per-

formed quantitative label-free high-resolution mass spectrometry on 24 hour CD3/CD28 activated

wild-type (Cd4Cre +, MycWT) and MyccKO CD4+ and CD8+ T cells. This time point was chosen as it is

when we observe maximal increase in cell size of the immune activated cells with no difference in

survival between MycWT and MyccKO T cells. Moreover, at this time point there is minimal impact of

autocrine secreted cytokine IL-2 on Myc expression (Figure 1—figure supplement 1B).

>7000 proteins were identified and protein mass and copy number per cell was estimated by the

‘proteomic ruler’ method which uses the mass spectrometry signal of histones as an internal stan-

dard (Supplementary file 1; Wiśniewski et al., 2014). The data in Figure 1B show that in contrast

to Myc T cells, CD3/CD28 activated MyccKO T cells fail to increase protein content above the level of

naive ex vivo isolated MycWT T cells. Hence, the increase in cell biomass that accompanies T cell acti-

vation is dependent on Myc. Notably, the protein content of immune activated MycWT CD4+ T cells

was lower than activated CD8+ T cells and this correlates with higher levels of Myc in immune acti-

vated CD8+ versus CD4+ MycWT T cells (Figure 1C–D).

The immune activation of T cells is accompanied by complex proteome remodelling

(Geiger et al., 2016; Howden et al., 2019; Ron-Harel et al., 2016; Tan et al., 2017). A key ques-

tion is whether the dramatically lower cell mass in CD3/CD28 activated MyccKO T cells reflects a

scaled decrease in expression of all proteins or a selective loss of protein expression. In this respect

a few hundred very abundant proteins are known to account for most cellular mass (Howden et al.,

2019; Hukelmann et al., 2016; Ly et al., 2014), with 75% of the protein mass of immune activated

MycWT CD4+ and CD8+ T cells comprising 344 and 391 proteins respectively. Myc-deficiency

reduced the expression of most, but not all of these abundant proteins (Figure 1E–F). To assess the

selectivity of Myc control of T cell proteomes we used nearest neighbour analysis and Pearson corre-

lation to group and align the expression profile of ~6400 proteins in naı̈ve and immune activated

MycWT and MyccKO CD4+ and CD8+ T cells (Figure 1G). These analyses highlight how CD3/CD28

stimulation dynamically reshapes the proteomic landscape of CD4+ and CD8+ T cells. The impact of

Myc loss is striking but clearly selective and not a simple scaled decrease in expression of all pro-

teins. There are a number of proteins expressed at high levels in naı̈ve cells and downregulated by

immune activation in both MycWT and MyccKO T cells (Figure 1G), including Kruppel family transcrip-

tion factors which maintain pluripotency and cell quiescence (eg Klf2) and growth factors receptors

such as the IL7 receptor (Figure 1H–I). There is also a subset of ~300–450 proteins that are strongly

induced by immune activation irrespective of Myc expression (Figure 1G). These include CD69,

CD44 and transcription factors cRel and JunB (Figure 1J–M). The critical transcription factors T-bet

and Irf4 were also upregulated in immune MyccKO T cells, albeit at reduced levels compared with

MycWT T cells (Figure 1N–O).

The selective effects of Myc-deficiency on protein expression in activated CD8+ and CD4+ T cells

appeared qualitatively similar (Figure 1G). There were however some quantitative differences. These

differences reflect that some proteins were more highly expressed in activated MycWT CD8+ T cells

than in MycWT CD4+ T cells, however, Myc-deficiency reduced protein expression down to a similar

level in both CD4+ and CD8+ T cells, therefore giving a larger effect size in CD8+ T cells (Figure 1—

figure supplement 2). When taken in conjunction with the observation that CD8+ T cells expressed

a higher level of Myc (Figure 1C–D), associated with increased cell biomass (Figure 1A–B), this sug-

gests a dose-dependent Myc-driven amplification of protein expression.
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Figure 1. Myc controls cell growth by selectively remodelling T cell proteomes. (A) Forward scatter area (FSC-A) of IL-7 maintained or 24 hr anti-CD3 +

anti-CD28 (TCR) activated Cd4Cre+ (MycWT) and Cd4Cre+Mycfl/fl (MyccKO) T cells. (B–C, E–O) Quantitative proteomics data of ex vivo naı̈ve WT and 24

hr TCR activated CD4+ and CD8+ T cells from MycWT and MyccKO mice. (B) Total protein content (mg/million cells). (C) Mean protein copy number per

cell estimated using proteomic ruler (Wiśniewski et al., 2014) of Myc. (D) Myc expression measured by flow cytometry in 24 hr TCR activated MycWT

and MyccKO CD4+ and CD8+ T cells. Proteins from 24 hr TCR activated MycWT (E) CD8+ and (F) CD4+ T cells were ranked by mass contribution and the

mean cumulative protein mass was plotted against protein rank (left panel). Numbers in each quartile indicate total proteins summed with those in the

quartiles below. Volcano plots show foldchange in protein copy number between TCR activated MyccKO and MycWT T cells, with proteins that

contribute the top 75% of the T cell mass shown in red (right panel). (G) Heat maps of naı̈ve and TCR activated MycWT and MyccKO CD8+ and CD4+

proteomes. Relative protein abundance is graded from low (blue) to high (yellow) per row. Input data for heatmaps is listed in Supplementary file 1.

Mean protein copy number per cell for activation markers (H) IL7ra (J) CD69 and (K) CD44 and key transcription factors (I) Klf2, (L) Rel, (M) JunB, (N)

Tbet, and (O) Irf4. Symbols on bar charts represent biological replicates: error bars show mean ± S.E.M. Quantitative proteomics was performed on

biological triplicates. Fold-change calculations and statistical testing comparing naı̈ve WT vs TCR MycWT, naı̈ve WT vs TCR MyccKO, and TCR MycWT vs

TCR MyccKO protein copy number per cell is listed in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Immune activated Myc-deficient T cells fail to proliferate.

Figure 1 continued on next page
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Collectively, these data show that immune activated T cell proteome remodelling comprises both

Myc dependent and independent processes and that Myc has a qualitatively similar, but dose-

dependent effect on CD4+ and CD8+ T cell proteomes.

Selective remodelling of T cell metabolic pathways by Myc
When examining the selective effects of Myc-deficiency on T cell immune activation we observed

that MyccKO T cells increased expression of the glucose transporters Slc2a1 and Slc2a3 (Glut1 and

Glut3 respectively) equal to, or exceeding the level seen in MycWT T cells in response to T cell activa-

tion (Figure 2A–B). The ability of immune activated MyccKO T cells to upregulate expression of

Slc2a1 and Slc2a3 glucose transporters was unexpected as it has been reported that Myc-deficient T

cells have abnormal glycolytic metabolism and defective induction of glucose transporter mRNA

(Wang et al., 2011). Moreover, Slc2a1 has been implicated as a direct transcriptional target of Myc

(Osthus et al., 2000). In this context, CD3/CD28 triggering increases expression of glycolytic

enzymes in both MycWT and MyccKO CD4+ and CD8+ T cells (Figure 2C, left panel). Although the

cumulative levels of glycolytic enzymes in MyccKO are reduced by 58% and 30% in CD8+ and CD4+ T

cells respectively compared with MycWT controls, they still comprise a large percentage of the pro-

teomes of immune activated MyccKO T cells (Figure 2C, right panel). It was however striking that

Myc had a large impact on lactate transporter expression, particularly on the numerically dominant

lactate transporter Slc16a1 (Figure 2D). Lactate transporters control a critical rate limiting step for

glycolytic flux (Tanner et al., 2018). Their absence would prevent lactate export and feedback to

suppress glycolytic flux (Doherty et al., 2014). Slc16a1 expression increases from <10,000 copies

per naı̈ve T cell to ~140,000 and~80,000 copies per immune activated CD8+ and CD4+ MycWT T cell

respectively. In contrast, Slc16a1 expression in immune activated MyccKO T cells remains equivalent

to naive levels (Figure 2D, Supplementary file 1). These data display the selectivity of Myc impor-

tance for expression of key components of the glycolysis machinery and point to control of lactate

export as a mechanism whereby Myc controls glycolytic flux in T cells.

