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DNA methylation plays a significant role in regulating transcription and exhibits a systematic change 
with age. These changes can be used to predict an individual’s age. First, to identify methylation 
sites associated with biological age; second, to construct a biological age prediction model and 
preliminarily explore the biological significance of methylation-associated genes using machine 
learning. A biological age prediction model was constructed using human methylation data through 
data preprocessing, feature selection procedures, statistical analysis, and machine learning 
techniques. Subsequently, 15 methylation data sets were subjected to in-depth analysis using SHAP, 
GO enrichment, and KEGG analysis. XGBoost, LightGBM, and CatBoost identified 15 groups of 
methylation sites associated with biological age. The cg23995914 locus was identified as the most 
significant contributor to predicting biological age by calculating SHAP values. Furthermore, GO 
enrichment and KEGG analyses were employed to initially explore the methylated loci’s biological 
significance.
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Background of the study
DNA methylation is a widespread epigenetic phenomenon, a functional modification of the genomic nucleic 
acid sequence that can affect gene expression without altering the DNA sequence. It is characterized by adding 
a methyl group to the DNA molecule, significantly impacting gene expression and cellular function1. DNA 
methylation occurs mainly at the CpG site, between adjacent C and G bases in the deoxyribonucleotide sequence2. 
The process is catalyzed by DNA methyltransferases, which achieve the selective addition of methyl groups to 
specific bases3.DNA methylation is crucial in regulating transcriptional programs and shows systematic changes 
with age4. These changes begin at the onset of embryonic development and continue throughout the life cycle, 
with implications for chromatin conformation, lineage differentiation, gene expression, genome stability, and 
stem cell self-renewal5.

Some changes in methylation are strongly associated with age and provide markers for biological aging. The 
genome continues to undergo programmed changes in methylation after birth in response to environmental 
inputs, acting as a memory device that may influence aging and susceptibility to various metabolic, autoimmune, 
and neurological diseases6. Related studies have shown that DNA methylation patterns in the genome are 
disrupted with age and that these changes can be used to predict age through the epigenetic clock7 statistically. 
Many sources of evidence suggest that some CpG sites may have age-related methylation changes8; exploring the 
methylation of different CpG sites and their levels is essential to reveal the association between DNA methylation 
and biological age, and biological age prediction provides a fundamental basis for preventive and healthcare 
efforts against age-related diseases.
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Experimental methods for DNA methylation detection cover restriction endonuclease-based techniques, 
affinity enrichment-based strategies, and bisulfite conversion-based means. Computational analysis of DNA 
methylation sequencing data obtained by various experimental methods may be challenging9, partly because 
the methylation data obtained by experimental assays are extensive and may contain numerous CpG sites. It isn’t 
easy to compute and analyze these massive and high-dimensional data. On the other hand, machine learning 
(ML) development provides an effective method for mining and parsing massive data, especially for integrated 
phenotypes in extensive and high-dimensional data. Machine learning can compute many covariates even in 
high-dimensional data and complex interactions. Compared to standard statistical methods, machine learning 
may have advantages regardless of their performance in terms of yield and nature10,11. In the field of biological age 
prediction, machine learning(ML) can integrate diverse data, including images (e.g., brain magnetic resonance 
imaging, chest radiology, retinal or facial photography)12–14, physical activity data, as well as blood biomarkers, 
gut microbiome, or genomic data15. Epigenetic clocks, which measure changes at hundreds of specific CpG 
loci, can accurately predict the number of solid years in various species, including humans, and these clocks are 
currently the best biomarkers for predicting human mortality16. Dmitry Zubakov et al. (2016) explored novel 
age-associated mRNA and DNA methylation markers in the blood of young and old individuals of the same age 
using microarray technology. Validation was also carried out in independent samples covering a wide age range 
by alternative techniques and previously proposed DNA methylation, stress, and telomere length markers. In age 
prediction, the results showed that DNA methylation markers were more accurate than mRNA, sjTREC, and 
telomere length17. Jiansheng Zhang et al. (2021) constructed two prediction models using health and disease data 
by analyzing DNA methylation data in blood tissues. The R² value obtained from gradient-boosted regression for 
the health data was 0.86 with a mean squared absolute deviation (MAD) of 3.90, while in the disease dataset, the 
R² value was 0.89 with a MAD of 3.1118. David Bernard et al. (2023) created an interpretable ML framework for 
determining a patient’s health and nutritional status using a broad population-based dataset from the National 
Health and Nutrition Examination Survey (NHANES) study and selecting the XGBoost algorithm as the 
predictor. XGBoost algorithm as a predictor to create an interpretable ML framework to determine personalized 
physiological age (PPA) and calculated an accurate quantitative correlation metric explaining physiological (i.e., 
accelerated or delayed) deviations from age-specific normative data using SHAP for each variable19. Through 
experimental and technological methods, the researchers mentioned above investigated the possibilities of 
DNA methylation, machine-learning approaches, and interpretable machine-learning frameworks in biological 
age prediction. The findings indicate that DNA methylation offers a considerable advantage in biological age 
prediction and has much potential when combined with machine learning methods.

