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Well-trained clinicians may be able to provide diagnosis and prognosis from very short biomarker series
using information and experience gained from previous patients. Although mathematical methods can
potentially help clinicians to predict the progression of diseases, there is no method so far that estimates the
patient state from very short time-series of a biomarker for making diagnosis and/or prognosis by
employing the information of previous patients. Here, we propose a mathematical framework for
integrating other patients’ datasets to infer and predict the state of the disease in the current patient based on
their short history. We extend a machine-learning framework of ‘‘prediction with expert advice’’ to deal with
unstable dynamics. We construct this mathematical framework by combining expert advice with a
mathematical model of prostate cancer. Our model predicted well the individual biomarker series of
patients with prostate cancer that are used as clinical samples.

M athematical models of diseases have been constructed to understand the mechanisms of diseases1–7,
provide diagnosis and prognosis8–10, and determine treatment options11–14. When we focus on a clinical
setting, it is crucial that we can estimate the state of a disease from short biomarker observations.

Clinicians make such estimations using their experience with previous patients (see Fig. 1a). To the best of
our knowledge, such estimations have not been realized mathematically thus far. If such mathematical estimation
is possible, then we can optimize a treatment option in a personalized way. The difficulty of estimations stems not
only from a lack of information, but also the instability of biomarkers’ time-series, such as those for cancer
volumes. Thus, our goal is to infer the state of a disease from both short, unstable time-series data of biomarkers
obtained from a target patient and longer time-series data of biomarkers from previous patients who suffered
from the same disease. We adopt the machine-learning framework of ‘‘online prediction’’, which integrates
‘‘experts’ advice’’15 to make accurate predictions, where experts are short-term patterns of previous patients’
histories, which are conformed to the target patient time-series.

A series of samples from a patient contains information on (often unstable) disease dynamics8,10 such as rapid
increase. By considering the time series observed from the unstable dynamics, we may be able to better under-
stand the current disease state. Employing past patients’ time-series as experts and the target patient’s time-series
as observations, we can predict a time-series with the standard expert advice method15. However, this cannot be
used directly, because we must deal with the unstable dynamics in which the value of a biomarker increases
rapidly. In this paper, we propose an approach that couples an existing machine-learning technique with the
instability possessed by the temporal disease datasets. Our method is based on the standard expert advice15, but
deals with the instability of the underlying dynamics8,10 by integrating trajectories in a database with weights that
increase exponentially in time.

Results
The proposed method: temporal expert advice (TEA). We extend the standard expert advice method15 to one
that emphasizes near-past information. This temporal expert advice, or the TEA algorithm, consists of three steps
(see Fig. 1b–d). TEA uses a collection of time-series, which we call experts, and weights each expert based on its
agreement with the target time-series. The algorithm outputs a prediction by combining these experts.

OPEN

SUBJECT AREAS:

MACHINE LEARNING

TUMOUR BIOMARKERS

APPLIED MATHEMATICS

Received
24 September 2014

Accepted
6 February 2015

Published

Correspondence and
requests for materials

should be addressed to
K.M. (morino@mist.i.u-

tokyo.ac.jp)

SCIENTIFIC REPORTS | 5 : 8953 | DOI: 10.1038/srep08953 1

2      May  20150

mailto:morino@mist.i.u-tokyo.ac.jp
mailto:morino@mist.i.u-tokyo.ac.jp


The first step constructs an expert of a target system. There are two
options. The first option is to use long time-series observed in the
past as they are. We construct experts by simply inserting previous
parts of the time-series or the datasets of previous patients. Let xj,l be
the lth point of the jth time-series in a database ( j 5 1, 2, …, J, l 5 1, 2,
…, L) and fi,t be the ith expert’s advice at time t. Numbers J and L are
the number of time-series and the number of points in each time-
series, respectively; We assume that the lengths of the time-series are
equal, but it is easy to extend to cases of different lengths. Let P be the
number of points related to each expert. Then, we can define an
expert f(L2P11)(j21)1i,k 5 xj,i1k21 for i 5 1, 2, …, L 2 P 1 1, k 5

1, 2, …, P. The second option is roughly to fit a mathematical model
that has a set of parameters to a very short time-series, obtain the
initial conditions for each set of parameters, and prepare the set of
experts with these parameters. The details of this second rough
option are discussed after we introduce a mathematical model of
prostate cancer in the later section.

In the second step, TEA weights the trajectories fi,t in the database
to generate an appropriate weighting for the most current state. Let yk

denote the observation at time k, and let l(?,?) be a loss function.
When we include the next point, the weights wi,t are updated accord-
ing to a formula obtained by modifying the standard expert advice15.
To achieve this, we sum the loss at each time step with a coefficient as
follows:

Li,t{1~
Xt{1

k~1
ak(t)l fi,k,ykð Þ, ð1Þ

Lt{1~
Xt{1

k~1
ak(t)l pk,ykð Þ: ð2Þ

The modified form considers the instability of the underlying
dynamics by introducing a coefficient ak(t), which measures the
reliability of the prediction at, and increases exponentially with, time
k such that ak(t) 5 lk21 or lk with l . 1. Thus, the real values Li,t and

Figure 1 | Schematic illustration of the estimation from short observations of biomarkers. (a) The prediction of clinicians. (b) The first step of TEA.