Another key Myc controlled metabolic process is glutamine catabolism (Wang et al., 2011;

Wise et al., 2008). Once imported glutamine can be metabolised in a number of different pro-

cesses, including the hexosamine pathway, nucleotide biosynthesis processes, and the citric acid

cycle (Figure 2E). The present data reveal the selectivity of the Myc requirement for expression of

important enzymes for glutamine metabolism. Myc controls expression of glutaminase (Gls), Cad

and Ppat, the enzymes that control the first steps in glutaminolysis, and pyrimidine and purine bio-

synthesis respectively. However, expression of Gfpt1, the first and rate limiting step in the hexos-

amine pathway and Glud1, the enzyme that converts glutamate to a-ketoglutarate are still

expressed in MyccKO T cells (Figure 2F and Supplementary file 1).

Myc controls amino acid transporter expression in immune activated T
cells
One major effect of Myc loss on immune activated T cells is failure to increase cell mass (Figure 1A–

B). In this context, immune activation of T cells decreases expression of translational repressors and

drives increased expression of ribosomes and mRNA translational machinery (Geiger et al., 2016;

Howden et al., 2019; Ron-Harel et al., 2016; Tan et al., 2017). The data in Figure 3—figure sup-

plement 1A–C shows that Myc loss does not prevent loss of the translational repressor Pdcd4 in

activated T cells. Myc-deficiency did however suppress CD3/CD28 mediated increases in expression

of ribosomes, eukaryotic initiation factor 4 (eIF4F) complexes that translate methyl capped mRNAs

and EIF2 complexes which controls tRNA transfer to ribosomes. Although increasing expression of

translational machinery is important, an absolutely fundamental requirement for a substantial

increase in cell mass is availability of amino acids (Hosios et al., 2016). Therefore, it is striking that

the loss of Myc prevents the upregulation of expression of multiple amino acid transporters in acti-

vated T cells (Figure 3A–B). The most abundant amino acid transporters expressed on CD3/CD28

activated CD4+ and CD8+ T cells are Slc7a5 (leucine, methionine, tryptophan), Slc1a5 (glutamine,

Figure 1 continued

Figure supplement 2. Myc-deficiency has a larger quantitative effect in CD8+ T cells.
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Figure 2. Myc control of T cell metabolism is selective. Naı̈ve WT and 24 hr TCR activated MycWT and MyccKO

CD4+ and CD8+ T cell proteomic data was generated as described in Figure 1 and Materials and methods. (A)

schematic of nutrient transporters and enzymes involved in glycolysis. (B) Mean copy number per cell for glucose

transporters Slc2a1 and Slc2a3. (C) Total protein content (mg/million cells) (left panel) and % contribution to total

Figure 2 continued on next page
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serine, threonine, alanine), Slc38a1 and Slc38a2 (glutamine, methionine) and Slc7a1(arginine, lysine)

(Figure 3A, Supplementary file 1). Naı̈ve T cells have very low levels of all of these transporters,

expressing ~500–2500 copies per cell (Figure 3A, Supplementary file 1). Upon activation, amino

acid transporters are some of the most highly induced proteins in MycWT T cells, exhibiting up to

100-fold increases relative to naı̈ve cells (Figure 3A–B). In contrast, immune activated MyccKO T cells

only express amino acid transporters at near naı̈ve levels (Figure 3A–B, Supplementary file 1).

The high levels of protein production in activated T cells would need to be fuelled by amino acid

supply (Hosios et al., 2016). Moreover, T cells that lack expression of key amino acid transporters

such as Slc7a5 and Slc1a5 are defective in their response to T cell activation (Nakaya et al., 2014;

Sinclair et al., 2013). We therefore questioned whether the ability of Myc to control T cell growth

could be explained by Myc control of amino acid transporter expression. Accordingly, we examined

the impact of Myc expression on the functional capacity of T cells to transport amino acids and we

assessed whether the loss of amino acid transporter expression could recapitulate the striking

impact of Myc deletion on T cell protein production. We focused on the system L transporter Slc7a5,

as this is the most abundant amino acid transporter expressed on immune activated T lymphocytes

(Figures 3A and 4B, Supplementary file 1) and mediates transport of many essential amino acids

including methionine, leucine, isoleucine, valine, phenylalanine and tryptophan (Sinclair et al., 2019;

Sinclair et al., 2018; Sinclair et al., 2013). Low basal levels of Slc7a5 in naı̈ve T cells mediate amino

acid uptake that is not dependent on Myc (Figure 3C). Within 4 hr of T cell activation there is

already increased system L transport activity in MycWT T cells and this increase is substantially lower

in MyccKO CD4+ and CD8+ T cells (Figure 3D–E). There was also a strong correlation between the

levels of Myc protein expressed by activated T cells and system L amino acid transport capacity

(Figure 3F) and while system L transport increased substantially over the first 24 hr of T cell activa-

tion in MycWT T cells this did not occur in MyccKO T cells (Figure 3—figure supplement 2). Down-

stream of Slc7a5 amino acid uptake, Myc-deficient T cells also fail to increase expression of several

key enzymes in metabolic pathways that utilise branch-chain amino acid (Leucine, Isoleucine, Valine)

pathways and methionine (Figure 3—figure supplement 3A–B). Collectively, these data show that

Myc plays a critical role in regulating system L amino acid transport and amino acid metabolism in

immune activated T cells.

Could loss of amino acid transport be the mechanism for the loss of protein production in

immune activated MyccKO T cells? To assess this, we examined the impact of Slc7a5 deletion on

immune activated T cell proteomes. Figure 3G–H shows that the dramatic increase in cell mass asso-

ciated with normal T cell activation does not occur in immune activated Slc7a5cKO (Cd4Cre+ Slc7a5fl/

fl) CD4+ T cells. We then used nearest neighbour analysis and Pearson correlation to group the

expression profile of ~6800 proteins from naı̈ve wild-type and immune activated Slc7a5WT and

Slc7a5cKO CD4+ T cell proteomes. These data show Slc7a5 deficiency, similar to Myc deficiency, has

a profound effect on protein expression in immune activated CD4+ T cells (Figure 3I). Slc7a5cKO T

cells still respond to antigen receptor activation to downregulate a subset of naı̈ve T cell proteins

and can still upregulate expression of a small subset of proteins (Figure 3I). The data show a striking

overlap in proteins that were both Myc and Slc7a5 regulated (Figure 3J). Most of this overlap was in

proteins that were reduced in response to Myc or Slc7a5 deficiency (Figure 3K), including transla-

tional machinery such as ribosomes (Figure 3—figure supplement 4A–B). Although there is a large

degree of overlap in the proteomics data, Slc7a5-deficiency does not completely phenocopy the

effects of Myc-deficiency. Induction of proteins such as the glucose transporter Slc2a3 (Figure 2B,

