Supporting information

Figure S1. There were no cross-reactions when other bacterial such as Klebsiella pneumoniae and Streptococcus Pneumoniae were tested and detected by RPA-AGE (Fig. S1A), RPA-FSM (Fig. S1B) and RPA-LFD (Fig. S1C).

Figure S2. These primers could not produce cross reaction and could only amplify their own target genes.

Table Legends

Table S1. The optimal reaction system of every gene including concentration of primers, probes, MgAo, reaction temperature and reaction time.

Table S2. All results indicated that our AMR diagnostic detection perform approached the performance of PCR, with a consistency rate of 100%

Table S3. The sample of the study included a total of 54 clinical isolates.

Figure S1. There were no cross-reactions when other bacterial such as Klebsiella pneumoniae and Streptococcus Pneumoniae were tested and detected by RPA-AGE (Fig. S1A), RPA-FSM (Fig. S1B) and RPA-LFD (Fig. S1C).

Figure S2. These primers could not produce cross reaction and could only amplify their own target genes.

Table S1. The optimal reaction system of every gene including concentration of primers, probes, MgAo , reaction temperature and reaction time.

A) The best reaction condition for RPA-FSM

genotype of probe	genotype of	Reaction	Temperatu	ıre (°C)	Reac	tion Tir	ne (m	in)	
generally or proce	template	37	39	42	5	10	15	20	25
nuc-exo	пис	1	5	3	1	3	4	5	5
blaZ-exo	blaZ	2	5	4	0	2	4	5	5
mecA-exo	mecA	1	5	2	0	3	4	5	5
ermA-exo	ermA	3	5	4	1	3	5	5	5
ermB-exo	ermB	3	5	3	0	2	4	5	5
ermC-exo	ermC	1	5	2	0	3	5	5	5
msrA-exo	msrA	3	5	4	1	3	5	5	5
tetK-exo	tetK	3	5	2	0	3	5	5	5
tetM-exo	tetM	1	5	2	1	3	5	5	5
aadD-exo	aadD	3	5	3	0	3	5	5	5

B) The best reaction condition for RPA-LFD

genotype of probe	genotype	of	Reaction	n Tempera	ature (°C)	Rea	ction Tin	ne (mi	n)	
genotype of proce	template		37	39	42	5	10	15	20	25
<i>nuc</i> -nfo	nuc									
blaZ-nfo	blaZ									
<i>mecA</i> -nfo	mecA									
ermA-nfo	ermA									
ermB-nfo	ermB									
<i>ermC</i> -nfo	ermC									
<i>msrA</i> -nfo	msrA									·
<i>tetK</i> -nfo	tetK									
<i>tetM</i> -nfo	<i>tetM</i>									
aadD-nfo	aadD									

Table S2. All results indicated that our AMR diagnostic detection perform approached the performance of PCR, with a consistency rate of 100%