(c) The second step of TEA. (d) The third step of TEA.
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Lt are the exponentially weighted losses of the ith expert and the
predictor up to time t, respectively. We define L0 5 Li,0 5 0 for
simplicity. The weight of the expert is updated as

wi,t{1~exp({gLi,t{1), ð3Þ

where g is a learning rate. Chernov and Zhdanov16 proposed a modi-
fied expert advice method in which they defined ak(t) 5 rt2k21 and
0 , r , 1. We call this the ‘‘CZ method’’.

The third step predicts future states of the target system by apply-
ing the obtained weighting to the future trajectories in the database15.
We can generate a point prediction by simply adding the q steps
ahead of the trajectories with the weights obtained in the second step
as follows:

ptzq{1~

PN
i~1

wi,t{1fi,tzq{1

PN
i~1

wi,t{1

, ð4Þ

where N denotes the total number of experts. We can also generate a
distributional prediction by assuming the distribution of obser-
vational errors, and summing this error distribution with the
weights. To make these predictions online, we repeat the second
and third steps iteratively.

Upper bound of the regret of TEA. We derive an upper bound of the
regret of TEA. The primary property peculiar to TEA lies in our
definition of ak(t). We define the coefficient as ak(t) 5 lk21 or lk,
where l . 1. The choice of these two options depends on each
situation. When a given data is too short, we choose the latter, e.g.
our prediction about the biomarker of prostate cancer, or PSA

(prostate-specific antigen). Let L
^

t and L
^

i,t be the accumulated losses
for the proposed method. We call these the exponential accumulated
losses to distinguish them from the standard accumulated losses. In

addition, we define the regret as R
^

t~L
^

t{ min
i~1,:::,N

L
^

i,t . The upper

bound of the regret with ak(t) 5 lk21 is then given by

R
^

tƒ
ln N

g
z

e2g

8
: l

2t{1

l2{1
: ð5Þ

Proof of the upper bound in our proposed method. We give a proof
of Eq. (5) in a similar way to the Proof of Theorem 2.2 in Ref. 15.

Define a new variable Wt:
XN

k~1
w
^

k,t~
XN

k~1
exp {gL

^

k,t

� �
. We

will consider the upper and lower bounds of ln(Wt/W0) to construct
the upper bound of the regret. First, we obtain the lower bound of
ln(Wt/W0) as

ln
Wt

W0

~lnWt{lnW0

~ln
XN

k~1
exp {gL

^

k,t

� �� �
{ln N

§ln max
k~1,:::,N

exp {gL
^

k,t

� �� �
{ln N

~{g min
k~1,:::,N

L
^

k,t{ln N:

ð6Þ

Second, we derive the upper bound of ln(Wt/W0). Observe that

L
^

k,t~L
^

k,t{1zlt{1l fk,t ,ytð Þ. Then, we can reformulate ln(Wt/Wt21)
as follows:

ln
Wt

Wt{1
~ln

PN
k~1 exp({gL

^

k,t)PN
k~1 exp {gL

^

k,t{1

� �~

ln

PN
k~1 exp({gL

^

k,t{1)exp {glt{1l fk,t ,ytð Þ
� �

PN
k~1 exp {gL

^

k,t{1

� � :

ð7Þ

Equation (7) can be regarded as the average of random variable
exp(2glt21l(fk,t, yt)) with a probability mass function proportional to

exp ({gL
^

k,t{1). Lemma 2.2 of Ref. 15 states that

ln E exp sxð Þð ÞƒsE xð Þz s2 b{að Þ2

8
: ð8Þ

Here, we assume that x is a random variable satisfying a # x # b, and
that the inequality holds when s is any real number.

Replace s by 2glt21 and x by l(fk,t, yt). Then, the upper bound of
Eq. (7) can be found using Eq. (8) as follows:

ln
Wt

Wt{1

~ln E exp {glt{1l fk,t ,ytð Þ
� �� �

ƒ{glt{1E l fk,t ,ytð Þð Þz g2l2(t{1)e2

8

~{glt{1

PN
k~1 exp {gL

^

k,t{1

� �
l fk,t ,ytð ÞPN

k~1 exp {gL
^

k,t{1

� � z
g2l2(t{1)e2

8

ƒ{glt{1l

PN
k~1 exp {gL

^

k,t{1

� �
fk,tPN

k~1 exp {gL
^

k,t{1

� � ,yt

0
B@

1
CAz

g2l2(t{1)e2

8

~{glt{1l

PN
k~1 w

^

k,t{1fk,tPN
k~1 w

^

k,t{1

,yt

 !
z

g2l2(t{1)e2

8

~{glt{1l p
^

t ,yt

� �
z

g2l2(t{1)e2

8
:

ð9Þ

We assume that l(?,?) is convex as described above. Then, the upper
bound of ln(Wt/W0) can be derived as

ln
Wt

W0
~
Xt

k~1
ln

Wk

Wk{1

ƒ

Xt

k~1
{glk{1l p

^

k,yk

� �� �
z
Xt

k~1

g2l2(k{1)e2

8

~{gL
^

tz
g2e2

8
: l

2t{1

l2{1
:

ð10Þ

Because Eqs. (6) and (10) provide lower and upper bounds of ln(Wt/
W0), respectively, the following inequality is obtained:

{g min
k~1,:::,N

L
^

k,t{ln Nƒ{gL
^

tz
g2e2

8
: l

2t{1

l2{1
: ð11Þ

By substituting the regret R
^

t~L
^

t{ min
k~1,:::,N

L
^

k,t into Eq. (11), we

finally reach the following inequality:

R
^

tƒ
ln N

g
z

ge2

8
: l

2t{1

l2{1
: ð12Þ

(Proof end)
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Optimization of the upper bound of TEA. We minimize the upper
bound of Eq. (12) over g. First, we differentiate the upper bound with
respect to g as follows:

{
ln N
g2

z
e2

8
: l

2t{1

l2{1
~0: ð13Þ

The solution is

g�~
2
ffiffiffi
2
p

e
:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2{1

l2t{1
:ln N

s
, ð14Þ

which gives the smallest upper bound. Replacing g in the upper bound

of R
^

t with g*, we obtain the following optimal upper bound A
^

(t):

A
^

(t)~
effiffiffi
2
p :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2t{1

l2{1
:ln N

s
: ð15Þ

Although this optimal upper bound perhaps seems to be curious at a
glance due to its exponential increase with t, this is caused by the
definition of the accumulated losses Eqs. (1) and (2) with ak(t) 5

lk21
. This regret can be compared with the normal types of regrets

using relationship described in the next section. When e 5 1 and l R

1, the optimal upper bound A
^

(t) coincides with
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln N=2

p
, which is

the upper bound obtained in the standard expert advice method15.

Comparison between the proposed method and the Chernov–
Zhdanov method. Here, we highlight the difference between the
CZ method and the proposed TEA method. The first point of
difference is the optimal upper bound of the regret. We briefly
introduce the optimal upper bound of the CZ method16. Let L̂i,t and
L̂t be the accumulated losses for the ith expert and the predictor for the
CZ method, respectively. Then, the optimal upper bound Âc(t) of the
regret R̂t~L̂t{ min

i~1,:::,N
L̂i,t for the CZ method is given by

Âc(t)~e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{rt

1{r
:ln N

s
: ð16Þ

Note that we assume the case where the value of the decay rate r does
not depend on t or k. See Ref. 16 for the proof.

Although we cannot directly compare these regrets, we can compare
them after normalization. Assuming that the decay rates are equal,

namely l 5 r21, the regrets R
^

t and R̂t have the following relation:

R̂t~
Xt

k~1
rt{k l p̂k,yk

� �
{ min

i~1,:::,N
l fi,k,ykð Þ

� �

~rt{1
Xt

k~1
lk{1 l p̂k,yk

� �
{ min

i~1,:::,N
l fi,k,ykð Þ

� �

~rt{1R
^

t :

ð17Þ

Using this relation, a comparison between the two upper bounds is

feasible. Multiplying the optimal upper bound A
^

(t) by rt21, we obtain

the normalized optimal upper bound A
^

m(t) as

A
^

m(t)~rt{1A
^

(t)

~rt{1 effiffiffi
2
p :

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r{2t

1{r{2
:ln N

s

~e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r2t

1{r2
: ln N

2

s
:

ð18Þ

Then, the following relation is obtained:

A
^

m(t)

Âc(t)
~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
: 1zrt

1zr

s
v1: ð19Þ

This result means that the normalized optimal upper bound of the
proposed method is always smaller than that of the CZ method when
0 , r , 1.

Next, we compare the weights produced by the two methods. Let
ŵi,t and w

^

i,t be the weights of the ith expert at time t in the CZ and
TEA methods, respectively. Similarly to the derivation of Eq. (17), the

accumulated losses of both methods are related by L̂i,t~rt{1L
^

i,t .
Substituting this relation into w

^

i,t , we have

w
^

i,t~exp {gL
^

i,t

� �
~exp {gL̂i,t

:r{tz1
� �

~ exp {gL̂i,t
� �� �r{tz1

~ ŵi,tð Þr
{tz1

:

ð20Þ

Equality (20) means that the proposed TEA method tends to assign
reliable experts with heavier weights than the CZ method. This

implies that w
^

i,t

.XN

j~1
w
^

j,t§ŵi,t

.XN

j~1
ŵj,t for reliable experts

because r2t11 $ 1.

Examples of time-series prediction for mathematical models. We
demonstrate the superiority of the TEA method to both the CZ
method and the standard expert advice in online time-series
prediction using toy examples. We use the Hénon map17 and the
Ikeda map18 for our demonstration. These two models are
commonly used to test nonlinear time-series analysis methods,
which exhibit typical unstable chaotic dynamics. First, we generate
time-series for the database using various values of parameters. We
then generate a target time-series for prediction using a set of
parameter values that is different from those used to generate the
database. We prepare M 3 S experts for the database, where M is the
number of parameter sets. For each parameter set, we generate S
experts with different initial conditions. In numerical simulations

of TEA, we set e 5 1 and g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:

l2{1

l8{1
:ln MS

s
. We also set l 5

r21 and r 5 0.9. See Algorithm 2 in Ref. 16 for the implementation of
the CZ method, and Ref. 15 for that of the standard expert advice.