Purpose of the study
This paper uses open-source DNA methylation data to explore the relationship between DNA methylation and 
biological age. Through data exploration, feature engineering, statistical analysis, machine learning, and the 
application of an interpretable machine learning framework to a large DNA methylation dataset, we seek to 
reveal the relationships: the statistical associations between biological age and DNA methylation, the effects 
of different DNA methylation sites and levels on biological age; the construction of a biological age prediction 
model through machine learning techniques; and the Assessing the extent to which different gene methylations 
contribute to biological age prediction using the interpretable machine learning framework SHAP. It provides a 
reference for biology and medicine to explore the mechanism and effects of methylation at different DNA loci 
and methylation levels on aging.

Research significance
Abnormal increases or decreases in DNA methylation lead to or are markers of cancer formation and tumor 
progression and DNA methylation abnormalities have also been associated with neurological disorders, 
immune disorders, atherosclerosis, and osteoporosis20. Exploring the association between DNA methylation 
and biological age from large DNA methylation datasets through an interpretable machine learning framework 
provides guidelines for the prevention and healthcare of age-related diseases; moreover, investigating the 
differences in the contribution of different CpG island methylation degrees and methylation levels to the 
prediction of biological age through an interpretable machine learning approach can help to improve the 
interpretability of machine learning models. Finally, analyzing methylation differences at different gene loci 
can help to reveal the association between cell and tissue aging and methylation from a biological perspective.

Results
DNA methylation data
The DNA methylation data for this study contained a total of 10,296 samples, of which 7,833 were healthy 
samples, and 2,463 were diseased samples; of these samples, 8,233 samples contained biological age data and 
were defined as training samples for constructing machine learning models. Each training sample contains 
50,000 methylation site data, 1 item of gender data, and 1 item of biological age data, and DNA methylation data 
is measured by the methylation 450 K platform. Of the 8233 samples used to construct the machine learning 
model, 6266 were healthy samples, and 1967 were diseased samples; in terms of gender distribution, 4409 
(53.55%) samples were male samples, and 3824 (46.45%) samples were female samples. Biological age had a 
minimum value of 0 years, a maximum value of 114 years, a median value of 56 years, a mean value of 53.6597 
years, and a standard deviation of 25.8249 years.

Data preprocessing results
First, the statistics showed that 23,688,484 methylation sites data were missing, accounting for 5.7544% of the 
total data volume (total data volume was 411658233), and all the vacant data were filled with 0. Secondly, we 
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performed data coding on the gender data: 4409 male category data were coded as 0, and 3824 female category 
data were coded as 1. Subsequently, we performed a normality test on the 50,000 DNA methylation site data. The 
results showed that none of the 50,000 DNA methylation site data fulfilled the normal distribution (all P-values 
were less than 1%). Finally, we plotted the distribution histograms and kernel density estimates for the sex and 
biological age data. See Fig. 1a and b.

Feature selection results
The XGBoost, LightGBM, and CatBoost models were used for the wraparound strategy for feature selection, and 
50,000 methylation sites and gender data were used as feature data. 80% (6586 samples) of the data were used 
as training sets, and 20% (1647 samples) were used as test sets. The model training MAE and testing MAE are 
shown in Table 1.

Table 1 shows that the XGBoost model has the lowest training MAE (0.0539), the LightGBM model has the 
highest training MAE(0.6815), the LightGBM model has the lowest testing MAE(3.3041), and the CatBoost 
model has the highest testing MAE(4.0189). When analyzing the test MAE, LightGBM obtained the lowest 
MAE.

Model Training MAE Test MAE

XGBoost 0.0539 3.6546

LightGBM 0.6815 3.3041

CatBoost 0.3313 4.0189

Table 1.  Model training MAE and test MAE.

