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Introduction
Variation in gene expression transforms cellular programming 
from normal to diseased state. The multiple genetic circuits 
within a cell create a characteristic signature profile of gene 
expression endorsing each cell a unique identity. These gene 
expression-based signatures have been successfully imple-
mented in classifying breast cancer into different subtypes.1,2 
Similarly, approaches based on genome-wide DNA methyla-
tion profiling identified breast cancer-specific methylation 
signatures that correlate with specific clinical outcomes.3 In 
addition to diagnostic potential, aberrations in DNA methyla-
tion profile regulate gene expression, dictating tumor recurrence 
and overall survival (OS) in breast cancer and their subtypes.4–9 
The prognostic potential of genes, mainly FLRT2 and SFRP1, 

has been identified to be regulated by DNA methylation, and 
these genes are enriched in ER1/luminal B of breast cancer. 
However, the expression of specific genes related to immune 
function, such as CD3D, CD79B, CD6, HCLS1, HLA-A, 
and lAX1, have been identified to be consistently associated 
with recurrence-free survival and OS in subtypes of breast 
cancer.10,11 Furthermore, the combination of methylated genes 
such as GSTP1, FOXC1, and ABCB1 have been correlated 
with respect to the survival of patients.12 The deregulation of 
DNA methylation has been significantly correlated with the 
expression of BCAP31 and OGG1 genes and has shown sig-
nificant association to survival in a large cohort of breast cancer 
patients.13 Besides, differential methylation of CpG islands 
proximal to the genes regulating cell cycle and proliferation  
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(HDAC4, KIF2C, Ki-67, and UBE2C), angiogenesis (BTG1, 
KLF5, and VEGF), and cell fate determination (LHX2, LXH2, 
OLIG2, and SPRY1) possesses significant prognostic values 
independent of the subtypes and clinical features.14

Genome-wide association studies (GWASs) have iden-
tified a large number of genomic variants associated with 
complex diseases, including breast cancer.15–17 However, most 
of the disease-associated genomic variants that have been 
reported in the literature so far are predominantly located in 
the intergenic or intronic regions of the genome.18 Further-
more, numerous studies have noted that GWAS haplotypes 
are enriched in regulatory elements that are concordant with 
the disease phenotypes.19 Therefore, it is highly likely that 
most of the disease-causing genomic variations act by altering 
gene regulation, such as transcription factor binding and DNA 
methylation, rather than directly affecting protein function.

Despite the advances in sequencing and availability of 
multi-omics data sets,20,21 finding causative and prognostic 
genetic variants for complex diseases, such as breast cancer, 
remains challenging. Thus, a robust method of associating 
genomic variants, such as SNPs, in regulatory regions, such 
as CpG islands, with corresponding DNA methylation altera-
tions is required.22 The influence of these genetic variants on 
DNA methylation level was referred to as cis-methylation 
quantitative trait loci (cis-meQTLs).23,24 Here, we report 
the joint effect of meQTLs on clinicopathological variables 
for the identification of prognostic biomarkers, their clinical 
validity, and the extent to which they capture the pathologi-
cal difference between breast cancer prognostic groups using 
these external independent studies.

Materials and Methods
data set retrieval from tcGA repository. Genotype 

and epitype data for breast invasive carcinoma (BRCA) were 
obtained from the Cancer Genome Atlas (TCGA) consortium. 
In total, 746 DNA methylation, 1076 SNP array, and 1035 
clinical sample details for tumors were obtained from TCGA. 
Besides, RNAseq data set for 1056 tumors and 112 matched 
normal samples were also retrieved to study the effect of meth-
ylation and genotype on fold change (FC) in gene expression.

Illumina 450 k dnA methylation data. Level 3 data set 
pertaining to 746 tumor samples, such that 740 were obtained 
from the primary tumor, while the remaining six samples 
pertaining to metastatic class were filtered out. Each of these 
normalized data sheets incorporated the details for genomic 
coordinates and beta values for each CpG site, while the asso-
ciated gene information was optional. Sixty-five non-random 
SNPs were excluded, and 485,512 CpG sites were processed 
for further studies. These methylation files were processed to 
interrogate the SNPs associated with each CpG locus. The 
entire set of SNPs information were based on the Affymetrix 
Genome-Wide Human SNP Array 6.0 genotypic platform.

Affymetrix snP array data set preparation. Level 1 SNP 
array data were normalized, and the genotype call for each 

sample was based on the “Corrected Robust Linear Model with 
Maximum Likelihood Distance” algorithm.25 The algorithm 
estimates the genotype using linear mixture model, and for each 
SNP–genotype combination, the uncertainty parameter was 
corrected using HapMap samples. In order to process the large 
data set, the crlmm package was substantiated with ff package 
to reduce memory footprint (http://cran.at.r-project.org/web/
packages/ff/index.html). The algorithm was implemented to 
decode the genotype calls for SNPs as 1 (AA/Reference allele), 
2 (AB/Heterozygous allele), and 3 (BB/Alternate allele). The 
genotype calls at the threshold of 0.05 were filtered, while those 
having more than 25% low-confidence calls were excluded. Data 
normalization and filtration resulted in 905,422 variants.

rnAseq data set preparation. Level 3 RNAseq data 
set for gene expression was processed, and quality control was 
brought about by Broad Institute TCGA workgroup (http://
gdac.broadinstitute.org/). The reference gene transcript set 
was based on HG19 UCSC track (http://hgdownload.cse.
ucsc.edu/downloads.html). Furthermore, MapSplice was used 
to carry out the alignment, and the quantification was done 
using RNA-Seq by Expectation-Maximization (RSEM).26,27 
Finally, the upper quantile normalized RSEM count esti-
mates were downloaded.