The Hénon map17 is a two-dimensional map defined as

xnz1~1{ax2
nzyn,

ynz1~bxn:
ð21Þ

We set the parameters at a 5 1.35 and b 5 0.15 to generate the target
time-series. Note that the dynamics produced by this parameter set is
of deterministic chaos. The experts’ parameters are uniformly chosen
from a g [1.3,1.4] and b g [0.1,0.2]. The initial conditions x0 and y0

are randomly chosen in [20.02, 0.02] 3 [20.02, 0.02], and the map
is iterated for 1,000 steps to eliminate transient effects. We assume
that we observe and predict the value of x 1 y. We use this assump-
tion because we can observe a scalar biomarker of PSA in the prostate
cancer application discussed later. The results presented in Figs. 2a,
2b, and 2c show that the proposed TEA achieves better online time-
series prediction than the standard expert advice and the CZ method.
We choose M 5 100 and S 5 1,000 in Figs. 2a, 2f, and 2g. Another
example of the Ikeda map is shown in Supplementary Fig. S1 (see also
Supplementary Information).
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The proposed TEA method provides the best online prediction in
different toy examples. The more experts we use, the smaller the
prediction errors become. When a large number of experts are used,
the proposed TEA tends to achieve the best online time-series pre-
diction. We need to decay the past information in these examples,
because the unstable chaotic dynamics rapidly loses the memories.

Examples of time-series prediction for real datasets. We now
consider two real datasets: violin sounds19 and the membrane potential
of squid giant axons20. The violin sounds are RWC-MDB-I-2001
No. 15 in the RWC Music Database (Musical Instrument Sound).
Previous studies on squid giant axons have demonstrated the chaotic
nature of the underlying dynamics20–23. These time-series are both
scalar and real-valued. We divide each time series into two. The first
part is used to build the database, and the second constructs the
targets for online prediction. We use M 5 1,000 and M 5 120
targets for the analysis of violin sounds and squid giant axon data,
respectively. The lengths of the target data are 311 for the violin data
and 51 for the squid giant axon data; numbers and lengths of target
data are determined by the lengths of the original datasets.

We compare five methods using these real data. These are our TEA
method, the CZ method, the standard expert advice, the persistence
prediction, and the average prediction. The persistence prediction is
a method that we let the current value to be the prediction for the next
time point. We compare each pair of the method individually, and
count the number of points at which the prediction by one method is
better than the other for each target time-series. If one method is
superior at more than half the data points, we declare that method the
winner on the target data. We exclude the initial ten points from the
analysis, because we cannot prepare the learning part. Finally, we
count the number of wins and losses for each pair among the five
methods. In the TEA numerical simulations, we set e 5 1 and

g~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:

l2{1

l8{1
:ln M

s
. We also set l 5 r21 and r 5 0.9. The violin

sound19 results are shown in Figs. 2d and 2e, and Tables 1. For this
dataset, our method and the persistence prediction produce much
better results than the other methods. Therefore, we next compare
our TEA method with the persistence prediction with respect to the
number of experts. We use the binominal test for the analysis, i.e., if
the number of wins is greater (smaller) than 531 (469), the method is
significantly superior (inferior) to the other method with respect to
the 95% confidence level two-sided binominal test. When the num-
ber of experts is large, our TEA method is significantly superior to the
persistence prediction, as shown in Fig. 2e and Table 1. In the
example of squid giant axon20, the proposed TEA is also better than
the other four methods when the number of experts is large, espe-
cially when greater than or equal to 87, as shown in Fig. 3 and Table 1.

In conclusion, our TEA method tends to provide the best predic-
tion when the number of experts is large. The precise number of
experts for which this is the case may change depending on the given
data, the length of targets, and the decay parameter.

Distribution prediction to the mathematical models. We applied
the distribution prediction to time-series of the Hénon map. The
distribution prediction will be explained in the later Method
section. The setup is similar to that for the point prediction, except
that we provide the prediction as a distribution. The results are
presented in Figs. 2f and 2g. The width of the distribution prediction
is narrow immediately after the learning period (Fig. 2f), then grows
gradually as the number of prediction steps increases because of the
instability of the underlying dynamics. The predicted confidence
interval tends to contain the actual values. When we increase the
number of points used for prediction, the width of the distribution
prediction becomes narrower (Fig. 2g). We use values of S 5 1,000 and
M 5 100 in Figs. 2f and 2g. In the TEA numerical simulations, we set

e 5 1 and g~
1
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:

l2{1

l8{1
:ln MS

s
. The number of trials is 40 in each

box in Fig. 2g. Restricting the range of l to 1 , l , 2 gives a better
prediction. We generate the target and experts’ time-series as in the
previous section. We also obtain the distribution prediction of the
Ikeda map using S 5 1,000 and M 5 100, as shown in Fig. S1f. The
result is very similar to that of the Hénon map. Again, restricting the
range of l to 1 , l , 2 gives a better prediction.

Mathematical models of prostate cancer. TEA can be applied to
clinical problems, such as the prediction of prostate-specific antigen
(PSA) after some initial treatments, while waiting to start an additional
treatment. We apply TEA to the prediction of tumor markers for
prostate cancer PSA. Before the technical details, we introduce a
mathematical model of prostate cancers in this section.