Figure 3—figure supplement 4C) and effector molecules like Granzyme B and IFNg (Figure 3—fig-

ure supplement 4D–E) exhibit a more severe defect in Slc7a5cKO T cells. This is likely due to the lack

Figure 2 continued

cellular protein mass (right panel) of total glycolytic enzymes. (D) Mean protein copy number per cell for lactate

transporters Slc16a1 and Slc16a3. (E) Schematic of transporters and enzymes involved in Glutamine transport and

metabolism. (F) Mean copy number per cell for major enzymes involved in glutamine metabolism. Symbols on bar

charts represent biological replicates from biological triplicate data, error bars show mean ± S.E.M. Fold-change

calculations and statistical testing comparing naı̈ve WT vs TCR MycWT, naı̈ve WT vs TCR MyccKO, and TCR MycWT

vs TCR MyccKO protein copy number per cell is listed in Supplementary file 1.
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Figure 3. Myc induces amino acid transporter expression, a critical step for proteome remodelling. Naı̈ve WT and 24 hr TCR activated MycWT and

MyccKO CD4+ and CD8+ T cell proteomic data was generated as described in Figure 1 and Materials and methods. (A) Mean copy number per cell of

abundant amino acid transporters in T cells. (B) Fold-change in amino acid transporter protein copy number from naı̈ve WT to 24 hr TCR activated

MycWT and MyccKO, mean (min, max). Transport by system L amino acid transporters was measured by uptake of fluorescent (emission 450 nm when

Figure 3 continued on next page
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of basal-level amino acid transport in naı̈ve Slc7a5cKO T cells which is not deficient in naı̈ve MyccKO T

cells (Figure 3C).

Overall, deficiency in a single Myc controlled amino acid transporter, Slc7a5, largely does mimic

the phenotype of MyccKO T cells, preventing T cell growth and selectively controlling proteome

remodelling.

To explore the mechanism for Myc control of amino acid transport in activated T cells we exam-

ined the relationship between Myc and amino acid transporter mRNA expression. Single cell RNA-

seq analysis of antigen activated OT1 CD8+ T cells (Richard et al., 2018) shows a strong correlation

at the single cell level of Myc mRNA expression and expression of mRNA for Slc7a5, Slc7a1 and

Slc1a5 (Figure 4A). Expression of Myc mRNA clearly precedes increased expression of mRNA for

Slc7a5 and Slc1a5 (Figure 4A). More importantly, in a proteomics time course of OT1 CD8+ T cell

activation, expression of Myc protein precedes antigen induced increases in expression of most

amino acid transporters (Figure 4B). Proteomics data shows that expression of amino acid transport-

ers increases gradually over time (Figure 4B), and Kyn uptake experiments confirm that this increase

in transporter number corresponds with higher system L uptake (Figure 3—figure supplement 2).

CD3/CD28 activation of MycWT CD4+ and CD8+ T cells drives increases in Slc7a5, Slc1a5 and Slc7a1

mRNA, whereas activated MyccKO CD4+ and CD8+ T cells do not increase expression of Slc7a5 or

Slc1a5 mRNA and show reduced expression of Slc7a1 mRNA (Figure 4C).

Myc induction of amino acid transport initiates a positive feedforward
loop
The current data are consistent with a model that Myc controls T cell growth by controlling the upre-

gulation of amino acid transporter expression required for T cell activation. However one possible

inconsistency is that previous studies have shown that Slc7a5 is required for expression of Myc pro-

tein (but not mRNA) in activated CD8+ T cells (Sinclair et al., 2013). We considered that an explana-

tion for this discrepancy would be if there were a positive feedforward loop whereby the initial rapid

expression of Myc during immune activation is not Slc7a5 dependent but the sustained expression

is. To directly interrogate this model we measured Myc expression over time in CD3/CD28 activated

WT and Slc7a5cKO T cells. These data (Figure 4D) show that Slc7a5 is not required for the immediate

and rapid upregulation of Myc expression that accompanies T cell activation but is required for acti-

vated T cells to sustain Myc protein.

Figure 3 continued

excited at 405 nm) Tryptophan metabolite, Kynurenine (Kyn) (Sinclair et al., 2018) in (C) 2 hr IL-7 maintained and (D-E) 4 hr IL-7 maintained or TCR

activated splenic CD4+ and CD8+ WT, MyccKO and Slc7a5cKO T cells or (F) 20 hr TCR activated Myc-GFP reporter CD4+ T cells. In (C,E) system-L uptake

is represented as the ratio of BCH (a system L inhibitor) untreated: treated T cells. In (E) dotted line indicates Slc7a5cKO uptake level. (G) Forward

scatter and CD69 expression of IL-7 maintained or 24 hr TCR activated wild-type and Slc7a5cKO (Cd4Cre+ Slc7a5fl/fl) T cells. (H-K) Quantitative

proteomics data of naı̈ve WT and 24 hr TCR activated CD4+ and CD8+ T cells from Ly5.1 (Slc7a5WT) and Slc7a5cKO mice. Baseline naı̈ve WT data is the

same as used for the MyccKO dataset. (H) Total protein content (mg/million cells). (I) Heat map of naı̈ve and TCR activated Slc7a5WT and Slc7a5cKO CD4+

T cell proteomes. Relative protein abundance is graded from low (blue) to high (yellow) per row. Input data for heatmaps is listed in

Supplementary file 1. (J) Venn diagram showing the overlap in TCR regulated proteins that are more than 2-fold regulated and p<0.05 in MycWT vs

MyccKO and Slc7a5WT vs Slc7a5cKO TCR activated CD4+ T cells. (K) Volcano plots of TCR regulated proteins comparing Slc7a5WT and Slc7a5cKO

datatsets. Proteins > 2 fold different between MycWT and MyccKO TCR activated T cells are highlighted in red; proteins reduced in the MyccKO (left

panel), proteins higher MyccKO (right panel). Symbols in bar charts represent biological replicates: error bars show mean ± S.E.M. Dot plot in (F) is

representative of biological triplicate data. Quantitative proteomics was performed on biological triplicates. Fold-change calculations and statistical

testing comparing naı̈ve WT vs TCR MycWT, naı̈ve WT vs TCR MyccKO, TCR MycWT vs TCR MyccKO, naı̈ve WT vs TCR Slc7a5WT, naı̈ve WT vs TCR

Slc7a5cKO and TCR Slc7a5WT vs TCR Slc7a5cKO protein copy number per cell is listed in Supplementary file 1.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Myc-deficient T cells fail to induce protein translation machinery.

Figure supplement 2. Amino acid transport capacity corresponds with transporter number.

Figure supplement 3. Myc-deficient T cells fail to induce Branched-chain amino acid and Methionine metabolism.

Figure supplement 4. Ribosome expression is reduced in both Myc and Slc7a5 deficient T cells, but other proteins are differentially regulated between

Myc and Slc7a5 deficient T cells.
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Figure 4. Myc induces amino acid transport early after TCR activation, triggering a feedforward loop maintaining its own expression. (A) Expression

levels of Slc7a5, Slc7a1, Slc1a5 and Slc38a2 vs Myc mRNA from published single cell RNAseq dataset of OT1 T cells stimulated with SIINFEKL (N4)

peptide for the indicated times (Richard et al., 2018). Dotted lines represent 95th percentile of 0 hr gene expression. Symbols represent individual

cells (B) Quantitative proteomics of OT-I CD8+ T cells activated with N4 peptide for the indicated time. Mean copy number per cell of the proteins Myc,

Figure 4 continued on next page
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The finding that Slc7a5cKO T cells can induce Myc expression is also surprising in the context of

previous work demonstrating an important role for mTORC1 activation (which is critically dependent

on uptake of leucine) in controlling Myc expression during T cell activation (Wang et al., 2011).