Procedure for the identification of cpG–snP pair 
associated with the prognosis in breast cancer. Figure 1 
outlines the procedure for the identification of regulatory 
CpG–SNP pair involved in the risk associated with the sur-
vival of breast cancer patients. The details are described in the 
following steps.

step 1: About 660 tumor samples overlapping with DNA 
methylation, SNPs, and clinical data set were randomly split 
into training and test models in order to study the synergis-
tic effect of methylation and associated SNPs on survival of 
breast cancer patients (Fig. 2A). The caret package of R (http://
caret.r-forge.r-project.org/) was implemented to group 3/4 of 
samples (486) into training and 1/4 (164) as testing based on 
the vital status (dead or alive) of the patients outlined in the 
clinical data set (Fig. 2B).

step 2: The training model was built across 486 samples for 
each of the 7970 CpG–SNP pairs located at 50 nt upstream of 
downstream of CpG sites. The significant association between 
the beta value with respect to each CpG site and the variable 
genotype associated with each SNP was computed based on the 
non-parametric one-way analysis of variance (ANOVA). Here, 
the β-values were modeled as a linear function with respect to 
alleles (AA, AB, and BB). The complete analysis was carried 
out at R-interface at a threshold P-value of 0.05. Each of the 
SNPs having a significant association between DNA methyla-
tion was labeled as meQTL. The differential methylation of 
CpG site was a consequence of these meQTLs. The finding of 
these meQTLs in the training model was validated in the test 
model to reduce false-positive rates.

step 3: Each of the differentially methylated CpG sites 
from step 2 was further analyzed to speculate their effect on 
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The Cancer Genome Atlas (TCGA)
database

Breast Invasive Carcinoma (BRCA) 
samples 

Clinical dataset
(1035 samples)

Level-3 Illumina 450 DNA
methylation (746 samples)

Level-1 Affymetrix SNP array
(1076 samples)

Common samples (660)
randomly divided into 3/4th
as training and 1/4th as test

dataset using “R-Caret”
module

Significant association b/w
CpG site and fold change
gene expression (RNAseq
dataset) identified using

Spearmen correlation test

Variable genotype for
each SNP were

associated with mean
fold change in gene

expression to identify
eOTLs

Training model analysed for
significant association b/w

CpG-SNP pair (50 bps
upstream and downstream)
using ANOVA and validated

over test model

Significant CpG-SNP
(meQTLs) pairs in test model
evaluated for overall survival

using univariate and
multivariate Cox regression

model

Each SNP in CpG-SNP pair
evaluated for their association

with overall survival using
log-rank test and multivariate

Cox regression model

Data normalization using oligo•
package of “R” (“CRLMM” and “ff

package)
”

figure 1. Detailed outline for identifying a significant effect of CpG–SNP pairs on the overall survival. It also includes in finding the candidate risk 
SNPs in the breast cancer prognosis. The individual CpG sites and SNPs have also been correlated with the gene expression. This process utilizes DNA 
methylation, SNP array, RNAseq, and clinical data.

gene expression. Spearman’s correlation test could establish the 
effect of methylation on log2-tranformed FC in gene expres-
sion, such that FC = log2 (T/N), where T is the estimated 
expression value of a tumor sample and N is the median expres-
sion of normal samples.

step 4: For each of the CpG–SNP pairs from step 2, 
SNPs were evaluated to visualize their significant effect 
on gene expression. We extracted the variable genotype 

(AA, AB, BB) associated with each SNP and log2-tranformed 
FC in gene expression. One-way ANOVA was applied to 
assess the statistical significance between each SNP genotype 
and its neighboring gene expression.28 Moreover, the mean 
FC in gene expression was calculated with respect to the gen-
otype associated with each SNP. This association between the 
differential gene expressions with respect to allele was labeled 
as expression quantitative trait loci (eQTLs).
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step 5: Each of the significant CpGs from CpG–SNP 
pairs obtained from step 2 was further evaluated for their asso-
ciation with the risk to the OS of the breast cancer patients. 
The complete analysis was based on the univariate and mul-
tivariate Cox proportional hazard (PH) models.29–31 The sur-
vival analysis was based on the clinical details in the form of 
vital status (patient alive or dead) and the date for the last 
follow-up and days to death. Besides, the SNPs from the over-
lapSelect were exclusively evaluated for their effect on OS. The 
training model was built for each of the SNPs across 486 
patients. The findings in the training model were validated in 
the test model. Complete analysis was carried out based on the 
log-rank test. All the significant SNPs identified in the test 
model were subjected to multivariate Cox regression analysis 
to visualize their cumulative effect on OS.

results
Identification of methylated probes or loci differing in 

genotypes. In this analysis, we mainly elaborate the pattern 
of polymorphic allele distribution (AA, AB, and BB) and their 
influence on DNA methylation exclusively in breast cancer 
patients. Considering the close proximity between the genetic 
variability and DNA methylation, the comprehensive analysis 
of the overlapping layers expands our knowledge in under-
standing the association of genetic variability with disease eti-
ology. Realizing the fact that a large portion of cancer-related 
SNPs are positioned in the non-coding region holds substantial 
functional impact, the coaxial analysis of genotype–epitype 
interactions will facilitate identification of novel prognostic 
markers. The training data set comprising 484 samples were 
interrogated to locate CpG–SNP pairs at an interval of 50 bp 
upstream and downstream of a given CpG site. For each of 
the benchmark data set, its training and test data sets were 
used as exclusive subsets. The predictive model was built in 
training data set and validated over the test data set bearing 
164 samples. Based on the analysis carried out by overlapSe-
lect tool, a total of 7970 CpG–SNP pairs were identified at 