Patients had already received radical prostatectomy as an initial
treatment. Then, clinicians followed postoperative PSA levels to
determine when to commence salvage treatment. Although the tim-
ing at which patients start salvage treatment is an important prob-
lem, there is no definitive agreement on when this to be started.
Currently, clinicians are determining the start of salvage treatment
based on their discretion. The clinical part of this study was approved
by the ethics committees of Jikei University School of Medicine and
The University of Tokyo. All patients provided written informed
consent. Cancer cells tend to thrive under an androgen-rich envir-
onment. Meanwhile, lowering androgen levels makes cancer cells
grow slowly or rather decline. Because of this characteristics, clin-
icians suppress the androgen concentration with hormone therapy.
However, when cancer cells remain exposed to an androgen-poor
environment, they often acquire the ability to grow without andro-
gen. This growth signals a cancer relapse. Intermittent androgen
suppression was proposed to delay the relapse of cancer24. In inter-
mittent androgen suppression, we start hormone therapy, but stop
when PSA levels have decreased sufficiently. Then, we wait until PSA
increases and reaches a threshold value. After reaching this thresh-
old, we resume hormone therapy. We repeat this process to delay the
relapse. However, clinical trials show that the effects of intermit-
tent androgen suppression depend on individual patients, and are
limited25,26.

Here, we use a mathematical model8 of intermittent androgen sup-
pression for prostate cancer24–26. This model was constructed based on
data of Canadian patients25,26 whose PSA had increased to some extent
after radiation therapy, and were later treated by intermittent andro-
gen suppression. Because the model of Ref. 8 has a small number of
parameters, it is reasonable to predict the future PSA values with this
simple model and very short time-series, although several mathemat-
ical models have been proposed to describe dynamics under intermit-
tent androgen suppression4–6,8,10,27–31. In the model described in Ref. 8,
we assume that there are three classes of cancer cells: androgen
dependent cancer cells x1, androgen independent cancer cells gener-
ated through reversible changes x2, and androgen independent cancer
cells generated through irreversible changes x3. When the hormone
therapy is underway, x1 may change to x2 or x3. When the hormone
therapy is stopped, x2 may return to x1, whereas x3 cannot return to x1

or x2 because of genetic mutation. We previously verified two import-
ant properties of this model: namely, a piecewise linear model is
sufficient to describe the dynamics of PSA, and the androgen concen-
tration need not be explicitly included in the model8. Based on these
verified properties, we can simply construct the mathematical model
as

d
dt

x1(t)

x2(t)

x3(t)

0
B@

1
CA~

d1 0 0

d2 d3 0

d4 d5 d6

0
B@

1
CA

x1(t)

x2(t)

x3(t)

0
B@

1
CA, ð22Þ

for the on-treatment period, and
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Figure 2 | Examples of prediction by TEA. (a) Online point prediction of the Hénon map. (b, c) The number of experts versus the exponential

accumulated loss of errors and the standard accumulated loss of errors in the prediction of the Hénon map. (d) Online point prediction of violin sounds.

(e) The number of experts versus the number of wins out of 1,000 online prediction trials against the persistence prediction in the violin example.

(f) Distribution prediction of the Hénon map. (g) Confidence interval width against the number of used points shown in box plots. In panels (a) and

(f), actual observations are shown with black # and dotted lines, TEA predictions are shown with red 1 and solid lines, and the prediction given by the

method of Chernov and Zhdanov is shown with blue * and dashed lines. In panel (f), the purple dotted lines show the 95% confidence interval of

the distribution prediction, and the green line divides the learning period and the multistep prediction period. In panels (b) and (c), red, blue, and green

error bars correspond to TEA, the method of Chernov and Zhdanov, and the standard expert advice, respectively. In panel (e), the dotted lines show the

95% confidence interval under the null-hypothesis of even chance.
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for the off-treatment period8. Here, d1, d2, d3, d4, d5, d6, e1, e2, e3, and e4

are model parameters. We assume that a PSA measurement is repre-
sented by x1 1 x2 1 x3 for simplicity. Thus, we must specify these 10
parameters for the dynamics and three other parameters for the initial
conditions of x1, x2, and x3. If we try to find these 13 parameters
directly only from a single target patient, we would need to obtain a
long time-series. The application of the proposed TEA algorithm
makes the required observation period of PSA measurements shorter
by integrating observations from the target patient with the long time-
series data of PSA measurements obtained from previous prostate
cancer patients. We note that we only analyze the off-treatment period
in this paper, because the target dataset is about the follow-up period
after an initial treatment. Therefore, we need 4 control parameters and
initial conditions.

Construction of experts for prediction of PSA for prostate cancer.
In this paper, we have two datasets; one is a dataset of Canadian
patients with many data points; the other is a dataset of Japanese
patients with short time points. We need a long time-series to
efficiently estimate model parameters. Therefore, we select Canadian
datasets for estimation of parameters and Japanese datasets for
predicting targets.

In applying TEA to prostate cancer, we first prepared 72 sets of
model parameters, each of which was obtained from one of 72
Canadian prostate cancer patients treated with intermittent andro-
gen suppression. These parameters were obtained from Ref. 8. We
note that our prediction target dataset corresponds to the off-treat-
ment period in the model8. Second, we chose the number of obser-
vation points to use as known data points. This must be at least three
because of the model dimensions8. Third, using each set of para-

meters, we determined the initial model state to minimize the fitting
error between the initial three or more PSA measurements and the
model output. The optimal initial conditions were selected by min-
imizing the following cost function:XK

k~1

X3

j~1
xj(tk){y tkð Þ

			 			zX3

j~1
h xj tkð Þ
� �� �

, ð24Þ

where h(x) 5 1015(1 2 x) for x , 0 and h(x) 5 0 for x $ 0, where tk is
the kth observation time. We denote the number of observation
points used for learning by K. The method of obtaining the initial
conditions was similar to that in Ref. 8. Fourth, we ran the model with
each set of parameters and the corresponding initial conditions to
construct the database of experts fi,t; thus, we have 72 experts.