Therefore, we tested the dependency of Myc protein expression on mTORC1 signalling in our T cell

system. The data show that rapamycin treatment had very little impact on expression of Myc protein

after 4 hr of T cell activation but did reduce Myc expression after 24 hr (Figure 4E), consistent with

the results seen in Slc7a5cKO T cells (Figure 4D). Although Slc7a5 deficiency or mTORC1 inhibition

alone was insufficient to prevent Myc induction, the presence of external amino acids is necessary

for expression of Myc protein, with T cells activated in amino acid-free media being unable to

express Myc protein despite increasing the activation marker CD69 (Figure 4F). Deficiency of a sin-

gle amino acid from the media, such as glutamine, methionine or leucine leads to a reduction in Myc

levels but does not prevent its expression (Figure 4G).

Myc driven increase in amino acid transport thus triggers a positive feedforward loop supporting

its own continued expression which in turn drives and sustains further increases in amino acid

transport.

Discussion
This study has mapped the impact of Myc deletion on antigen driven proteome remodelling of

CD4+ and CD8+ T cells to understand how Myc controls T cell activation and metabolic reprogram-

ming. The study uncovers both Myc dependent and independent restructuring of the T cell prote-

ome during immune activation. Myc was required for the increase in expression of important

metabolic pathway proteins; for example, glutamine transporters and glutaminase, key proteins con-

trolling the first steps of glutaminolysis (Newsholme et al., 1985); and lactate transporters, a major

rate determining step for glycolytic flux (Tanner et al., 2018). However, the current data also show

that expression of many key metabolic enzymes for both glutaminolysis and glycolysis can still occur

in immune activated Myc null T cells. In particular, in the context of glucose metabolism an unex-

pected observation was that Myc was not required for protein expression of the glucose transporters

Slc2a1 and Slc2a3 in activated T cells. This was surprising, given previous observations that Myc

deletion reduced Slc2a1 and Slc2a3 mRNA (Wang et al., 2011) and highlights the value of a proteo-

mics approach to quantify the expression patterns of proteins where there may be a disconnect

between mRNA and protein expression due to translational regulation (Ricciardi et al., 2018). The

expression of both glucose and lactate transporters are key for glycolytic flux (Tanner et al., 2018)

and the fact that these are differentially controlled by Myc reveals that upregulation of metabolic

pathways during T cell activation is more complex than a simple activation switch or amplifier medi-

ated by a single transcription factor (Nie et al., 2012). The data gives molecular insight into why

Myc is so important for T cell glutamine metabolism and glycolysis but they also reveal that T cell

metabolic reprogramming requires the coordination of Myc expression with other signalling path-

ways. In this respect we have shown recently that activation of mTORc1 is not required for Myc

expression in activated T cell but does have a substantive effect on the expression of glucose trans-

porter protein (Howden et al., 2019).

One key conclusion from the present data is that a primary function of Myc is to control expres-

sion of the amino acid transporters, inducing a positive feedforward loop to sustain Myc levels in

activated T cells. A salient point is that Myc was only necessary for immune activation associated

increases in amino acid transporter expression. The absence of Myc did not impinge on the low

Figure 4 continued

Slc7a5, Slc7a1, Slc1a5, Slc38a1 and Slc38a2. (C) Slc7a5, Slc1a5 and Slc7a1 mRNA measured by qPCR from ex vivo naı̈ve or 4 hr TCR activated lymph

node CD4+ and CD8+ T cells. mRNA levels are relative to naı̈ve CD4+ T cells. (D) Histograms and geometric mean fluorescence intensity (gMFI) vs time

of Myc protein measured with antibody by flow cytometry in IL-7 maintained or TCR activated Slc7a5WT and Slc7a5cKO lymph node CD4+ and CD8+ T

cells. Representative of 4 biological replicates. (E) Myc-GFP gMFI in IL-7 maintained or GFP+ TCR activated CD4+ and CD8+ T cells ± rapamycin from

lymph nodes of Myc-GFP reporter mouse. Myc-GFP reporter expression in CD4+ and CD8+ T cells maintained in IL-7 or TCR activated in (F) amino-acid

free media (-aa, HBSS), vs RPMI (+aa) or (G) media deficient in a single amino acid. Data representative of at least three biological replicates. Symbols

unless otherwise stated represent biological replicates. Mean ± S.E.M. Quantitative proteomics was performed on biological triplicates.
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basal levels of amino acid transport through the system L transporter seen in naı̈ve T cells and it was

clear from the proteomic data that Myc null T cells still had some capacity to increase expression of

key proteins. The inability of Myc null T cells to increase amino acid transport aligns with previous

metabolomic data that Myc null cells have decreased levels of intracellular amino acids (Wang et al.,

2011). The loss of amino acid transporter induction in Myc null T cells would also prevent the

increases in expression of the protein biosynthetic machinery as well as preventing uptake of the raw

material required to synthesise protein. The importance of Myc induction of amino acid transporters

for T cell activation is particularly highlighted by the large effect of deleting just one of the Myc con-

trolled amino acid transporters, Slc7a5, on the T cell proteome, which almost phenocopies the

effects of Myc deletion itself. The impact of the loss of a single Myc controlled amino acid trans-

porter was remarkable and reflects that Slc7a5 transports multiple large neutral amino acids includ-

ing Leucine, Phenylalanine and Tryptophan. Myc control of Slc7a5 expression would be particularly

important for protein synthesis as Slc7a5 is also the major T cell transporter for Methionine, the pre-

dominant ‘start’ amino acid used to initiate polypeptide synthesis during mRNA translation

(Sinclair et al., 2019; Sinclair et al., 2013). These data highlight how Myc control of even one amino

acid transporter, Slc7a5, would have indirect consequences for the expression of thousands of pro-

teins in immune activated T cells and could underpin the ability of Myc to regulate multiple biosyn-

thetic, bioenergetic and epigenetic processes in T cells.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Genetic reagent
(M. musculus)

Cd4Cre PMID: 27345256,
PMID: 11728338

Genetic reagent
(M. musculus)

Cd4Cre+ Mycfl/fl PMID: 19423665,
PMID: 19342639,
PMID: 11742404

Genetic reagent
(M. musculus)

Cd4Cre+ Slc7a5fl/fl PMID: 23525088,
PMID: 24586861

Genetic reagent
(M. musculus)

GFP-MycKI PMID: 18196519,
PMID: 26136212,
PMID: 23021216

Genetic reagent
(M. musculus)

OT1 PMID: 8287475 maintained in house as an
OT1 TCR transgene
heterozygote on a
CD45.1 (Ly5.1) background

Antibody Anti-CD3 (armenian
hamster, monoclonal)

Thermo Fisher
Scientific

Cat # 14-0031-82,
RRID:AB_467049

T cell activation: 0.5 or 1 mg/ml
as indicated in
Materials and methods

Antibody Anti-CD28 (syrian
hamster, monoclonal)

Thermo Fisher
Scientific

Cat # 16-0281-82,
RRID:AB_468921

T cell activation: 0.5 or 3 mg/ml
as indicated in
Materials and methods

Antibody Anti-CD4
(rat, monoclonal)

BD Biosciences Cat # 553650,
RRID:AB_394970;
Cat# 552775,
RRID:AB_394461;
Cat# 553047,
RRID:AB_394583

cell surface staining 1:200

Antibody Anti-CD4
(rat, monoclonal)