a base interval of 50 bp. Of the total 7970 CpG–SNP pairs, 
there were 1820 CpG loci being influenced by the individual 
genotype resulting in differential methylation patterns in the 
predictive training model. These loci across the same chromo-
some are called cis-meQTLs and can influence the methy-
lation pattern across the extended genomic regions. In the 
cis-meQTL analysis of 1820 CpG–SNP pairs, 489 polymor-
phic alleles were identified to be significantly associated with 
differential methylation in the test data set (P , 0.05). How-
ever, only 392 and 243 SNPs were detected to have remarkable 
effect on methylation at a stringency of 0.01 and 0.001, respec-
tively. The majority of these cis-meQTLs were mapped to the 
intronic regions (50%–60%) though a limited number were 
associated with synonymous (1.2%–1.7%) or non-synonymous 
coding SNPs (3%–4%). Some of these SNPs being associated 
with one or more CpG loci suggest that they not only influ-
ence the methylation status to the associated CpG loci but 
also affect the surroundings at very close proximity. Genome-
wide localization of cis-meQTLs identified in the test model 
(P , 0.05) and their loci on the respective chromosome have 
been depicted in Manhattan plot (Fig. 3). From Figure 3, it is 
evident that the meQTL density is high on chromosome 2.

In particular, the association of breast risk alleles, 
rs1570056 and rs11154883, with DNA methylation levels 
(cg18287222) and MAP3K5 gene (P , 0.001) is an interesting 
case, because the gene encodes for mitogen-activated protein 
kinase (MAPK) protein that activates signaling cascade. The 
downstream protein kinases that are activated include MAPK 
or extracellular signal-regulated kinase (ERK), MAPK kinase 
(MKK or MEK), and MAPK kinase kinase (MAPKKK). 
These kinases are highly conserved, and the homologs exist 
in yeast, Drosophila, and mammalian cells.32 While the dif-
ferential distribution of major allele (T) and minor allele (C) 
(SNP: rs1570056) regulates the DNA methylation of the CpG 
site cg18287222 (Fig. 4A), the mutation in the allele G → A 
associated with SNP rs1154883 simultaneously regulates the 
same CpG loci. These alleles influenced DNA methylation 

Clinical
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Methylation
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1076

660

samples

486

Vital status
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figure 2. (A) Venn diagram details about the DNA methylation, SNP array, and clinical samples across the tumor patients. (B) The tumor sample 
overlapping across the three data sets is grouped into the 75% training set and 25% test set based on the vital status.
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at significant P-values of 5.8 × 10−5 (,0.001) and 0.0002, 
respectively (Fig. 4A and B). Thus, it presents an interesting 
fact that the alleles of the respective SNP act in a differential 
manner in regulating DNA methylation. Finally, we examined 
the overlap in regulatory variation affecting both methylation 
and gene expression based on RNAseq data. The differentially 
methylated CpG site was negatively associated (r = −0.53) 
with MAP3K5 gene expression at a P-value of ,0.01 (Fig. 5). 
We also tested the association of these SNPs with the expres-
sion level of the gene. The variable allele associated with each 
SNP regulated the quantitative expression of MAP3K5 gene 
at P-values of 0.028 and 0.012 with respect to rs1570056 and 
rs11154883 SNPs, respectively (Fig. 6A and B). The polymor-
phism associated with differential messenger RNA (mRNA) 
expression level is referred to as eQTL. In summary, our result 
clearly demonstrates the meQTLs and eQTLs.

Prognostic potential of differentially methylated 
cpGs on survival of breast cancer patients. Breast cancer 
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figure 5. Spearman’s correlation with respect to FC in gene expression 
and DNA methylation in breast cancer. (a) DNA methylation residuals 
at probe cg18287222 is negatively associated (r = −0.53) with MAP3K5 
expression in breast cancer patients at a P-value of ,0.01. the 
regression line (red line) depicts the linear association between DNA 
methylation residuals and gene expression residuals.
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figure 4. Breast cancer SNPs rs1570056 and rs11154883 are associated with differential CpG methylation. Cis-association between the SNPs 
(A) rs1570056 and (B) rs11154883 regulates the methylation of CpG probe cg18287222. These SNPs are at loci within an intron variant of MAP3K5 gene. 
The box plot shows the distribution of the methylation levels in each genotype category with error bars representing the 25% and 75% quantiles.
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figure 3. Dots within the Manhattan plot display the identification of significant SNPs in the vicinity of CpG site leading to the meQTLs in the test model; 
the x-axis represents genomic position of SNPs, while the y-axis represents the −log P-value of the association between the SNPs and CpG sites. The 
red and blue lines indicate the threshold −log10(1 × 10−4) and −log10(0.05), respectively, for genome-wide statistical significance.
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has displayed an increasing incidence, and more importantly, 
the steady mortality rate in a past decade. While the clinical 
screening has attributed to the enhanced survival of breast 
cancer patients, still improvised markers are required to assess 
accurately patient prognosis at the time of diagnosis. The 
disease heterogeneity and limited specificity and the clinic-
opathological variables are used in prognostication and stag-
ing of breast cancer. Thus, the development of complementary 
biomarkers with more specific prognostic potential will allow 
to assess the risk of developing recurrent and/or metastatic 
disease. We report for the first time the association between 
the differentially methylated CpG site and OS of breast cancer 
patients. Univariate and multivariate Cox PH regression 
analyses have been implemented to establish the prognostic 
potential of differentially methylated CpGs. Of the total 7970 
overlap CpG–SNP pairs, 489 CpGs were identified to be sig-
nificantly associated with the survival of breast cancer patients 
in the training model. The prognostic potential of these CpGs 
was validated in the test model of 164 patients.