 

Fig. 1.  (a) Density estimate of biological age distribution; (b) Histogram of gender distribution; (c) Regression 
plots, residual plots for training and testing of feature selection models XGBoost, LightGBM, and CatBoost 
models; (d) Plot of importance of top 20 features of XGBoost model; (e) Plot of importance of top 20 features 
of LightGBM model; (f) CatBoost model top 20 feature importance plot; (g) Best model (LithtGBM) top 20 
feature SHAP values.
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The regression and residual plots of the predicted biological age versus actual age are shown in Fig. 1c. As can 
be seen in Fig. 1c, in training set, the XGBoost model predicted results with the actual biological age R2 value of 
0.9997, which is the best performance, and the LightGBM model predicted results with the actual biological age 
R2 of 0.9978, which is the worst performance; in the test dataset, the LightGBM model predicted results with the 
actual results R2 of 0.9543, while the CatBoost model predicted results with actual biological age R2 of 0.9327, 
which is relatively poor performance. Regarding the prediction results’ stability, the XGBoost model has the 
smallest average residuals of 2.8035e-06 in the training dataset. In contrast, the LightGBM model has the most 
significant average residuals of 0.0037. In the test dataset, the XGBoost model had the smallest average residual 
of -0.0193, while the LightGBM model had the most significant average residual of 0.1005.

Considering the model training MAE, testing MAE, training dataset prediction result vs. real biological 
age R2, testing dataset prediction result vs. real biological age R2, training dataset prediction result vs. actual 
biological age average residuals, and testing dataset prediction result vs. actual biological age average residuals 
together, the top 20 methylation sites screened by the LightGBM model were selected as the feature data for 
constructing the biological age prediction model. Figure 1d and e, and 1f show the top 20 methylated sites output 
by the XGBoost, LightGBM, and CatBoost models based on feature importance, respectively, and Fig. 1g shows 
the top 20 methylated sites output by the LightGBM model based on feature importance SHAP.

Statistical analysis results
The 20 methylation data obtained by feature selection were first tested for normality using the Scipy library 
regular test21 function, and the test results are shown in Table  1 of the supplementary document. Figure s1 
shows the histogram of data distribution and kernel density estimation for the 20 methylation sites. Based on the 
analysis of normality tests, histograms, and kernel density estimation plots, not all methylation data conformed 
to a normal distribution. Therefore, the Spearman correlation coefficient was used to assess the correlation 
between the 20 methylation data and biological age. The results of the correlation analysis are shown in Table 2, 
and Fig. 2a demonstrates the heat map of the Spearman correlation coefficient.

Table 2; Fig. 2a correlate the 20 methylation sites and biological age. We selected the features with an absolute 
correlation coefficient value greater than 0.45 as the final features for constructing the machine learning model, 
and 15 groups of methylation data were obtained. To understand the distribution of individual methylation data 
as well as to detect further and process abnormal data to improve data quality, we calculated the descriptive 
statistical features (mean, standard deviation, minimum, first quartile, median, third quartile, and maximum) of 
the 15 groups of methylation data (Table 2 of the supplementary document) and plotted box plots (Fig. 2b) and 
scatter plots (Figure s2) of the 15 groups of methylation data.

From Table 2 of the supplementary document, Figure s2, and Fig. 2b, it can be seen that the distribution 
consistency of the 15 groups of methylation data is relatively poor, and there are outliers and outliers in most 
methylation data. Further observation of the box plots shows that there are generally outliers in the methylation 
data of the 15 groups, a result that matches the conclusions of the descriptive statistical analysis and the regression 
scatterplot; meanwhile, the box plots show that there is a significant difference in the distribution range of the 
methylation data of the 15 groups. To ensure the data quality and accelerate the convergence of the machine 
learning model, we first replaced the outliers and anomalies with the median according to the regression scatter 

DNA methylation site Spearman P

cg23995914 0.724931 0.000000e + 00

cg11176990 0.697864 0.000000e + 00

cg25090514 0.654536 0.000000e + 00

cg07553761 0.630504 0.000000e + 00

cg18667659 0.566513 0.000000e + 00

cg24079702 0.546958 0.000000e + 00

cg23606718 0.541610 0.000000e + 00

cg02650266 0.517605 0.000000e + 00

cg16867657 0.504503 0.000000e + 00

cg22454769 0.473058 0.000000e + 00

cg06782035 0.409698 0.000000e + 00

cg06784991 0.363914 2.940928e-256

cg12934382 0.310387 2.458023e-183

cg17104258 -0.131589 3.999642e-33

cg22851880 -0.205071 6.913939e-79

cg10630880 -0.477016 0.000000e + 00

cg07202479 -0.536098 0.000000e + 00

cg16290275 -0.556945 0.000000e + 00

cg08453194 -0.602760 0.000000e + 00

cg10501210 -0.645215 0.000000e + 00

Table 2.  20 Spearman correlation coefficients of methylation data with biological age.
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plot (Fig. s1 of the supplementary document) and the box plot (Fig. 2b), and then standardized and normalized 
the data by using the StandardScaler22 and MinMaxScaler23 functions of the Sklearn library to scale the data 
between − 1 and + 1. The feature scatter plots and box plots after anomaly data replacement, normalization, and 
scaling are shown in Figure s3 and Fig. 2c.