Thermo Fisher
Scientific

Cat# 47-0042-82,
RRID:AB_1272183

cell surface staining 1:200

Antibody Anti-CD8a
(rat, monoclonal)

Biolegend Cat# 100708,
RRID:AB_312747;
Cat# 100722,
RRID:AB_312761
Cat# 100738,
RRID:AB_11204079

cell surface staining 1:200

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody Anti-CD8a
(rat, monoclonal)

BD Biosciences Cat# 551162,
RRID:AB_394081

cell surface staining 1:200

Antibody Anti-CD69 (armenian
hamster, monoclonal)

ThermoFisher
Scientific

Cat# 17-0691-82,
RRID:AB_1210795

cell surface staining 1:200

Antibody Anti-CD69 (armenian
hamster, monoclonal)

Biolegend Cat# 104514,
RRID:AB_492843

cell surface staining 1:200

Antibody Anti-CD69 (armenian
hamster, monoclonal)

BD Biosciences Cat# 553237,
RRID:AB_394726

cell surface staining 1:200

Antibody Anti-B220
(rat, monoclonal)

BD Biosciences Cat# 553087,
RRID:AB_394617

cell surface staining 1:200

Antibody Anti-NK1.1
(mouse, monoclonal)

Biolegend Cat# 108706,
RRID:AB_313393

cell surface staining 1:200

Antibody Anti-CD11b
(rat, monoclonal)

Biolegend Cat# 101206,
RRID:AB_312789

cell surface staining 1:200

Antibody Anti-CD25
(rat, monoclonal)

BD Biosciences Cat# 553072,
RRID:AB_394604

cell surface staining 1:200

Antibody Anti-CD62L
(rat, monoclonal)

Thermo Fisher
Scientific

Cat# 12-0621-83,
RRID:AB_465722

cell surface staining 1:200

Antibody Anti-TCRb (armenian
hamster, monoclonal)

Thermo Fisher
Scientific

Cat# 45-5961-82,
RRID:AB_925763

cell surface staining 1:200

Antibody Anti-CD44
(rat, monoclonal)

BD Biosciences Cat# 559250,
RRID:AB_398661

cell surface staining 1:200

Antibody Anti-Thy1.2
(rat, monoclonal)

BD Biosciences Cat# 553006,
RRID:AB_394545

cell surface staining 1:200

Antibody Anti-CD45.1
(mouse, monoclonal)

Biolegend Cat # 110714,
RRID:AB_313503

cell surface staining 1:200

Antibody Anti-CD45.2
(mouse, monoclonal)

Biolegend Cat # 109816,
RRID:AB_492868

cell surface staining 1:200

Antibody Anti-mouse CD16/CD32
Fc Block, (rat, monoclonal)

BD Biosciences Cat # 553141,
RRID:AB_394656

Fc block 1:100

Antibody c-Myc (D84C12) XP
(rabbit, monoclonal)

Cell Signaling
Technologies

Cat# 5605,
RRID:AB_1903938

intracellular staining 1:200

Antibody Anti-rabbit A647 (goat) Cell Signaling
Technologies

Cat # 4414,
RRID:AB_10693544

intracellular staining 1:1000

Antibody Anti-IFNg
(rat, monoclonal)

Biolegend Cat # 505810,
RRID:AB_315404

intracellular cytokine
staining 1:100

Antibody Anti-Granzyme B Thermo Fisher
Scientific

Cat# 17-8898-82,
RRID:AB_2688068

intracellular cytokine
staining 1:200

Chemical
compound, drug

DAPI Thermo Fisher
Scientific

D1306 1 mg/mL

Chemical
compound, drug

Kynurenine Sigma Cat# K8625 200 mM

Chemical
compound, drug

BCH Sigma Cat# A7902 10 mM

Chemical
compound, drug

Rapamycin Merck/Calbiochem Cat# 553211 20 nM

Commercial
assay or kit

Rneasy minikit Qiagen Cat # 74104

Commercial
assay or kit

iScript cDNA
Synthesis kit

Biorad Cat#1708891

Commercial
assay or kit

iTaq Universal
SYBRGreen Supermix

Biorad Cat# 1725121

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Commercial
assay or kit

EZQ protein
quantitation kit

Thermo Fisher
Scientific

R33200

Commercial
assay or kit

Sera-Mag SpeedBead
Carboxylate-modified
magnetic particles
(hydrophilic)

GE Lifesciences cat# 45152105050250

Commercial
assay or kit

Sera-Mag SpeedBead
Carboxylate-modified
magnetic particles
(hydrophobic)

GE Lifesciences cat# 65152105050250

Commercial
assay or kit

CBQCA protein
quantitation kit

Thermo Fisher
Scientific

C6667

Commercial
assay or kit

HiPPR Detergent
Removal Spin Column Kit

Thermo Fisher
Scientific

Cat# 88305

Commercial
assay or kit

EasySep CD8 T
cell isolation kit

STEMCELL
Technologies, UK

Cat # 19853

Commercial
assay or kit

Golgi Plug BD Biosciences Cat# 555029

Commercial
assay or kit

eBioscience Intracellular
Fixation and Permeabilization
Buffer Set

Thermo Fisher
Scientific

Cat# 88-8824-00

Commercial
assay or kit

CFSE Thermo Fisher
Scientific/Invitrogen

Cat# C34554 5 mM

Peptide,
recombinant protein

IL7 Peprotech Cat# 217–17 5 ng/mL

Peptide,
recombinant protein

IL2 Novartis, UK Proleukin 20 ng/ml

Peptide,
recombinant protein

IL12 Peprotech Cat#210–12 2 ng/ml

Sequence
based reagent

Slc7a5 forward primer AAG GCT GCG ACC CGT GTG

Sequence
based reagent

Slc7a5 reverse primer ATC ACC TTG TCC CAT GTC CTT CC

Sequence
based reagent

Slc7a1 forward primer GGA GCT TTG GC CTT CAT CAC T

Sequence
based reagent

Slc7a1 reverse primer CAG CAC CCC AGG AGC ATT CA

Sequence
based reagent

Slc1a5 forward primer GCC ATC ACC TCC ATC AAC GAC T

Sequence
based reagent

Slc1a5 reverse primer AGA GCG GAA GGC AGC AGA CAC

Sequence
based reagent

TBP forward primer GTG AAT CTT GGC TGT AAA CTT GAC CT

Sequence
based reagent

TBP reverse primer CGC AGT TGT CCG TGG CTC T

Software, algorithm FlowJo software Treestar versions 9 and 10

Software, algorithm Maxquant https://www.maxquant.org,
PMID: 19029910

version 1.6.2.6

Software, algorithm Perseus https://www.maxquant.
org/perseus,
PMID: 27348712

version 1.6.6.0

Other RPMI 1640 Thermo Fisher
Scientific/GIBCO

Cat# 21875–034

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Other RPMI - glutamine Thermo Fisher
Scientific/GIBCO

Cat# 42401–018

Other RPMI - methionine DC Biosciences Ltd custom made RPMI without
methionine and arginine -
supplemented back the
arginine (0.2 g/L) to RPMI levels

Other RPMI - leucine Sigma Cat# R1780 SAFC supplemented back arginine
(0.2 g/L) and lysine (0.04 g/L)to
RPMI levels

Other HBSS Thermo Fisher
Scientific/GIBCO

Cat# 14025–050 used this as amino acid-free media

Other FBS Thermo Fisher
Scientific/GIBCO

Cat # 10270106

Other FBS, dialyzed Thermo Fisher
Scientific/GIBCO

Cat# 26400044

Other Arginine Sigma Cat# A5006

Other Lysine Sigma Cat# L5501

Lead contact and materials availability
Further information and requests for resources and reagents should be directed to and will be ful-

filled by the Lead Contact, Doreen Cantrell (d.a.cantrell@dundee.ac.uk).