Estimation of learning parameters. We applied the second step of
the TEA algorithm to determine the weights of the PSA measure-
ments. Then, we applied the third step of the TEA algorithm to
obtain the distribution prediction. We determined the optimal
decay rate l by minimizing the error between the last learning
observation and the prediction. We restricted the range of l to 1 ,
l , 2 to obtain better predictions. The standard deviation s is
estimated as follows. We ran the distribution prediction with the
obtained initial conditions and the decay parameter. We set the
standard deviation s to the mean of the absolute errors between
the median of the distribution prediction and the corresponding
observation when the mean is taken during the learning period.

Application of TEA to prediction of PSA for prostate cancer. We
predict the values of PSA with distribution prediction. The
distribution prediction of PSA with TEA is shown in Fig. 4. Here
we evaluate the larger side of the predicted distribution, because
overlooking high PSA is highly undesirable in a real clinical
setting. We show seven points ut(Q) of the predicted distribution
(97.5%, 87.5%, 75%, 65%, 60%, 55%, and 52.5%) in these figures,
where ut(Q) is defined as

Table 1 | Analysis of violin sounds and the membrane potential of squid giant axon. The number of wins between each pair of the five
prediction methods is shown. The each number indicates the number of experts in each case.

Method Method of Comparison

# 100 (Violin sounds) 1000 (Violin sounds)
TEA CZ Exist Persistence Average TEA CZ Exist Persistence Average

TEA — 1000 509 175 1000 — 1000 785 201 1000
CZ 0 — 0 0 1000 0 — 21 0 1000
Exist 491 1000 — 19 1000 215 979 — 79 1000
Persistence 825 1000 981 — 1000 799 1000 921 — 1000
Average 0 0 0 0 — 0 0 0 0 —
# 30000 (Violin sounds) 55000 (Violin sounds)

TEA CZ Exist Persistence Average TEA CZ Exist Persistence Average
TEA — 1000 1000 475 1000 — 1000 998 982 1000
CZ 0 — 0 0 1000 0 — 0 0 1000
Exist 0 1000 — 0 1000 2 1000 — 2 1000
Persistence 525 1000 1000 — 1000 18 1000 998 — 1000
Average 0 0 0 0 — 0 0 0 0 —
# 30 (Squid axon) 90 (Squid axon)

TEA CZ Exist Persistence Average TEA CZ Exist Persistence Average
TEA — 17 50 120 88 — 80 115 120 120
CZ 103 — 120 120 115 40 — 103 120 120
Exist 70 0 — 120 2 5 17 — 120 59
Persistence 0 0 0 — 0 0 0 0 — 0
Average 32 5 118 120 — 0 0 61 120 —
# 120 (Squid axon) 180 (Squid axon)

TEA CZ Exist Persistence Average TEA CZ Exist Persistence Average
TEA — 109 120 120 120 — 120 120 120 120
CZ 11 — 105 120 120 0 — 113 120 120
Exist 0 15 — 120 89 0 7 — 120 117
Persistence 0 0 0 — 0 0 0 0 — 0
Average 0 0 31 120 — 0 0 3 120 —
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t(x)dx~Q: ð25Þ

Note that Q is the intended value of the probability, i.e. 0.975, 0.875,
0.75, 0.65, 0.6, 0.55, and 0.525, respectively, in this situation. We
obtained the proportion of PSA values that are less than the
intended probability for each Q, and counted the PSA data points
that are next to the final data points in the learning period; namely, if
we are using three data points for learning, we count the fourth data
point. In this paper, we focus on the predictability of the next point.
The results are summarized in Table 2. Note that TEA can predict not

only the next data point, but also those far in the future. We predicted
the future PSA values for 88, 86, 80, and 69 patients when we used the
first three, four, five and six time points, respectively. We also
conducted numerical simulations using CZ and the standard
expert advice. The predicted distributions were different for each
method, as shown in Fig. 5. In numerical simulations, we set e 5
1. We arrange the learning rate as four constant values

g~
1
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8

1{l2

1{l2v ln M

s
with v 5 1, 2, 3, and 4. In addition, we

increase v as the number of the learning points increases. We note
that M 5 72 is the number of experts. We also arrange the learning

Figure 3 | Online time-series prediction of membrane potential of squid giant axon. The decay parameter was fixed at r 5 0.9. (a, b, c) The observed

time-series is represented by black lines. The number of experts is 160. The predicted time-series represented by a red dashed line in (a), a blue dashed

line in (b), and a green dashed line in (c) are obtained by our method, CZ, and the standard expert advice, respectively. (d) The number of times our

method outperforms CZ (blue *), the standard expert advice (green 3), and the average prediction (purple %) (out of 120) are shown. When the

number of wins for a method is greater than 71 (the dashed-dotted horizontal line), it is significantly better than the other method in terms of the

binominal test. When it is smaller than 49 (the double-dotted line), the opposite is true. (e) The number of times the CZ method outperforms our method

(red 1), the standard expert advice (green 3), and the average prediction (purple %). (f) The number of times the standard expert advice outperforms

our method (red 1), CZ (blue *), and the average prediction (purple %).
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rate as g~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8

ln M
v

r
for the standard expert advice and

g~2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{r

1{rv
ln M

r
for the CZ method.