The results of the Mann-Whitney U test (statistic value: 3327968.5, P value: 0.00) and the Kolmogorov-
Smirnov test (statistic value: 0.325113, P value: 0.00) demonstrated a statistically significant discrepancy in 
biological age between the healthy and diseased groups. Figure 2b illustrates the distribution of biological age 
between the healthy and diseased groups. The Kruskal-Wallis H-test (statistic: 1751.851222, p-value: 0.00) 
demonstrated that there was also a statistically significant difference in biological age between the various 
disease groups. Figure 2e depicts the distribution of biological age among the diseases.

Machine learning model training results
Following the processing of anomalous data, which included normalization and scaling, we selected XGBoost, 
LightGBM, CatBoost models, and deep neural networks as machine learning models for training purposes. 
The models mentioned above were trained using 10-fold cross-validation. XGBoost, LightGBM, and CatBoost 
models are all models built up based on tree structure, and the feature importance can be output after training 
to understand the degree of contribution of 15 sets of methylation data to biological age prediction24–26; the 
methylation sites that contribute more to biological age prediction can be used as a reference for the biological 
and medical neighborhoods to study DNA methylation and cellular and tissue aging; deep neural networks 
have a solid nonlinear fitting ability, which can fully explore the nonlinear relationship between the data27. The 
fully connected neural network was constructed using TensorFlow, using MAE as the loss function, initialized 
learning rate of 0.001, early stop and checkpoint techniques were applied to monitor the loss function and MAE 
changes in real-time during the training process, and the performance scheduling strategy was used to adjust 
the learning rate automatically. Different training rounds using the above parameters are shown in Figure s4. 
Testing 2000, 1000, and 800 rounds of training found that the MAE curves all showed a rising trend in the late 
stage of training, while when 300 rounds of training were chosen, the MAE curves did not rise in the late stage of 
training. Therefore, the number of training rounds for the deep neural network was finally determined to be 300.

Table 3 shows the results of machine learning model training using 15 sets of methylation data and 1 item of 
gender data, and the deep neural network training MAE curve is shown in Fig. 3a.

Fig. 2.  (a) Heat map of Spearman’s correlation coefficient; (b) Box plot of 15 methylation data; (c) Box plot of 
methylated data after data normalization and scaling; (d) Box plots of biological age in healthy and diseased 
groups; (e) Box plots of biological age in the diseased group.
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From Table 3, it can be seen that the XGBoost model has the lowest training MAE in the training dataset 
(0.0189), and the deep neural network has the highest training MAE (7.2615); in the testing dataset, the XGBoost 
model has the lowest testing MAE (3.6412), and the deep neural network has the highest testing MAE (5.4531). 
Therefore, the XGBoost model performs the best biological age prediction performance, and the deep learning 
model could perform better.

The scatterplots and residual plots of the regression of the model prediction results with the actual biological 
age are shown in Fig. 3b. As can be seen from Fig. 3b: in the training dataset, the CatBoost model prediction 
results have a high degree of agreement with biological age (R2:0.9974), the profound neural network prediction 
results have a significant difference with biological age (R2:0.9117), and the average residuals for the CatBoost 
model are the lowest (-0.0001), and the average residuals for the deep neural network are the highest (0.2167). 

Fig. 3.  (a) Deep neural network training MAE plot; (b) Machine learning model and deep neural network 
training and testing regression plots, residual plots; (c) SHAP plot of methylated features of XGBoost model; 
(d) GO enrichment analysis plot; e: KEGG analysis plot, KEGG data were obtained using the KEGG website 
enrichment28.