To test the association of risk in 164 breast cancer 
patients for OS, we first began our analysis using univari-
ate Cox PH model. On evaluating 489 CpGs based on the 
clinicopathological variables of vital status and last follow-
up days, 18 covariates were found to be significantly asso-
ciated with OS of breast cancer patients in the test model. 
The most significant association with OS was observed for 
cg04003327: rs1054641 on chromosome 2q37.3 (hazard ratio 
[HR] = 0.01, additive P = 0.003), cg14033170: rs177595 on 
chromosome 7p15.1 near CREB5 gene (HR = 158.94, addi-
tive P = 0.004), and cg00902464: rs17403618 on chromosome 
1p21.2 (HR = 0.02, additive P = 0.016) (Table 1). The risk 
allele associated with CpG sites cg11340537, cg00956490, 
cg04586622, and cg14033170 has already been identified in 
GWAS phenotypes. The genotypic variation associated with 
SNP rs2640785 regulates differential methylation of the CpG 
site cg11340537 located in the exonic region of the EXPH5 
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figure 6. FCs in gene expression with respect to variable genotype was identified to be significant at P-values of 0.028 and 0.012 with respect to SNPs 
rs1570056 and rs11154883, respectively. (A) FC in gene expression is evaluated in the presence of SNP rs1570056. Homozygous dominant allele “TT” 
causes comparatively more downregulation in gene expression in comparison to heterozygous (TC) and homozygous recessive (CC) allele. (B) FC in 
gene expression is evaluated in the presence of SNP rs11154883. Homozygous recessive allele AA causes results in more downregulation in comparison 
to heterozygous (GA) and homozygous dominant (GG) alleles.

gene. The missense variation (GAG → GTG) associated with 
this risk allele is of greater significance as it is conjointly asso-
ciated with differential methylation, gene expression, and sur-
vival of breast cancer patients. A similar explanation can be 
associated with synonymous risk variant rs940453 (ATA → 
ATC) that regulates methylation of the CpG site cg00956490 
and simultaneously influences ZNF775 gene expression and 
OS. However, the risk allele rs2384061 is an intron variant 
that is associated with the CpG site cg0458662 and regulates 
the expression of ADCY3 gene. The SNP rs2230576 mapped 
to the 3′-untranslated region (3′-UTR) variant is correlated 
with differential methylation of the CpG site cg05370838 and 
gene expression of ADMA8 gene. The differentially methy-
lated CpG site holds significance in regulating the OS of 
breast cancer patients (HR = 0.008, additive P = 0.049).

The univariate analysis was followed by the multivariate 
regression model to assess the risk associated with 18 covariables 
validated in the test model obtained from the univariate study. 
This multivariate Cox PH analysis leads to the identification 
of eight CpGs having a significant association with OS of the 
breast cancer patients (Table 2). Among these, the most sub-
stantial findings were observed for cg04003327 (HR = 0.016; 
95% confidence interval [95% CI] = 0.0003–0.86; P = 0.04), 
cg11340537 (HR = 0.28; 95% CI = 0.005–14.49; P = 0.05), 
and cg00956490 (HR = 0.0005; 95% CI = 1.36 × 10−7−2.44; 
P = 0.08). These eight covariates showed the clear demar-
cation of the patients into high- (84 patients) and low-risk 
(84 patients) groups, respectively, at a significant P-value of 
0.04 (Fig. 7).

Besides, the exclusive effect of SNPs was also evaluated 
on OS of breast cancer patients. In the following section, we 
explain about the variable allele distribution and their associa-
tion with OS.

Probing the association of snPs with os of breast 
cancer patients. Genetic variation characterized by single-
nucleotide polymorphism (SNP) offers promising surrogate 
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biomarkers to predict therapeutic responses and prognosis in 
breast cancer patients. In this study, we investigated the risk 
associated with the individual SNP and in cumulative fashion 
on the OS. A probabilistic framework was developed for pre-
dicting and prioritizing the candidate SNPs in the training 
data set and validated across test set constituting 164 samples. 
The complete survival analysis was based on the homozygous 
dominant and recessive allele and heterozygous allele distri-
bution available for each SNP.

The univariate survival analysis associated with the indi-
vidual SNP was based on the log-rank test at a threshold 
P-value of 0.05. Of the total 7970 CpG–SNP pairs, 492 SNPs 
were significantly associated with the OS in the training set 
of breast cancer patients. Each individual SNP was validated 
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figure 7. Kaplan–Meier plot associated with CpGs to classify 164 tumor 
patients (test set) into high- (84 patients) and low-risk (84 patients) 
groups, respectively, at a threshold P-value of 0.041.

table 1. Univariate analysis to depict the associations between differentially methylated CpGs and the overall survival of the breast cancer 
patients.

CpG Id SnP Id GEnE hR 95% of CI P-VAluE

cg04003327 rs1054641 ESPNL; SCLY 0.011948 0.00076–0.18 0.0032
cg14033170 rs177595 CREB5 158.9545 3.10816–8129.1 0.0038
cg00902464 rs17403618 LOC100128787 0.023795 0.00178–0.32 0.0167
cg03383184 rs6988652 Intergenic 52.99806 1.4918–1882.7 0.0170
cg00101629 rs6660333 KIAA1026 0.050101 0.00378–0.667 0.0173
cg03521812 rs4620521 Intergenic 0.023186 0.00107–0.498 0.0177
cg17378966 rs2431663 DUSP1 13.45278 1.2033–150.39 0.0262
cg08937612 rs12409375 VSIG8 0.003215 2.63e-05–0.39 0.0270
cg26901096 rs17444979 LOC254312 13.55016 1.32054–139.1 0.0292
cg13558682 rs9424283 LRRC47 0.024577 0.001227–0.49 0.0366
cg16774160 rs3088007 HSPA12B 0.000191 2.23e-07–0.16 0.0384
cg06099459 rs10505956 C12orf77 0.002645 1.64e-05–0.426 0.0416
cg05370838 rs2230576 ADAM8 0.008903 0.000201–0.395 0.0498
cg11340537 rs2640785 EXPH5 0.031486 0.00135–0.733 0.0528
cg00956490 rs940453 ZNF775 0.001156 3.58e-06–0.373 0.0645
cg04586622 rs2384061 ADCY3 0.008966 0.000116–0.693 0.0648
cg00889709 rs16923085 FAM110B 0.061646 0.00400–0.948 0.0652
cg14798310 rs738806 SLC2A11, MIF DQ574115 0.000387 2.06e-07–0.725 0.0793

Abbreviations: CI, confidence interval for the hazard ratio; HR, hazard ratio.

table 2. Summary for univariate and multivariate analyses of the associations between the CpGs and the overall risk based on the Cox PH 
model.