TEA exhibits the best performance among the three methods,
because each proportion tends to be closest to the specified value
of Q. These results imply that our proposed prediction method may
be reasonable for real applications in a clinical setting. We also
checked the prediction performance in terms of the median using
the mean absolute error (MAE) as summarized in Supplementary
Table S1. As a result, TEA shows the best performance in the mean-
ing of the average MAE among the four cases. We note that the CZ
method showed good performance in terms of the root mean square
error (RMSE), however, we believe that the MAE suits our situation
because we employed the absolute error function for the learning
period.

Discussion
In general, clinicians provide a salvage treatment with patients who
had recurrence after surgery. Although many studies show the clin-
ical benefit of a salvage treatment for patients with prostate cancer,
current studies have reported that an earlier salvage treatment, espe-
cially for local recurrence, could improve clinical outcomes32. These
results suggest that post-operative patients with lower PSA values
may have a higher frequency of local recurrence that could be effi-
ciently treated by radiotherapy. If clinicians can accurately assess the

PSA failure at an earlier stage than the present standard criterion of
PSA failure which is that the PSA value increases to 0.2 (ng/ml) or
more after surgery, salvage treatments could be more effectively
scheduled for each patient, improving the final clinical outcome33.
However, there is still no standardized criterion to determine the
best timing of salvage treatments32,33. Combined with a mathematical
model8, TEA or its further extensions may be able to potentially
predict the PSA dynamics in patients before PSA failure. Therefore,
the proposed TEA could become the basis of a new standard index for
earlier prediction of PSA failure using a simple mathematical solu-
tion, that offers important information for a suitable salvage treat-
ment after surgery7,34,35.

The more experts we use, the more (numerically) accurate the
prediction tends to become (Figs. 2b, 2c, and 2e); in this sense, the
accumulation of datasets is important. Additionally, the longer the
learning period, the more accurate the TEA prediction tends to
become in the toy examples (Fig. 2g). This could be because the
toy examples have bounded unstable dynamics. The prediction error
does not monotonically decrease with an increase of the learning data
points in the example of prostate cancer (Tables 2 and S1), because
PSA tends to increase monotonously in time. TEA exhibits the best
performance in our analyses. The proposed combination of the
expert advice with a predicted distribution enhances the reliability
of prediction. This is important in many applications, and especially
in medicine.

In summary, we have demonstrated that TEA can infer the state of
a target system, by combining its short time-series and the expert

Figure 4 | Results of the distribution prediction of PSA in a patient. The black # shows the actual PSA observations. We used the (a) first three,

(b) four, (c) five, and (d) six observation points to predict the next data points for the patient with the TEA(v 5 1). The red curve shows the median

distribution prediction. Other dotted lines indicate as denoted in each figure. The same patient data are used in all the figures.
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advice constructed as a collection of longer time-series. The proposed
TEA may be applied to any problems where a short time-series and
its database are given, as demonstrated in the violin and squid giant
axon examples, although we primarily intend to apply TEA in clin-
ical settings, such as inferring the state of a disease using a short time-
series from the target patient and longer time-series from previous
patients with the same disease. We hope that TEA improves the
overall survival and/or quality of life for patients.

Methods
Standard expert advice method. The expert advice method15 is an online predictor in
machine learning. We briefly introduce the standard expert advice method in this
section. See the book of Cesa-Bianchi and Lugosi15 for a more detailed introduction.
The expert advice consists of experts and a predictor. At each time step, each expert
gives the prediction on the future. The predictor makes a prediction for the future by
weighting these pieces of advice based on the experts’ prediction history. After a new
outcome is observed, the predictor updates the experts’ weights using the losses
produced in the current step. We iterate these steps to realize online prediction. Let fi,t

be the ith expert’s advice at time t and N be the number of experts. We assign each
expert the weight wi,t at time t, and obtain the prediction by averaging the experts’
advice as

pt~

PN
i~1 wi,t{1fi,tPN

i~1 wi,t{1

, ð26Þ

wi,t~exp {gLi,tð Þ, ð27Þ

where pt is the prediction at time t, g is a constant, and Li,t is the accumulated loss for
the ith expert at time t. Better experts have smaller accumulated losses, and hence
have larger weights. The accumulated losses for the ith expert and the predictor at
time t are

Li,t~
Xt

k~1
l fi,k,ykð Þ, ð28Þ

Lt~
Xt

k~1
l pk,ykð Þ, ð29Þ

where yk is the observation at time k, and l(x, y) is a convex loss function, typically the
absolute error jx 2 yj or squared error (x 2 y)2. We evaluate the performance of the
predictor by a regret, which is defined as the predictor’s accumulated loss minus the
accumulated loss for the best expert. Mathematically, the regret Rt is defined as

Rt:Lt{ min
i~1,:::,N

Li,tƒ
ln N

g
z

e2g

8
t, ð30Þ

where e is the maximum value of jl(?,?)j. Namely, the regret is bounded above by the
right-hand side of Eq. (30) (see Ref. 15 for the derivation). We obtain the following
optimal constant g* by minimizing the upper bound over g:

g�~
1
e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 ln N=t

q
: ð31Þ

When replacing g with g*, we obtain the optimal upper bound of the regret Rt as
e
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t ln N=2

p
. We call the accumulated losses defined in Eqs. (28) and (29) the standard

accumulated losses.
Although the standard expert advice can be applied in many cases, the method is

not suited to the prediction of unstable systems, in which the recent history should be
emphasized to predict the future more accurately. Thus, we extended the standard
expert advice by placing greater weights on recent past information. We call our
extension the temporal expert advice, or TEA.