Experimental model details
Mice
Cd4Cre+, Cd4Cre+ Mycfl/fl (Dose et al., 2009; Mycko et al., 2009; Trumpp et al., 2001), Cd4Cre+

Slc7a5fl/fl (Sinclair et al., 2013), Ly5.1, OT1 and Myc-eGFP (Nie et al., 2012) mice were bred and

maintained in the WTB/RUTG, University of Dundee in compliance with UK Home Office Animals

(Scientific Procedures) Act 1986 guidelines. Male Cd4Cre+ and Cd4Cre+ Mycfl/fl and female Ly5.1

and Cd4Cre+ Slc7a5fl/fl mice were used for proteomics studies at 12 weeks of age. 1 group of female

and 2 groups of male OT1 mice aged 7–28 weeks were used for OT1 time course proteomics. Age/

sex matched male and female mice were used for other experiments between 8–30 weeks of age.

Method details
Cell culture
All cells were activated and cultured at 37 ˚C with 5% CO2 in complete culture medium - RPMI 1640

containing glutamine (Invitrogen), supplemented with 10% FBS (Gibco), penicillin/streptomycin

(Gibco) and 50 mM b-mercaptoethanol (Sigma) unless otherwise indicated.

Single cell suspensions were generated by mashing mouse lymph nodes (brachial, axial, inguinal,

superficial cervical, deep cervical, lumbar) or spleens through 70 mm strainer. Red blood cells in sple-

nocyte suspension were lysed with 150 mM NH4Cl 10 mM KHCO3110 mM Na2EDTA pH 7.8.

For 24 hr TCR activated MycWT and MyccKO proteomics, lymph node suspension from 2x mice

per biological replicate were activated with 0.5 mg/mL anti-mouse CD3 (Biolegend) and 0.5 mg/mL

anti-mouse CD28 (eBioscience) in 2 � 10 mL complete culture medium in six well plates. Samples

were generated in biological triplicate.

For Slc7a5WT and Slc7a5cKO CD4+ T cell proteomics, three biological replicates were generated.

For each biological replicate, one Slc7a5WT and one Slc7a5cKO mouse was used. Slc7a5cKO (CD45.2)

and Slc7a5WT (CD45.1) lymph node cells were mixed together at a ratio of 1:1 prior to 24 hr activa-

tion with 1 mg/mL anti-mouse CD3 and 3 mg/mL anti-mouse CD28 supplemented with 20 ng/mL

recombinant human IL-2 (Proleukin, Novartis) and 2 ng/mL recombinant mouse IL-12 (Peprotech) at

a cell density of 2 million live cells/mL.

For OT1 TCR time course proteomics CD8+ T cells were purified from mouse spleen and lymph

node single cell suspensions using EasySep mouse CD8 T cell isolation kit (STEMCell Technologies)
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as per manufacturer instructions. Verification of purity indicated that live cells were 88–94% CD8+. T

cells were activated with 10 ng/mL SIINFEKL peptide at a density of 4 million cells / mL in 2 mL com-

plete culture medium in 24 well plates. Cells were centrifuged at 300 rpm for 2 min before being

placed in culture. Cells were harvested for proteomics at indicated time points and were washed

twice with HBSS before being snap frozen in liquid nitrogen and stored at �80˚C until further

processing.

For qPCR, kynurenine uptake assays and Myc staining in Figure 4D or measurement of Myc-GFP

expression in Figure 4E–G, lymph node or spleen single cell suspensions were activated with 1 mg/

mL anti-mouse CD3 and 3 mg/mL anti-mouse CD28 at a cell density of 4 million live cells/mL. Cells

were centrifuged at 300 rpm for 2 min before being placed in culture for the indicated time. In the

kynurenine uptake, Myc-GFP and Myc staining assays the naı̈ve control cells were cultured in 5 ng/

mL IL-7 (Peprotech). For measurement of the effect of mTORC1 inhibition on Myc-GFP expression

(Figure 4E) Myc-GFPKI T cells were cultured +/- rapamycin (20 nM, Merck) for the indicated time.

For measurement of Myc-GFP in amino acid deficient conditions (Figure 4F–G) Myc-GFPKI T cells

were cultured in RPMI 1640 (+aa), RPMI – Leucine (-Leu, Sigma), RPMI – Methionine (-Met, DC Bio-

sciences), RPMI – Glutamine (-Gln, Gibco) or HBSS (-aa, Gibco) supplemented with 10% dialyzed

FBS (Gibco), penicillin/streptomycin and 50 mM b-mercaptoethanol. For Myc staining in Figure 1D

splenic single cell suspensions were activated with 0.5 mg/mL of both anti-CD3 and anti-CD28 at a

density of 1 million live cells/mL. To determine system L uptake and Myc co-expression, Myc-GFPKI

(CD45.2) and WT (CD45.1, to provide an internal control for autofluorescence) splenocytes were

mixed together at a ratio of 1:1 prior to activation.

For CFSE assay, lymph node suspensions at 1 million cells per mL in PBS 1%FCS were labelled

with 5 mM CFSE (Invitrogen) for 10 min at 37˚C before being washed twice with cold complete

medium to quench the reaction. 0.5 million live cells per mL were activated with 0.5 mg/mL of both

anti-CD3 + anti-CD28.

For IFNg and Granzyme B intracellular staining, splenocytes were activated with anti-CD3 and

anti-CD28 (both 0.5 mg/mL) for 20 hr at a density of 1 million cells/mL. Golgi plug (1:1000, BD Bio-

sciences) +/- PdBU (20 ng/mL) and ionomycin (500 ng/mL) were added to the culture for 4 hr then

cells were harvested after 24 hr total time in culture.

Cell sorting
Cell sorting was performed on a BD Influx cell sorter. Staining, sorting and cell collection was per-

formed in RPMI 1640 containing glutamine, supplemented with 1% FBS.

Naı̈ve CD4 and CD8 T cells for proteomics and qPCR were sorted from lymph nodes of 2 x

Cd4Cre+ mice per biological replicate. Naı̈ve cells were sorted from single cell suspensions as

DAPI-B220-NK1.1-CD11b-CD25-TCRb+CD62LhiCD44lo, CD4+ or CD8+.

24 hr activated T cells for MycWT and MyccKO proteomics were sorted as DAPI-CD69+ CD4+ or

CD8+.

24 hr activated T cells for Slc7a5WT and Slc7a5cKO proteomics were sorted as Slc7a5WT:

DAPI-CD4+CD45.1+CD45.2-; and Slc7a5cKO: DAPI-CD4+CD45.1-CD45.2+.

4 hr activated T cells for qPCR were sorted as DAPI-B220-NK1.1-CD11b-Thy1.2+CD69+ CD4+ or

CD8+.

In all cases, sorted cells were washed twice with HBSS before being snap frozen in liquid nitrogen

and stored at �80˚C until further processing.

Flow cytometry
Flow cytometry data was acquired on a FACSVerse using FACSuite software or FACSCanto, or LSR

II Fortessa with FACS DIVA software (BD Biosciences). Data was analysed using Flowjo software ver-

sion 9.9.6 (Treestar).