SnP Id CpG Id GEnE loCuS unIVARIAtE 
hR 95% of CI p

multIVARIAtE 
hR 95% of CI p

rs1054641 cg04003327 ESPNL; SCLY 2q37.3 0.012 (0.001–0.18) 0.003 0.016 (0.0003–0.86) 0.04

rs2640785 cg11340537 EXPH5 11q22.3 0.031 (0.001–0.73) 0.05 0.28 (0.005–14.49) 0.05

rs940453 cg00956490 ZNF775 7q36.1 0.001 (3.58E-06–0.37) 0.06 0.0005 (1.36E-07–2.44) 0.08

rs2230576 cg05370838 ADAM8 10q26.3 0.0008 (0.002–0.39) 0.049 0.028 (0.0001–4.5) 0.17

rs6660333 cg00101629 KIAA1026 1p36.21 0.05 (0.003–0.66) 0.17 0.88 (0.02–37.57) 0.95

rs177595 cg14033170 CREB5 7p15.1 158.94 (3.1–8129.07) 0.003 213 (1.7–25740) 0.028

rs4620521 cg03521812 Intergenic 1q31.2 0.02 (0.001–0.49) 0.018 0.04 (0.001–1.8) 0.098

rs9424283 cg13558682 LRRC47 1p36.32 0.024 (0.001–0.49) 0.036 0.336 (0.001–101.1) 0.71

Abbreviations: CI, confidence interval for the hazard ratio; HR, hazard ratio.
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in the test model to reduce the false-positive rate. Of the 
total significant SNPs in the training set, 23 were substan-
tially associated with survival in the test model and their 
respective P-value ranged from #0.0001 to #0.05 (Table 3). 
These SNPs hold a variable distribution across the genome. 
In the midst of significant findings, seven SNPs (rs2880556, 
rs17006586, rs876701, rs41470747, rs2967798, rs11804125, 
and rs1548373) were present as an intro variant and five SNP 
loci (rs12085531, rs12653167, rs12591432, rs940482, and 
rs1532272) were in the intergenic region. Similarly, three 
SNPs (rs16943263, rs9325443, and rs1538146) were local-
ized in the upstream region, while each of the two SNPs 
(rs7117026 and rs10101376) was associated with non-coding 
transcript variant and synonymous variant (rs17142291 and 
rs140679) and remaining one SNP (rs1862372) was associated 
with 5′UTR variant. Moreover, the SNPs highlighted in the 
table are already mentioned in GWAS in relevance to cancer 
and other diseases.

The Kaplan–Meier plot for the significant SNPs hav-
ing nearly equal genotypic frequency is displayed in Figure 8. 
While the presence of heterozygous allele “GA” associated 
with SNP rs10101376 is detrimental, the homozygous domi-
nant alleles “CC” and “TT” concomitant with SNPs rs140679 

and rs1538146 affect the survival of the breast cancer patient at 
a threshold P-value cutoff of 0.05. The homozygous dominant 
allele “TT” (rs1538146) has loci along upstream of the TRPC4 
gene. The transient receptor potential cation channel (TRCP4) 
gene encodes a member of a canonical subfamily of transient 
receptor potential cation channels. This encoded protein forms a 
non-selective calcium- permeable cation channel that is activated 
by a Gq-coupled receptor and tyrosine kinase. The polymorphism 
associated with TRCP4 gene is deleterious, as it is conjointly linked 
with gene expression and regulates the OS. Similarly, the allele 
“CC” associated with SNP rs1538146 regulates the expression of 
gamma-aminobutyric acid (GABA)-A receptor gene and is dele-
terious and will affect the survival of breast cancer patients. Besides 
the log-rank test, these 23 significant SNPs were also subjected 
to univariate Cox PH regression analysis. The most significant 
association in the univariate model for survival was observed for 
rs7117026 located on chromosome 11p11.2 (HR = 0.109, addi-
tive P , 0.001) as a non-coding transcript variant of DQ582890 
gene, rs1548373 on chromosome 16q22.3 (HR = 2.35 and addi-
tive P = 0.0096) as an intron variant of ZFHX3 gene, rs140679 on 
chromosome 15q12 (HR = 0.359, additive P = 0.016) as a non-
synonymous variant of GABRG3 gene, rs876701 on chromosome 
11p11.2 (HR = 0.371, additive P = 0.038) as an intron variant 

table 3. Summary of SNPs associated with OS of breast cancer patients using log-rank test.