Clinical		nuc			blaZ			mecA			ermA			ermB			ermC			msrA			tetK			tetM			aadD	
isolates	PCR		RPA- LFD	PCR	RPA- FSM		PCR	RPA- FSM	RPA- LFD	PCR		RPA- LFD	PCR	RPA- FSM	RPA- LFD	PCR		RPA- LFD	PCR		RPA- LFD	PCR		RPA- LFD	PCR		RPA- LFD	PCR	RPA- FSM	RPA- LFD
1	+	15.6	+	+	14.66	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	11.37	+	-	Noct	-	-	Noct	-
2	+	8.35	+	+	16.25	+	+	12.12	+	-	Noct	-	-	Noct	-	+	7.37	+	+	9.55	+	+	17.71	+	-	Noct	-	-	Noct	-
3	+	14.77	+	+	20.52	+	+	10.09	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	8.9	+	-	Noct	-	-	Noct	-
4	+	13.94	+	+	19.2	+	+	15.58	+	-	Noct	-	-	Noct	-	+	7.54	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
5	+	14.58	+	+	15.75	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
6	+	6.08	+	+	19.22	+	-	Noct	-	-	Noct	-	-	Noct	-	+	11.56	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
7	+	13.14	+	+	8.43	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	15.17	+	-	Noct	-	-	Noct	-
8	+	11.78	+	+	16.79	+	-	Noct	-	-	Noct	-	-	Noct	-	+	6.74	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
9	+	15.94	+	+	19.68	+	+	14.97	+	-	Noct	-	-	Noct	-	+	9.86	+	-	Noct	-	+	6.53	+	-	Noct	-	+	20.72	+
10	+	13.31	+	+	10.63	+	+	9.34	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
11	+	10.31	+	+	15.28	+	-	Noct	-	-	Noct	-	+	13.77	+	-	Noct	-	-	Noct	-	-	Noct	-	+	12.9	+	+	18.69	+
12	+	12.53	+	+	8.52	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
13	+	11.92	+	+	20.91	+	+	8.38	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
14	+	9.28	+	+	12.41	+	+	7.29	+	-	Noct	-	+	9.47	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
15	+	9.06	+	+	12.48	+	+	13	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	12.07	+	-	Noct	-	-	Noct	-
16	+	16.64	+	-	Noct	-	-	Noct	-	+	15.81	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
17	+	7.3	+	-	Noct	-	+	15.45	+	-	Noct	-	+	18.27	+	+	10.07	+	-	Noct	-	+	6.27	+	-	Noct	-	-	Noct	-
18	+	8.14	+	+	14.01	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
19	+	14.95	+	+	16.35	+	+	14.83	+	-	Noct	-	+	11.02	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
20	+	9.05	+	+	15.6	+	-	Noct	-	-	Noct	-	+	12.41	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	14.02	+

21	+	8.85	+	+	14.32	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-									
22	+	16.11	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-												
23	+	6.66	+	+	10.89	+	+	12.83	+	-	Noct	-	+	10.79	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
24	+	15.38	+	+	8.75	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-									
25	+	8.48	+	+	8.44	+	+	9.07	+	-	Noct	-	-	Noct	-	+	13.44	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
26	+	13.96	+	+	19.74	+	+	14.67	+	-	Noct	-	+	11.78	+	-	Noct	-	-	Noct	-	+	8.34	+	-	Noct	-	-	Noct	-
27	+	9.94	+	+	11.92	+	-	Noct	-	-	Noct	-	+	6.48	+	-	Noct	-	-	Noct	-									
28	+	17.3	+	+	8.11	+	-	Noct	-	-	Noct	-	-	Noct	-	+	9.35	+	-	Noct	-	+	9.29	+	-	Noct	-	-	Noct	-
29	+	11.37	+	+	20.78	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-									
30	+	15.88	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-												
31	+	8.48	+	+	17.94	+	_	Noct	-	+	14.53	+	-	Noct	_	_	Noct	-	_	Noct	-	_	Noct	-	_	Noct	-	_	Noct	_
32	+	17.2	+	+	16.54	+	_	Noct	-	-	Noct	_	+	14.4	+	-	Noct	-	-	Noct	_	_	Noct	_	-	Noct	_	+	13.78	+
33	+	11.13	+	+	20.74	+	_	Noct	-	+	10.04	+	-	Noct	_	-	Noct	-	-	Noct	_	_	Noct	_	-	Noct	_	-	Noct	_
34	+	17.75	+	+	18.34	+	+	12.97	+	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_
35	+	8.34	+	_	Noct	_	_	Noct		_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_									
36	+	8.79	+	+	18.71	+	+	7.5	+	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_
37	+	7.88	+	+	10.9	+	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_	_	Noct	_									
38		13.57	+	_		_		10.54		_	Noct		_		_	+	9.68				_	_		_	_		_	_	Noct	
39		14.52		+	16.57	+	+		+	_	Noct		+		+	_	Noct		_	Noct	_	_	Noct	_	_		_	_	Noct	
40		10.19		+	9.46	+	_		_	_		_	_		_	+	10.62		_		_	_		_	+	10.98	+	+	12.89	
41	+		+	+		+			-				-		-	_			_		_	+		+	_			'		· _
		8.71					-		-	-	Noct	-	-		-	-	Noct		-		-				-		-	-		-
42	+	14.36	+	+	11.74	+	-	Noct	-	-	Noct	-	+	8.14	+	-	Noct	-	-	Noct	-									