For cell surface staining antibodies conjugated to BV421, BV510, FITC, PE, PerCPCy5.5, PECy7,

APC, and APCeF780 were obtained from BD Biosciences, eBioscience or Biolegend. Fc receptors

were blocked using Fc block (BD Biosciences). Antibody clones were as follows: CD4 (RM4-5), CD8

(53–6.7), CD11b (M1/70), CD25 (7D4), CD44 (IM7), CD45.1 (A20), CD45.2 (104), CD62L (MEL-14),

CD69 (H1.2F), TCRbeta (H57-597), Thy1.2 (53–2.1), B220 (RA3-6B2), NK1.1 (PK136).
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For Myc intracellular staining, cells were fixed and permeabilised overnight in PBS 1% FBS 0.5%

PFA 0.2% Tween-20. Fix/perm was washed off and cells were stained with 1:200 rabbit anti-Myc anti-

body (Cell Signalling Technologies, clone D84C12, cat#5605S) for 1 hr at room temperature fol-

lowed by 1:1000 anti-rabbit IgG (H+L) F(ab’)2 AlexFluor647 secondary antibody (Cell Signalling

Technologies, cat#4414S) for 1 hr at room temperature.

For IFNg and Granzyme B intracellular staining cells were fixed and permeabilised using eBio-

science Intracellular Fixation and Permeabilisation kit (eBioscience) as per manufacturer instructions.

Cells were stained with anti-IFNg (XMG1.2) and anti-Granzyme B (NGZB) at 1:100 and 1:200

respectively.

Kynurenine uptakes
Kynurenine uptake assay were performed as described in Sinclair et al. (2018). Briefly, antibodies

against surface markers were added to culture (37˚C 5% CO2) for 10 min prior to uptake assay in

order to identify cell types. ~ 3 million cells per condition were harvested, washed with warm HBSS

and split into three wells/tubes in warm HBSS. For each condition either HBSS, Kynurenine (200 mM

final concentration) or BCH (10 mM, a system L inhibitor) + Kynurenine were added and placed back

at 37˚C. Uptakes were stopped after 5 min by addition of PFA (final concentration 1%) for 30 min at

room temp. After fixation cells were washed with PBS 1%FBS before analysis on flow cytometer.

Kynurenine is excited by the 405 nm laser and is detected in the 450/50 BP filter.

qPCR
Total RNA was isolated from sorted pellets using RNeasy Minikit (Qigen) with on column DNase

(Qiagen) digestion and cDNA transcribed using iScript cDNA Synthesis kit (Biorad, cat#1708891) all

as per manufacturer instructions. Quantitative Real-Time PCR was performed using iTaq Universal

SYBRGreen Supermix (Biorad, cat#1725121) on a Bio-Rad iQ5 Multicolor Real-Time PCR Detection

System, with Bio-Rad iQ5 software. mRNA fold-change was quantified relative to naı̈ve CD4 MycWT

T cells using the DDCt method, with TBP as the loading control. Primer sequences were as follows:

Slc7a5:

Forward; AAG GCT GCG ACC CGT GTG
Reverse; ATC ACC TTG TCC CAT GTC CTT CC

Slc7a1:

Forward; GGA GCT TTG GC CTT CAT CAC T
Reverse; CAG CAC CCC AGG AGC ATT CA

Slc1a5:

Forward; GCC ATC ACC TCC ATC AAC GAC T
Reverse; AGA GCG GAA GGC AGC AGA CAC

TBP:

Forward: GTG AAT CTT GGC TGT AAA CTT GAC CT
Reverse: CGC AGT TGT CCG TGG CTC T

Proteomics sample preparation
Cell pellets were lysed at room temperature in 4% SDS, 50 mM TEAB pH 8.5, 10 mM TCEP under

agitation (5 min, 1200 rpm on tube shaker), boiled (5 min, 500 rpm on tube shaker), then sonicated

with a BioRuptor (30 s on, 30 s off x30 cycles). Protein concentration was determined using EZQ pro-

tein quantitation kit (Invitrogen) as per manufacturer instructions. Lysates were alkylated with 20 mM

iodoacetamide for 1 hr at room temperature in the dark, before protein clean up by SP3 procedure

(Hughes et al., 2014). Briefly, 200 mg of 1:1 mixed Hydrophobic and Hydrophilic Sera-Mag Speed-

Bead Carboxylate-Modified Magnetic Particles were added per protein sample then acidified

to ~pH 2.0 by addition 10:1 Acetonitrile: Formic Acid. Beads were immobilised on a magnetic rack

and proteins washed with 2 � 70% ethanol and 1 � 100% acetonitrile. Rinsed beads were reconsti-

tuted in 0.1% SDS 50 mM TEAB pH 8.5, 1 mM CaCl2 and digested overnight with LysC followed by

overnight digestion with Trypsin, each at a 1:50 enzyme to protein ratio. Peptide clean up was
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performed as per SP3 procedure (Hughes et al., 2014). Briefly, protein-bead mixtures were resus-

pended and 100% acetonitrile added for 10 min (for the last 2 min of this beads were immobilised

on a magnetic rack). Acetonitrile and digest buffer were removed, peptides were washed with ace-

tonitrile and eluted in 2% DMSO. Peptide concentration was quantified using CBQCA protein quan-

titation kit (Invitrogen) as per manufacturer protocol. Formic acid was added to 5% final

concentration.

Samples were fractionated using high pH reverse phase liquid chromatography. Samples were

loaded onto a 2.1 mm x 150 mm XBridge Peptide BEH C18 column with 3.5 mm particles (Waters).

Using a Dionex Ultimate3000 system, the samples were separated using a 25 min multistep gradient

of solvents A (10 mM formate at pH 9 in 2% acetonitrile) and B (10 mM ammonium formate pH 9 in

80% acetonitrile), at a flow rate of 0.3 mL/min. Peptides were separated into 16 fractions which were

consolidated into eight fractions. Fractionated peptides were dried in vacuo then dissolved in 5%

Formic Acid for analysis by LC-ES-MS/MS. For MycWT naı̈ve and OT1 TCR time course proteomics

samples clean up was performed on the 8th fraction of each sample using HIPPR detergent removal

spin column kit (ThermoFisher Scientific) as per manufacturer protocol.

Liquid chromatography electrospray tandem mass spectrometry analysis
(LC-ES-MS/MS)
�1 mg of peptide was analysed per fraction in all experiments.

For label-free proteomics of MycWT and MyccKO and Slc7a5WT and Slc7a5cKO 24 hr TCR activated

T cells samples were analysed as described previously (Sinclair et al., 2019). As described in refer-

ence, samples were injected onto a nanoscale C18 reverse-phase chromatography system (UltiMate

3000 RSLC nano, Thermo Scientific) then electrosprayed into an Orbitrap mass spectrometer (LTQ

Orbitrap Velos Pro; Thermo Scientific). For chromatography buffers were as follows: HPLC buffer A

(0.1% formic acid), HPLC buffer B (80% acetonitrile and 0.08% formic acid) and HPLC buffer C (0.1%

formic acid). Peptides were loaded onto an Acclaim PepMap100 nanoViper C18 trap column (100

mm inner diameter, 2 cm; Thermo Scientific) in HPLC buffer C with a constant flow of 10 ml/min. After

trap enrichment, peptides were eluted onto an EASY-Spray PepMap RSLC nanoViper, C18, 2 mm,

100 Å column (75 mm, 50 cm; Thermo Scientific) using the buffer gradient: 2% B (0 to 6 min), 2% to

35% B (6 to 130 min), 35% to 98% B (130 to 132 min), 98% B (132 to 152 min), 98% to 2% B (152 to

153 min), and equilibrated in 2% B (153 to 170 min) at a flow rate of 0.3 ml/min. The eluting peptide

solution was automatically electrosprayed using an EASY-Spray nanoelectrospray ion source at

50˚ and a source voltage of 1.9 kV (Thermo Scientific) into the Orbitrap mass spectrometer (LTQ

Orbitrap Velos Pro; Thermo Scientific). The mass spectrometer was operated in positive ion mode.