Distribution prediction. Here, we extend the TEA method for point prediction to the
prediction of distribution, so that we can handle the prediction of biomarkers. For this

purpose, we introduce the distribution prediction of the ith expert at time t p
^

i,t(x) as
follows:

p
^

i,t(x)~
1ffiffiffiffiffi
2p
p

s
exp {

x{fi,tð Þ2

2s2

� �
, ð32Þ

where s is the standard deviation. This distribution is given under the assumption
that a point prediction fi,t is disturbed by various errors and that the error is normally

Table 2 | Prediction results for real PSA datasets. The proportions of PSA data points that are followed by the TEA, CZ, and Existing
prediction are shown against Q%, points of the predicted distribution from below. A learning rate g is changed with v. An abbreviation
t.v. indicates time-varying. We consider data points that are next to the final point used for the learning period. We underline the best
method in each case.

CI Q Used points

TEA CZ Exist

t.v. v 5 1 2 3 4 t.v. 1 2 3 4 t.v. 1 2 3 4

97.5 3 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
4 100 98.8 100 100 100 100 100 100 100 100 100 100 100 100 100
5 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100
6 100 92.8 100 100 100 100 100 100 100 100 100 100 100 100 100

87.5 3 89.8 92 90.9 89.8 89.8 89.8 89.8 89.8 89.8 89.8 89.8 92 89.8 89.8 89.8
4 93 94.2 94.2 93 93 93 93 94.2 93 93 93 94.2 94.2 93 93
5 98.8 96.2 97.5 98.8 96.2 98.8 98.8 98.8 98.8 98.8 98.8 97.5 97.5 98.8 98.8
6 98.6 87 91.3 97.1 97.1 98.6 98.6 98.6 98.6 98.6 98.6 95.7 95.7 97.1 97.1

75 3 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75
4 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9 84.9
5 91.2 87.5 90 90 90 91.2 91.2 91.2 91.2 91.2 90 90 90 90 90
6 89.9 75.4 78.3 84.1 85.5 91.3 89.9 89.9 89.9 91.3 87 87 87 87 87

65 3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3 69.3
4 79.1 80.2 80.2 80.2 80.2 79.1 79.1 79.1 79.1 79.1 80.2 80.2 80.2 80.2 80.2
5 88.8 82.5 87.5 88.8 88.8 88.8 88.8 88.8 88.8 88.8 88.8 87.5 87.5 88.8 88.8
6 84.1 72.5 72.5 76.8 78.3 82.6 82.6 84.1 84.1 84.1 84.1 78.3 79.7 81.2 81.2

60 3 67 68.2 68.2 67 67 67 67 67 67 67 67 68.2 67 67 67
4 79.1 77.9 79.1 79.1 80.2 77.9 77.9 77.9 77.9 77.9 80.2 79.1 79.1 79.1 79.1
5 85 81.2 83.8 85 85 86.2 85 85 86.2 86.2 85 83.8 85 85 85
6 78.3 71 72.5 75.4 76.8 79.7 78.3 78.3 79.7 79.7 78.3 75.4 76.8 78.3 78.3

55 3 65.9 64.8 64.8 64.8 65.9 65.9 65.9 65.9 65.9 65.9 65.9 64.8 64.8 64.8 65.9
4 73.3 73.3 73.3 73.3 74.4 73.3 74.4 73.3 73.3 73.3 73.3 74.4 74.4 74.4 74.4
5 82.5 78.8 78.8 82.5 82.5 81.2 82.5 82.5 82.5 82.5 82.5 81.2 81.2 82.5 82.5
6 75.4 71 72.5 72.5 73.9 76.8 72.5 73.9 73.9 75.4 75.4 75.4 73.9 73.9 73.9

52.5 3 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8 64.8
4 70.9 73.3 72.1 70.9 69.8 70.9 70.9 70.9 70.9 70.9 72.1 74.4 73.3 72.1 72.1
5 80 76.2 77.5 80 80 78.8 80 80 80 78.8 80 78.8 80 80 80
6 72.5 69.6 69.6 71 72.5 75.4 71 72.5 72.5 73.9 72.5 73.9 72.5 72.5 73.9
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distributed around the point prediction. Then, the predictor for the distribution
prediction is given by

p̂t(x)~

PN
i~1 wi,t{1p

^

i,t(x)PN
i~1 wi,t{1

: ð33Þ

We determine the optimal decay rate l by minimizing the absolute error between
the final learning point and the corresponding observation point. The standard
deviation s is set to be the absolute difference between the point prediction f̂ t

and the observation yt at the final learning point under the estimated l above
as s~ jyt{f̂tj, where t is the number of the learning points. We note that we
determined these parameters with a modified way in the prediction of PSA because
of its instability.
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