 

ML model Train MAE Validate MAE Test MAE

XGBoost 0.0189 3.8027 3.6412

LightGBM 2.4831 4.2630 4.1559

CatBoost 0.8253 4.1477 4.1104

deep neural network 7.2615 5.4537 5.4531

XGBoost( GridSearchCV) 0.7689 3.6953 3.6089

Table 3.  Machine learning model training results. XGBoost, LightGBM, and CatBoost training MAE and 
validation MAE were obtained using 10-fold cross-validation training. The average MAE and test MAE were 
calculated for the test set. The deep neural network validation MAE is obtained by dividing the validation set 
and setting the TensorFlow model fit method validation_data parameter. The test MAE is calculated using the 
TensorFlow model to evaluate the method.
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In the test dataset, the XGBoost model predicted relatively good agreement with biological age (R2: 0.9441), 
the deep neural network predicted poor agreement with biological age (R2:0.9124), the XGBoost model had 
the lowest average residual (0.0939), and the deep neural network had the highest average residual (0.3777). 
Considering the R2 values and average residuals of the model predictions with biological age, the XGBoost model 
showed high accuracy compared to the relatively poor performance of the deep neural network. Ultimately, the 
XGBoost model was parameterized to identify the optimal hyperparameters, utilizing a grid search with 10-fold 
cross-validation. After the grid search, the XGBoost model’s training MAE was 0.7689, the validation MAE was 
3.6953, and the test MAE was 3.6089.

The SHAP value integrates the effect of a given biological variable by itself and the impact of the variable’s 
interaction with other biological parameters. For a given individual (local interpretation), the sum of the SHAP 
values of all model variables represents the individual’s deviation from the mean of the actual age predicted by 
the entire data set. Finally, we used SHAP to calculate the SHAP values for the 15 methylation data sets in the 
XGBoost model. We plotted SHAP summary and bar stacked plots to visualize how much the 15 methylation 
data sets contributed to the biological age prediction, as in Fig.  3c. To ascertain the biological significance 
of the genes associated with the 15 groups of methylation sites, we initially queried the associated genes by 
methylation site CG number in the EWAS database (Table 3 of the Supplementary file). Following the database 
query, the final 12 groups of genes were subjected to a GO enrichment analysis (Fig. 3d, Figure s5, Figure s6) and 
a KEGG analysis (Fig. 3e, Figure s7) to gain insight into the cellular components, biological processes, molecular 
functions and pathways of the related genes.

KEGG and GO analyses were implemented using clusterProfiler v4.10.1 in an R4.3.3 environment, and the 
following 12 proteins were ultimately used for KEGG and GO analyses: ARHGEF33、

ABHD14A-ACY1、CCND3、AMER3、PCBP4、ELOVL2、ZNF518B、FHL2、ABHD14B
、TRIM59、ABHD14A、ACKR1. A KEGG analysis revealed that the genes associated with 15 groups of 

methylation sites were primarily involved in arginine biosynthesis, fatty acid elongation, unsaturated fatty acid 
biosynthesis, 2-Oxocarboxylic acid metabolism, malaria, fatty acid metabolism, amino acid biosynthesis, and 
the p53 signaling pathway, alpha − linolenic acid metabolic process. A Gene Ontology (GO) enrichment analysis 
revealed that two of the 15 related genes were involved in nucleoside diphosphate metabolism, ribonucleoside 
bisphosphate metabolism, purine nucleoside diphosphate metabolism, alpha-linolenic acid metabolism, and 
ventricular cardiomyocyte differentiation. The genes were found to be involved in several processes, including 
cardiomyocyte development, fatty acid elongation, very long-chain fatty acid biosynthesis, ventricular 
cardiomyocyte differentiation, positive regulation of the activity of the cell-cycle-dependent protein serine/
threonine kinases, and cardiac trabeculae formation. Each of the genes was found to be involved in one of these 
processes.

Discussion
Screening sites critical for cell and tissue aging from 50,000 methylation sites using traditional statistical 
and medical experimental methods is challenging and a huge workload. However, feature selection with the 
help of machine learning methods is expected to reduce the workload and fulfill the potential of screening 
key methylation sites. Follow-up studies will explore the effectiveness of methylation sites screened by feature 
selection.