Full-scan MS survey spectra (mass/charge ratio, 335 to 1800) in profile mode were acquired in the

Orbitrap with a resolution of 60,000. Data were collected using data- dependent acquisition: the 15

most intense peptide ions from the preview scan in the Orbitrap were fragmented by collision-

induced dissociation (normalized collision energy, 35%; activation Q, 0.250; activation time, 10 ms)

in the LTQ after the accumulation of 5000 ions. Precursor ion charge state screening was enabled,

and all unassigned charge states as well as singly charged species were rejected. The lock mass

option was enabled for survey scans to improve mass accuracy. (Using Lock Mass of 445.120024).

For label-free proteomics of naı̈ve WT T cells and N4 activated OT-I T cell time course, samples

were injected onto a nanoscale C18 reverse-phase chromatography system (UltiMate 3000 RSLC

nano, Thermo Scientific) before being electrosprayed into a Q Exactive Plus mass spectrometer

(Thermo Scientific). The chromatography buffers used were as follows: HPLC buffer A (0.1% formic

acid), HPLC buffer B (80% acetonitrile in 0.1% formic acid) and HPLC buffer C (0.1% formic acid).

Samples (15 mL) were injected and washed with Buffer C (10 ul/min) for 5 min prior to valve switch

on an Acclaim PepMap100 nanoViper C18 trap column (100 mm inner diameter, 2 cm; Thermo Scien-

tific). After trap enrichment, peptides were eluted onto an EASY-Spray PepMap RSLC nanoViper,

C18, 2 mm, 100 Å column (75 mm, 50 cm; Thermo Scientific) using the following buffer gradient: 2%

to 5% B (0 to 5 min), 5% to 35% B (5 to 130 min), 35% to 98% B (130 to 132 min), 98% B (132 to 152

min), 98% to 2% B (152 to 153 min), and equilibrated in 2% B (153 to 170 min) at a flow rate of 0.3

ml/min. The eluting peptide solution was automatically electrosprayed into the Q Exactive Plus mass

spectrometer using an EASY-Spray nanoelectrospray ion source at 50˚ and a source voltage of 2.0

kV (Thermo Scientific). The mass spectrometer was operated in positive ion mode. Data were
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collected using data- dependent acquisition: the 15 most intense peptide ions from the preview

scan in the Q Exactive Plus were fragmented by higher-energy collisional dissociation. The following

settings were applied: MS1 scan resolution: 70 000; MS1 AGC target: 1e6; MS1 maximum IT: 20 ms;

MS1 scan range: 350–1600 Th; MS2 scan resolution: 17 500; MS2 AGC target: 2e5; MS2 maximum

IT: 100 ms; isolation window: 1.4 Th; first fixed mass: 200 Th; NCE: 27; minimum AGC target: 2e3;

only charge states 2 to 6 considered; peptide match: preferred; exclude isotopes: on; dynamic exclu-

sion: 45 s.

Quantification and statistical analysis
Proteomics data analysis
The data were processed, searched and quantified with the MaxQuant software package, Version

1.6.2.6. For the protein and peptide searches we generated a hybrid database from databases in

Uniprot release 2019 07. This consisted of all manually annotated mouse SwissProt entries, com-

bined with mouse TrEMBL entries with protein level evidence available and a manually annotated

homologue within the human SwissProt database. The following MaxQuant search parameters were

used: protein N-terminal acetylation, methionine oxidation, glutamine to pyroglutamate, and gluta-

mine and asparagine deamidation were set as variable modifications and carbamidomethylation of

cysteine residues was selected as a fixed modification; Trypsin and LysC were selected as the

enzymes with up to two missed cleavages permitted; the protein and PSM false discovery rate was

set to 1%; matching of peptides between runs was switched off. Data filtering and protein copy

number quantification was performed in the Perseus software package, version 1.6.6.0. Proteins

were quantified from unique peptides and razor peptides (peptides assigned to a group, but not

unique to that group). Quantification quality was categorized based on the following: quantification

was considered high accuracy if proteins had eight or more unique and razor peptides assigned and

at least 75% of these peptides were unique; proteins were considered medium accuracy if they were

assigned at least three unique and razor peptides with 50% of these being unique; proteins below

these thresholds were considered low accuracy. The data set was filtered to remove proteins cate-

gorised as ‘contaminants’, ‘reverse’ and ‘only identified by site’. Mean copy number per cell was cal-

culated using the “proteomic ruler’ plugin as described in Wiśniewski et al. (2014). Briefly, this

method sets the summed peptide intensities of the histones to the number of histones in a diploid

mouse cell then uses the ratio between the histone peptide intensity and summed peptide intensi-

ties of other identified proteins to estimate the protein copy number per cell for all the identified

proteins. Data was further filtered to only include proteins for which at least one condition had pep-

tides detected in �2 biological replicates.

Statistics and calculations
Mass contribution of proteins (g/cell) was calculated as (protein copy number) * (molecular weight

(Daltons)) / (Avogadro’s constant). Protein content per cell plots for glycolytic enzymes in Figure 2C

were calculated based upon proteins defined as: KEGG term ‘glycolysis + gluconeogenesis’ manu-

ally filtered to exclude enzymes not directly part of the glycolysis pathway illustrated in Figure 2A.

Heatmaps were generated using Broad Institute software Morpheus (https://software.broadinsti-

tute.org/morpheus). Proteins were included in heatmap if they had an average of at least 500 copies

per cell and were detected in at least two biological replicates in the CD8+ T cell conditions.

P-values were calculated using two-tailed t-test with unequal variance on log2 transformed copy

number per cell values in Microsoft Excel. Mean fold-changes between average copy number of con-

ditions were calculated. For Figure 3J–K, proteins were considered TCR regulated if the naı̈ve WT

to TCR WT p-value was <0.05 irrespective of fold-change; proteins were considered Myc or Slc7a5

regulated if they differed by >2 fold between WT TCR and cKO TCR conditions with a p-value<0.05.

For Figure 1—figure supplement 2 proteins were considered Myc-regulated if they differed by >2

fold between MycWT TCR and MyccKO TCR conditions with a p-value<0.05.
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Verbist KC, Guy CS, Milasta S, Liedmann S, Kamiński MM, Wang R, Green DR. 2016. Metabolic maintenance of
cell asymmetry following division in activated T lymphocytes. Nature 532:389–393. DOI: https://doi.org/10.
1038/nature17442, PMID: 27064903

Wang R, Dillon CP, Shi LZ, Milasta S, Carter R, Finkelstein D, McCormick LL, Fitzgerald P, Chi H, Munger J,
Green DR. 2011. The transcription factor myc controls metabolic reprogramming upon T lymphocyte activation.
Immunity 35:871–882. DOI: https://doi.org/10.1016/j.immuni.2011.09.021, PMID: 22195744

Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK, Nissim I, Daikhin E, Yudkoff M,
McMahon SB, Thompson CB. 2008. Myc regulates a transcriptional program that stimulates mitochondrial
glutaminolysis and leads to glutamine addiction. PNAS 105:18782–18787. DOI: https://doi.org/10.1073/pnas.
0810199105, PMID: 19033189
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