43	+	15.27	+	+	15.42	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	7.58	+	-	Noct	-	-	Noct	-
44	+	16.05	+	+	10.13	+	+	10.63	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
45	+	7.27	+	+	15.53	+	+	9.15	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
46	+	6.42	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	12.7	+	-	Noct	-	-	Noct	-
47	+	8.2	+	+	7.98	+	-	Noct	-	-	Noct	-	+	12.49	+	+	16.7	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
48	+	14.02	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
49	+	15.75	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
50	+	9.85	+	+	18.17	+	+	16.79	+	-	Noct	-	-	Noct	-	+	9.99	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
51	+	6.92	+	+	13.84	+	+	10.41	+	-	Noct	-	+	10.3	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	+	14.58	+
52	+	16.86	+	+	20.33	+	+	6.73	+	-	Noct	-	-	Noct	-	+	10.56	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-
53	+	6.59	+	+	18.58	+	-	Noct	-	-	Noct	-	+	14.13	+	-	Noct	-	-	Noct	-	+	10.86	+	+	10.12	+	-	Noct	-
54	+	6.49	+	-	Noct	-	+	8.79	+	-	Noct	-	+	11.13	+	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-	-	Noct	-

Table S3. The sample of the study included a total of 54 clinical isolates.

Code	Sample Type	nuc	Penicillin	blaZ	Screening of cefoxitin	Oxacillin	mecA	Erythrom ycin	Clindamy cin	Induced clindamyc in resistance	ermA	ermB	ermC	msrA	Tetracycli ne	tetK	tetM	Gentamici n	aadD
1	WS	+	R	+	-	S	-	S	S	-	-	-	-	-	R	+	-	S	-
2	Urine	+	R	+	+	R	+	R	R	+	-	-	+	+	\mathbf{s}	+	-	S	_
3	NGJ	+	R	+	+	R	+	S	S	-	-	-	-	-	R	+	-	\mathbf{S}	_
4	PRE	+	R	+	+	R	+	R	R	+	-	-	+	-	R	-	-	S	-
5	Urine	+	R	+	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
6	CVCT	+	R	+	-	S	-	R	R	+	-	-	+	-	S	-	-	\mathbf{S}	_
7	Urine	+	R	+	-	S	-	S	R	-	-	-	-	-	R	+	-	S	-
8	Urine	+	R	+	-	S	-	R	R	+	-	-	+	-	S	-	-	S	-
9	Urine	+	R	+	-	S	+	R	R	+	-	-	+	-	R	+	-	S	+
10	Pus	+	R	+	+	R	+	S	S	-	-	-	-	-	S	-	-	S	-
11	PTE	+	R	+	/	S	-	R	S	-	-	+	-	-	R	-	+	S	+
12	Urine	+	R	+	-	S	-	\mathbf{S}	S	-	-	-	-	-	\mathbf{S}	-	-	S	-
13	UVCT	+	R	+	+	R	+	S	S	-	-	-	-	-	S	-	-	S	-
14	Blood	+	R	+	+	R	+	R	R	-	-	+	-	-	S	-	-	S	-
15	Urine	+	R	+	+	R	+	S	S	-	-	-	-	-	R	+	-	S	-
16	BALF	+	S	-	-	S	-	R	R	+	+	-	-	-	S	-	-	S	-
17	BALF	+	R	-	+	R	+	R	R	-	-	+	+	-	R	+	-	S	-