Fig. 4.  Model testing MAE for different numbers of methylated sites.
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Figure  4 illustrates the mean absolute error (MAE) of the test set following the training of the machine 
learning model with 50,000 sets of methylated data during the feature selection phase and subsequent training 
of the model with 15 sets of methylated data following feature selection. As illustrated in Fig. 3, the MAE of the 
test set for the XGBoost model demonstrates a reduction following the reduction of the methylated data from 
50,000 to 15 sets (0.03% of the total number of features). The LightGBM model test set MAE increased by 0.0457, 
while the CatBoost model test set MAE increased by 0.0915. The MAE of the LightGBM model test set increased 
the most following the feature selection, which reduced the number of features by 99.97%. In contrast, the MAE 
of the XGBoost model trained with 15 sets of methylation sites is lower than that of the model trained with 5 W 
sets, and the potential explanations for this phenomenon are twofold. Firstly, the wraparound feature selection 
and the initial correlation filtering facilitate the retention of practical features, removing interfering features and 
reducing data dimensionality. Secondly, the detection and replacement of abnormal data, coupled with data 
normalization and scaling, enhance the data quality, thereby facilitating the learning of correlations between 
data points. Finally, a 10-fold cross-validated grid search for different hyperparameter combinations helped the 
XGBoost model to find better hyperparameters. It can be observed that the application of feature selection is a 
practical approach for the identification of methylation sites and is capable of accurately discerning those that 
are predictive of biological age.

The results obtained by our machine learning approach are compared with the results of the most recent 
studies as follows: the test MAE obtained using the XGBoost model for Personalized Physiological Age (PPA) 
in the results of Emmanuel Doumard et al. was 7.89 with an R2 of 0.75, the test MAE obtained by MLP was 
7.23 with an R2 of 0.7529, and the test set MAE obtained by us using the 15 sets of methylated loci to train 
the XGBoost model obtained a test set MAE of 0.3089 with an R2 of 0.9441. the remaining machine learning 
studies using data similar to ours for training are relatively few. In a 2018 study, Morgan E. Levine and colleagues 
developed phenotypic age estimates using NHANES III data combined with a proportional risk penalty 
regression model using nine biomarkers and actual age. They subsequently validated this in NHANES IV. 
Subsequently, they developed DNAm PhenoAge estimates using InCHIANTI data to regress phenotypic age on 
blood DNA methylation data30. This resulted in the development of the DNAm PhenoAge, which significantly 
outperforms previous metrics in predicting outcomes of interest, including all-cause mortality, cancer, healthy 
lifespan, physical function, and Alzheimer’s disease. Ake T. Lu et al. employed training and test data from the 
Framingham Heart Study to define and validate an alternative DNAm-based smoking packet model. They also 
validated proxy DNAm-based biomarkers of smoking pack-years and plasma protein levels. They constructed 
a DNAm GrimAge using elastic net regression modeling to automatically select covariates from the actual age, 
sex, and DNAm-based biomarkers of smoking pack years, and 12 plasma protein levels were evaluated. The 
results demonstrated significant improvements in the associations with age-related diseases, clinical biomarkers, 
and PhenoAge, which introduces biomarkers to develop estimates of ‘phenotypic age’ and effectively predicts 
aging outcomes31. In contrast, GrimAge introduces smoking pack-years and other biological data to construct 
epigenetic age and performs well in predicting age-related diseases. Performance. It is, therefore, evident that 
biomarkers and behavioral lifestyles should be considered when constructing epigenetic-based biological ages. 
In the future, we intend to collect and incorporate biomarker and behavioral lifestyle data into our study to better 
understand the association between biological age and DNA methylation.

Table 3 of the supplementary document shows the results obtained by consulting the Probes & Genes32 and 
STRING33 databases. The genes and proteins corresponding to the 15 sets of methylation sites were obtained, 
and the methylation site order in Table 3 of the supplementary document used the SHAP data in Fig. 3c. A 
comparison of the SHAP value with Spearman’s correlation coefficient revealed that both identified cg23995914 
as the locus with the highest contribution to the prediction, with the corresponding gene being ZNF518B. The 
Genecard34 database indicates that ZNF518B is a protein-coding gene. The gene ontology (GO) annotations 
related to this gene include DNA-binding transcription factor activity and RNA polymerase II specificity. 
ZNF518B was identified as a protein-coding gene, and the gene ontology (GO) annotations related to this 
gene include DNA-binding transcription factor activity and RNA polymerase II specificity. Furthermore, a 
discrepancy was observed between the SHAP and Spearman correlation coefficients for the cg25090514 locus, 
which is positioned seventh in the SHAP calculation, and the Spearman correlation coefficient. The value is 
0.654536, which is located in the third position. However, the related gene is not identified in the Probes & 
Genes or STRING databases. Additionally, no associated genes or proteins were identified in these databases. A 
query of the relevant databases revealed that some methylation sites are related to multiple genes (cg16867657, 
cg11176990, cg This demonstrates the intricate nature of the methylation process and its correlation with cellular 
aging. The Spearman correlation coefficients of cg25090514 and cg02650266 were more significant than 0.5 
(0.654536 for cg25090514 and 0.517605 for cg02650266), which may indicate a potential link between the two 
methylation sites and cell and tissue aging. This may suggest that the two methylation sites are associated with 
cellular and tissue aging.