CpG_Id SnP_Id P-VAluE GEnE A B AA AB BB

cg11929693 rs2880556 2.29e-24 LOC340073 G t 153 9 2

cg09939673 rs7117026 2.55e-12 DQ592890 a t 1 10 153

cg00067528 rs17006586 1.47e-05 ATP6V1B1 C t 140 21 3

cg01711124 rs12085531 9.05e-05 Intergenic C t 4 24 136

cg09573435 rs1862372 0.000594 SEMA6A C t 111 43 10

cg22675791 rs876701 0.000627 DGKZ a G 6 36 122

cg20705812 rs2286218 0.001795 DLGAP2 a G 143 16 5

cg08980697 rs41470747 0.006462 RASGEF1B C a 1 12 151

cg14584565 rs16943263 0.006649 LOC283761 G C 152 8 4

cg04513214 rs12653167 0.008100 Intergenic t G 162 1 1

cg22422090 rs2967798 0.008121 KLHL3 t a 102 44 18

cg24310780 rs11804125 0.008351 LMX1A G t 122 30 12

cg03339247 rs1548373 0.013806 ZFHX3 C t 106 38 20

cg25203310 rs10101376 0.014656 LOC286083 G a 59 47 58

cg20214734 rs17142291 0.016161 ASB13 G a 4 9 151

cg15179472 rs12591432 0.018465 Intergenic C t 123 33 8

cg15461663 rs940482 0.029081 Intergenic C t 99 53 12

cg22514112 rs1532272 0.031189 Intergenic a G 94 52 18

cg04966682 rs140679 0.033337 GABRG3 C t 57 67 40

cg02576753 rs140679 0.033336 GABRG3 C t 57 67 40

cg20896197 rs9325443 0.037904 KIF20B a C 91 59 14

cg24540569 rs574095 0.041499 Intergenic a G 3 26 135

cg15398976 rs1538146 0.049488 TRPC4 G t 65 54 45

Abbreviations: AA, reference allele; AB, heterozygous allele; BB, alternate allele.
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figure 8. Kaplan–Meier survival plot for SNPs: (A) rs10101376, (B) rs140679, and (C) rs1538146. The survival analysis has been done with respect to 
reference (solid black line), heterozygous (red dotted line), and alternate alleles (solid green line) at a threshold P-value of ,0.05.

of DGKZ gene, and rs41470747 on chromosome 4q21.21 
(HR = 0.357, additive P = 0.039) as an intron variant of RAS-
GEF1B gene. Additionally, borderline- associated risk variants 
included rs574095, rs12653167, rs2286218, and rs1538145 

at an additive threshold of P = 0.1. Besides, SNP rs16943263  
associated with CpG locus cg14584565 (HR = 2.44 and P = 0.17) 
is also identified in classifying the patients in high- and low-risk 
groups (Table 4).

table 4. Summary of univariate and multivariate analyses of SNP associations with overall risk based on the Cox PH model.

SnP Id CpG Id GEnE loCuS unIVARIAtE 
hR 95% of CI p

multIVARIAtE 
hR 95% of CI p

rs1862372 cg09573435 SEMA6A 5q23.1 1.66 (0.66–4.15) 0.28 1.15 (0.2–6.3) 0.87

rs2880556 cg11929693 LOC340073 5q31.3 2.23 (0.5–9.8) 0.29 59.7 (2.52–14.12) 0.011

rs1548373 cg03339247 ZFHX3 16q22.3 2.35 (1.23–4.17) 0.0096 5.99 (1.84–19.49) 0.0029

rs12591432 cg15179472 Intergenic 15q23 1.32 (0.48–3.6) 0.59 4.50 (0.67–30.21) 0.12

rs12653167 cg04513214 Intergenic 5p15.1 2.96 (0.95–9.24) 0.062 4.85 (0.45–52.28) 0.19

rs16943263 cg14584565 LOC283761 15q26.1 2.44 (0.68–8.6) 0.17 0.06 (0.0007–6.6) 0.25

rs12085531 cg01711124 Intergenic 1p36.12 0.52 (0.20–1.3) 0.17 1.4 (0.44–4.87) 0.53

rs1538145 cg15398976 TRPC4 13q13.3 0.558 (0.29–1.07) 0.081 0.58 (0.21–1.54) 0.28

rs41470747 cg08980697 RASGEF1B 4q21.21 0.35 (0.13–0.94) 0.039 0.38 (0.047–3.07) 0.37

rs140679 cg04966682 GABRG3 15q12 0.359 (0.15–0.82) 0.016 0.11 (0.018–0.7) 0.019

rs17142291 cg20214734 ASB13 10p15.1 0.56 (0.15–2.0) 0.38 11.80 (0.47–291.84) 0.13

rs11804125 cg24310780 LMX1A 1q23.3 1.12 (0.56–2.2) 0.75 1.38 (0.34–5.47) 0.64

rs7117026 cg09939673 DQ5982890 11p11.2 0.109 (0.03–0.3) 3.00 × 10−4 0.00198 (0.00003–0.12) 0.0034

rs876701 cg22675791 DGKZ 11p11.2 0.371 (0.14–0.94) 0.038 0.29 (0.07–1.27) 0.1

rs574095 cg24540569 Intergenic 1p31.3 0.445 (0.19–1.0) 0.058 0.25 (0.036–1.70) 0.16

rs2286218 cg20705812 DLGAP2 8p23.3 2.76 (0.88–8.5) 0.08 0.97 (0.05–19.20) 0.99

Abbreviations: CI, confidence interval for the hazard ratio; HR, hazard ratio.
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Finally, conjoint analysis of 23 SNPs was carried out to 
assess the cumulative effect of the genetic variant on OS. We 
performed multivariate Cox regression analysis between the 
SNPs and clinical variance. Of the total 23 variables from log-
rank test, 16 SNPs in the test model could classify the patients 
into high- and low-risk groups, respectively, at a threshold 
P-value of 0.05 (Fig. 9A). However, top nine SNPs presented 
a clear demarcation for 164 patients at a P-value of 0.005 
(Fig. 9B). The delineation was such that 84 patients (test 
sample) survived for a longer duration, while the remaining 
were prone to poor prognosis, and their survival probability 
was identified to be 81/2 years. Most of these genetic variants 
are germline and have shown significant association with OS. 
Thus, the Cox proportional model conjointly with clinical 
features suggests the association between the genetic variants 
and the risk to the survival of breast cancer patients, which 
may also modulate the cancer prognosis.