18	Urine	+	S	+	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
19	Sputum	+	R	+	+	R	+	R	R	-	-	+	-	-	S	-	-	S	-
20	Blood	+	R	+	-	S	-	R	R	-	-	+	-	-	S	-	-	R	+
21	UCT	+	R	+	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
22	Urine	+	S	-	/	S	-	S	S	-	-	-	-	-	S	-	-	S	-
23	PRE	+	R	+	+	R	+	R	R	+	-	+	-	-	S	-	-	S	-
24	Urine	+	R	+	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
25	Blood	+	R	+	+	R	+	\mathbf{S}	R	-	-	-	+	-	R	-	-	S	-
26	GTT	+	R	+	+	R	+	R	R	-	-	+	-	-	R	+	-	S	-
27	Urine	+	R	+	-	S	-	S	S	-	-	-	-	-	R	+	-	S	-
28	Urine	+	R	+	-	S	-	R	R	-	-	-	+	-	R	+	-	S	-
29	Sputum	+	R	+	-	S	-	\mathbf{S}	S	-	-	-	-	-	S	-	-	S	-
30	MEE	+	\mathbf{S}	-	-	S	-	\mathbf{S}	S	-	-	-	-	-	S	-	-	S	-
31	Urine	+	R	+	-	S	-	R	R	+	+	-	-	-	S	-	-	S	-
32	CSF	+	R	+	-	/	-	R	R	-	-	+	-	-	S	-	-	I	+
33	Urine	+	R	+	-	S	-	R	R	+	+	-	-	-	S	-	-	S	-
34	CSF	+	R	+	+	R	+	\mathbf{S}	S	-	-	-	-	-	S	-	-	S	-
35	Stool	+	R	-	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
36	TS	+	R	+	+	R	+	\mathbf{S}	S	-	-	-	-	-	S	-	-	S	-
37	Urine	+	R	+	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
38	GTT	+	S	-	-	S	+	R	R	+	-	-	+	-	S	-	-	S	-
39	TS	+	R	+	+	R	+	R	R	-	-	+	-	-	\mathbf{s}	-	-	S	-
40	NGJ	+	R	+	+	R	-	R	R	-	-	-	+	-	R	-	+	R	+
41	Blood	+	R	+	-	S	-	S	S	-	-	-	-	-	R	+	-	S	-
42	ETT	+	R	+	-	S	-	\mathbf{S}	S	-	-	-	-	-	R	+	-	S	-
43	Urine	+	R	+	-	S	-	\mathbf{S}	S	-	-	-	-	-	R	+	-	S	-
44	Pus	+	R	+	+	R	+	S	S	+	-	-	-	-	S	-	-	S	-

45	TS	+	R	+	+	R	+	S	S	-	-	-	-	-	S	-	-	S	-
46	PTE	+	\mathbf{S}	-	-	S	-	S	S	-	-	-	-	-	R	+	-	S	-
47	ETT	+	R	+	-	S	-	R	R	+	-	+	+	-	S	-	-	S	-
48	MEE	+	R	-	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
49	Blood	+	S	-	-	S	-	S	S	-	-	-	-	-	S	-	-	S	-
50	CVCT	+	R	+	+	R	+	R	R	+	-	-	+	-	S	-	-	S	-
51	Urine	+	R	+	+	R	+	R	R	-	-	+	-	-	S	-	-	R	+
52	Urine	+	R	+	+	R	+	R	R	+	-	-	+	-	S	-	-	S	-
53	Blood	+	R	+	-	S	-	S	S	-	-	+	-	-	R	+	+	S	-
54	Urine	+	R	-	+	R	+	R	R	-	-	+	-	-	S	-	-	S	-

PRE Pleural Effusion, PTE Peritoneal Effusion, MEE Middle Ear Effusion, NGJ Neonatal Gastric Juice, BALF Bronchoalveolar Lavage Fluid, CSF Cerebrospinal Fluid, CVCT Central Venous Catheter Tip, ETT Endotracheal Tube Tip, GTT Gavage Tube Tip, UCT Urethral Catheter Tip, UVCT Umbilical Venous Catheter Tip, TS Throat Swabs, WS Wound Swab