The KEGG and GO enrichment analyses revealed that the methylation-related genes were predominantly 
associated with fatty acid elongation, long-chain fatty acid biosynthesis, cell cycle protein-dependent protein 
serine/threonine kinase activity, and α-linolenic acid metabolism. The cell cycle protein-dependent protein 
serine/threonine kinases were identified as playing a role in the biological processes, molecular functions, and 
cellular components35–37. Cell cycle protein-dependent kinases (CDKs) constitute a group of serine/threonine 
kinases that are pivotal in regulating cell cycle progression. The activity of these kinases is induced by cell 
cycle proteins38. The evidence is mounting that CDKs and cell cycle proteins play an active role in regulating 
stem cell transcription, epigenetic mechanisms, metabolic processes, and self-renewal capacity39. Alpha-
linolenic acid (ALA) is an essential omega-3 fatty acid for human health. Essential fatty acids are thought to 
profoundly influence various metabolic processes, including regulating energy supply, enzyme activity, and 
gene expression40. ALA has been demonstrated to possess many biological functions, including cardiovascular 
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protection, neuroprotection, anticancer, anti-osteoporosis, anti-inflammatory, and antioxidant effects41. In a 
study conducted by Wenyuan Huang and colleagues to investigate the inhibitory effects of ALA on the fatty 
acid synthesis pathway and apoptosis in breast cancer cells, it was found that ALA could inhibit the invasion 
and metastasis of tumor cells by inhibiting the fatty acid synthase-induced apoptosis42 The results of the KEGG 
and GO enrichment analyses indicated that some of the 15 groups of methylation site-related genes may be 
involved in the regulation of cell cycle expression. Further investigation at the biological and cellular levels will 
be conducted to elucidate the biological significance of these 15 groups of methylation-related genes.

Finally, our research results have the following advantages: (1) 15 groups of methylation sites were screened 
from 50,000 methylation sites using the wraparound strategy using XGBoost, LightGBM, and CatBoost models 
as feature screening models, which substantially reduced the workload, time cost, and workforce and cost 
consumption of methylation site screening compared with the traditional statistical and biological medical 
methods. (2) A machine learning model was constructed for the 15 groups of methylation sites for biological 
age prediction based on the feature selection strategy, which provides a valuable reference for age-related disease 
prevention and health care. (3) Based on the 15 groups of methylated sites screened by the wraparound feature 
selection strategy, we found the related genes and proteins in the relevant databases, which can provide a valuable 
reference for studying the aging of cellular nucleus tissues in biology and medicine. Furthermore, KEGG and 
GO enrichment analyses were employed to elucidate the biological significance of the genes associated with the 
15 identified methylation sites. This provides a reference point for the study of cell cycle expression regulation. 
The present study is also subject to the following limitations: 1. The limited methylation data (5 W) used did 
not comprehensively cover all methylation sites, which may have omitted some sites associated with cellular and 
tissue senescence. Furthermore, the absence of clinical, biological indicators, and behavioral lifestyle data in our 
dataset prevented us from constructing biological ages that could reflect the effects of behavioral lifestyle on 
senescence. Consequently, the screening of methylation sites based on the tagged biological age in the dataset is 
subject to certain limitations.3. Despite the KEGG and GO enrichment analyses initially exploring the biological 
processes in which the genes associated with the 15 groups of methylation sites might be involved, they failed 
to provide specific explanations at the level of cellular and molecular mechanisms. Consequently, further 
improvements are required in studying the molecular mechanisms of the 15 methylation sites associated with 
cell and tissue aging.

We successfully constructed a biological age prediction model by applying data preprocessing, wraparound 
feature selection, statistical analysis, and training machine learning model methods on human methylation 
data obtained from the first World Science Intelligence Contest: Life Science Track - Biological Age Evaluation 
and Age-Related Disease Risk Prediction held on AliCloud’s Tianchi platform. We constructed a biological age 
prediction model and queried relevant databases to obtain relevant genes and proteins. XGBoost, LightGBM, 
CatBoost, and deep neural network models were applied to build the biological age prediction model. The 
XGBoost model obtained the best performance compared with other models, with an MAE of 0.7689 in the 
training dataset, an R2 value of 0.9973 for the prediction results versus the biological age, and an average residual 
difference of 0.0005. In the test data set, the MAE is 3.6089, the R2 value of the prediction result with biological 
age is 0.9441, and the average residual is 0.0939. The biological age prediction model we constructed provides an 
essential reference for preventing and providing health care for age-related diseases.