discussion and conclusions
Molecular understanding of intertumor heterogeneity is key to 
effective cancer treatment and personalized medicine. Analy-
sis of high-throughput molecular profiling data has revealed 
the extent of intertumor heterogeneity in breast cancer. The 
identification of different levels (subtypes) of tumor hetero-
geneity and the most appropriate treatment strategies for each 
subtype is expected to radically improve the treatment prac-
tices for the optimal clinical management of breast cancers.33

GWASs have led to the identification of a large number of 
genetic variants that confer susceptibility to different types of 
cancers. However, the risk conferred by an individual variant is 
not sufficient to uphold the individual risk prediction. Assess-
ing the genetic variability by incorporating multiple SNPs into 
a predictive model could achieve improved risk discrimination 
that may be useful for prognostic stratification of breast can-
cer patients.34,35 It is often a challenge to assess the functional 
impact of non-coding genetic variants, for example, the effect of 
SNPs transcriptional activity and the associated disease risk.

Questions still remain for the prognostic biomarkers 
identified for cancer using data-mining approaches. The first 
question is that there is little overlap among numerous prog-
nostic signatures generated from different studies. Another 
question is that most signatures generated do not have clear 
biological meanings as why these prognostic genes may affect 
patient outcome, which leads to the clinical application of 
such signatures still under debate. In this study, we devel-
oped a novel method to identify prognostic gene signatures 
for breast cancer by integrating genomic and epigenomic data. 
This is based on the hypothesis that multiple sources of evi-
dence pointing to the same gene or pathway are likely to lead 
to reduced false positives. We also apply random resampling 
to reduce overfitting noise by dividing samples into training 
and testing data sets. In this analysis, TCGA BRCA over-
lapping data set between DNA methylation, Affymetrix SNP 
array, and clinical samples were randomly divided into two 
subsets based on the vital status obtained from clinical data. 
The predictive model was trained based on certain features, 
mainly the beta values and genotypes associated with methy-
lation and SNP, respectively. The robustness of the features 
were evaluated statistically in the training subset and validated 
in an exclusive and independent test subset. The significant 
association between methylation and genotype was calculated 
based on one-way ANOVA at a threshold P-value of 0.05. 
Each SNP encoded for variable homozygous and heterozy-
gous genotypic (allele) frequency across the breast cancer 
samples. Localization of each SNP was interrogated at 50 bp 
upstream and downstream of each CpG site. Thus, for a win-
dow size of 50 bp, we investigated CpG–SNP pairs to enlist 
their statistical significance such that a minimum of one SNP 
is associated with one CpG locus. This evidence of correlation 
between genetic variants at specific loci and DNA methylation 
led to the identification of meQTLs. Of the total distribution 
of 7970 CpG–SNP pairs in the window size of 50 bp, 1874 
SNPs were significantly associated with differential methy-
lation in the predictive training model. Out of these 1874 
CpG–SNP pairs, 489 SNPs were significantly correlated with 
differential methylation in the test model. These CpG–SNP 
pairs enlighten the plausible mechanism through which SNPs 
have influence on the phenotype. In one of the scenarios, pres-
ence of an SNP in the vicinity of CpG loci prevents the bind-
ing of CpG methyl-binding proteins, which as a consequence 
affects DNA methylation.36 In another scenario, these SNPs 
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figure 9. Kaplan–Meier curve associated with (A) top 16 SNPs and 
(B) top 9 SNPs (listed Table 3) in classifying 164 tumor patients (test set) 
into high- (84 patients) and low-risk (84 patients) groups at a threshold 
of P , 0.05.
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may affect the transcriptional silencing via differential DNA 
methylation. Indeed, it has also been reported that DNA 
methylation plays a significant role in the regulation of splic-
ing and aids in distinguishing exons from introns.37,38 Thus, 
genetic variants characterized by the presence of SNPs in 
the intronic region causes differential methylation leading to 
a different set of spliceosomes.39 Interestingly, in our recent 
analysis, we have identified MAP3K5 variants that constitute 
two variable SNPs (rs1570056 and rs11154883) located in the 
intronic region and affect gene function through gene silenc-
ing. These variants act in contrary such that the differential 
distribution of major allele (T) and minor allele (C) with 
respect to SNP rs1570056 and A and G alleles associated with 
SNP rs11154883 causes differential methylation pattern. This 
differential distribution landmarks the presence of a specific 
meQTL. Besides overlap with meQTL, these SNPs lead to 
eQTLs in the cis-regulatory region. Thus, the meQTLs have 
been identified to be enriched in eQTLs. Moreover, MAP3K5 
(MAPK) is an essential component of MAPK signal trans-
duction pathway and plays a crucial role in the apoptosis.40,41 
Characterizing the genetic control of methylation and its 
association with the regulation of MAP3K5 gene expression 
presents signature marks that can resolve in understanding the 
underlying biology behind the complex phenotype in breast 
cancer. We have also reported for the first time the association 
between CpGs and the risk in the survival of breast cancer 
patients. The high mortality rate associated with metastasis 
in breast cancer urge for the development of more personal-
ized prognostic algorithms that will complement the general, 
clinical predictors. We have systematically investigated the 
risk associated with host-related BRCA traits that may serve 
as a biomarker for disease prognosis. In this study, we have 
implemented model selection framework composed of linear 
statistical techniques of univariate analysis based on log-rank 
test and multivariate Cox regression model. We examined a 
comprehensive panel of 489 differentially methylated CpGs 
obtained from the previous analysis in association with clini-
copathological characteristics to assess the OS. Based on the 
univariate regression analysis, 18 CpGs were identified as 
the landmark risk loci for OS in the test model. However, the 
conjoint multivariate regression analysis of these differentially 
methylated CpGs led to the identification of eight CpG sites as 
promising candidates having significant prognostic potential. 
These noteworthy biomarkers clearly demarcated 164 breast 
cancer patients of the test sample into high- and low-risk 
groups. The most interesting fact is that the SNPs (rs2640785, 
rs940753, and rs2230576) associated with respective differen-
tially methylated CpG sites (cg11340537, cg00956490, and 
cg04586622) have been already reported in GWAS pheno-
types. We explored the potential mechanism by which dif-
ferentially methylated CpG site cg11340537 directs OS in 
breast cancer patients. The missense variant (GAG → GTG) 
associated with SNP rs2640785 dictates differential methyla-
tion of the CpG site cg11340537 and mRNA expression of 

EXPH5 (Exophilin 5) gene. EXPH5 gene shares homology 
with Rab-GTPase and play a significant role in vesicle 
trafficking.42,43 The active participation of this gene has been 
reported in colorectal cancer.44 The differential methylation 
associated with the CpG site cg14033170 also holds greater 
significance. SNP rs177595, an intron variant located in the 
vicinity of the CpG site cg14033170, dictates the differen-
tial methylation and subsequently deregulates CREB5 gene 
expression. CREB5 gene encodes for cAMP responsive ele-
ment-binding protein 5. Previous studies have suggested that 
CREB5 gene plays a fundamental role in a metastatic signal 
network in colorectal cancer.45 Moreover, it has been reported 
that eQTL associated with CREB5 gene causes colorec-
tal, prostate, and nasopharyngeal cancers.46–48 On a similar 
account, meQTL associated with the CpG site cg00956490 
holds prognostic significance. The risk variant rs940453 linked 
to CpG loci regulates the mRNA expression of ZNF775 gene. 
The gene encodes for zinc finger protein 775.49 It has been 
identified to be involved in transcriptional regulation. SNP 
rs2230576 is a 3′-UTR variant that has been mapped to the 
vicinity of differentially methylated CpG site cg05370838 
and ADAM metallopeptidase domain 8 (ADAM8) gene. The 
differentially methylated CpG site is associated with high 
risk in breast cancer patients. ADMA8 gene localized in the 
vicinity of the CpG site encodes for membrane-anchored pro-
tein that has been implicated in several biological processes 
including cell–cell interactions, cell–matrix interactions, and 
neurogenesis.50 It has been reported that ADMA8 is aber-
rantly expressed in breast tumors, specific in triple-negative 
breast cancers (TNBCs). The aberrant expression of ADAM8 
gene has been correlated with poor prognosis in breast cancer 
patients and concomitantly with increased number of circulat-
ing tumor cells and metastasis.51 The anomalous expression of 
the ADAM8 gene is also associated with poor survival in col-
orectal, lung, gastric, and pancreatic cancers, hepatocellular 
and gastrointestinal carcinomas, and gliomas.52–55

Studies done so far correlate with the conjoint effect 
of significant CpG–SNP pair in regulating the differential 
methylation and OS of breast cancer patients. Recent studies 
have illustrated the upshot of genetic variants in regulating the 
overall risk associated with breast cancer patients. However, 
the cumulative effect is still to be disclosed. In the next section, 
we detailed about the prognostic potential of individual SNP 
and their cumulative action. In our study, we have comprehen-
sively analyzed the TCGA SNP array data mapped to methy-
lated loci and concomitantly evaluated its association with the 
breast cancer survival. Of the total 7970 CpG–SNP pairs, 492 
SNPs in the training model were predicted to be significantly 
associated with OS. However, the univariate analysis based 
on the log-rank test mapped 23 SNPs to be significant across 
the test data set. Most of these SNPs have been highlighted 
in GWASs. In this study, we have mainly displayed Kaplan–
Meier plot for the SNP having higher and nearly equal allelic 
distribution in breast cancer population. The heterozygous 
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allele “GA” associated with SNP rs10101376 is detrimental 
and is related to poor prognosis. Similarly, the homozygous 
dominant allele “TT” linked to rs140679 SNP disrupts the 
mRNA expression of GABA A receptor (GABRG3)56 and 
subsequently deteriorates survival probability in breast cancer 
patients. Presence of homozygous genetic variant “TT” with 
respect to SNP rs1538146 at 1349 bp upstream of TRPC4 
gene (transient receptor potential cation channel, subfamily 
C) reduces the OS and has a significant prognostic deter-
minant. The canonical transient receptor potential (TRPC) 
channels are permeable to Ca2+ cationic channels and regu-
late Ca2+ influx in response to G protein-coupled receptor.57 
Overexpression of TRPC4 gene results in anomalous cell pro-
liferation and has been reported in the prostate, ovarian, and 
lung cancers and renal cell carcinoma.58–61 Our findings have 
demonstrated the potential importance of assessing prognosis 
in breast cancer based on the univariate model of SNP distri-
bution. Finally, we assembled these SNPs to construct logistic 
regression model and evaluated their cumulative effect on OS 
of breast cancer. Of the total 23 SNPs, 18 SNPs had signifi-
cant prognostic potential and could classify 164 breast cancer 
patients into poor prognostic (high-risk) and good prognostic 
groups (low-risk). However, the conjoint effect of nine SNPs 
holds more clear vision on demarcation.

In summary, the comprehensive assessment of CpG–SNP 
pairs has led to the identification of loci that hold the risk to 
the OS of breast cancer patients. The novel findings are highly 
promising and strongly support the identification of these loci 
in the clinical visualization of breast cancer progression. Such 
prognostic scans at the genome-wide level will likely be not 
only beneficial for the identification of novel prognostic bio-
markers but will also open a new horizon to the novel path-
ways involved in breast cancer progression, directing to the 
potential targets for more efficient treatment strategies.
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