The SHAP of the 15 groups of methylation data was calculated to show that the cg23995914 locus had the 
highest contribution value in biological age prediction. In addition, the information on related genes and proteins 
corresponding to the 15 groups of methylation sites was obtained by querying the Probes & Genes database and 
STRING database (Table 3 of the supplementary document), which provides a reference for the study of cellular 
and tissue aging in biological and medical neighborhoods.

Materials and methods
Data sources
We obtained the human DNA methylation data through the first World Science Intelligence Contest: Life 
Science Track - Biological Age Evaluation and Age-Related Disease Risk Prediction held on the AliCloud Tianchi 
platform DNA methylation data; the dataset contains 10,296 samples, of which 7,833 are healthy samples 2,463 
are diseased samples; The DNA methylation data were quantified using methylation 450k microarrays, and the 
specific details can be retrieved from the EWAS43 database. Each sample provides methylation data, age, and 
disease at 485,512 loci. 8233 (79.96%) of the samples from the human DNA methylation data were defined as 
training set data (containing biological age data), and 2063 samples were defined as test samples (not containing 
biological age data). In this study, we selected the 8,233 samples containing biological age data to construct 
the prediction model. The data processing and machine learning process is shown in Fig. 5. The first stage of 
the process involved data pre-processing, which included the following: counting and processing blank data, 
detecting and replacing anomalous data, converting data types and encoding data.2. A parenthesized feature 
selector was constructed to search for methylated features using the XGBoost, LightGBM and CatBoostmo 
models.3. Statistical analyses were performed, which included tests for normality of the methylated data, 
correlation calculation, data normalization and scaling. Differences in biological age between healthy and 
diseased groups and between diseases were also analysed.4. Machine learning models were constructed to fit the 
DNA methylation and biological age data, and SHAP was used to calculate the contribution of each methylation 
site to the model prediction. GO enrichment, and KEGG analyses explored the biological significance of genes 
associated with methylation sites.

Our study was approved by the Ethics Committee of Guizhou Medical University under the approval number 
2024 Lunar Review No. (159). It was a retrospective, non-interventional study using data from the Aliyun 
Tianchi database without direct patient contact. We applied for a waiver of informed consent from our host 
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institution and received approval from the Ethics Committee. The Declaration of Helsinki of the World Medical 
Association conducted the study.

Data pre-processing
First, we performed statistical calculations and filled in the missing data in the dataset to achieve data integrity; 
subsequently, we performed data type conversion and data feature coding and used the 0 ~ of ~ n-1 method 
to code the fixed-class data into n values ranging from 0 to n-1 (n depends on the total number of fixed-

Fig. 5.  Data processing and machine learning flowchart.
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class data categories in the coding work) for the subsequent analysis work. After missing data processing and 
transformation of the fixed-class data, the methylation data were examined for average distribution properties. 
Finally, histograms of biological age and sex data and kernel density estimates were plotted to assess the 
distribution of biological age data and sex data.

Feature selection
Given the large amount of methylation data contained in each sample in the dataset, which is about 485,512 
sites, a comprehensive analysis of all methylation sites is burdensome, and it is difficult to determine which sites 
contribute more to biological age prediction. Therefore, performing feature engineering to filter key features and 
reduce feature dimensionality is especially critical. We adopted a wraparound strategy for feature engineering, 
in which XGBoost, LightGBM, and CatBoost are used as feature selection models. We run the model and output 
the training and testing MAE, R2 value, and average residual of the prediction result and the actual result, and 
the feature importance of each model; we comprehensively evaluate the training and testing MAE, R2 value, and 
average residual of the prediction result and the natural result of each model and select the optimal model and 
the feature importance of the output of the model as the result of feature engineering. Finally, SHAP was used to 
calculate the contribution of methylation data to biological age after feature selection.

Statistical analysis
Firstly, we tested the normality of the data after feature selection and plotted data distribution histograms and 
kernel density estimation plots to understand the data distribution of the data; according to the results of the 
normality test to calculate the correlation between the methylation data and the biological age, if the normality 
test was passed, then we selected the Pearson correlation coefficient. Otherwise, we selected the Spearman 
correlation coefficient and, through the correlation coefficient heatmap and the P-value heatmap, Visualize the 
correlation between methylation data and biological age. Select the features with a correlation greater than 0.45 
as the final feature data for machine learning, calculate the descriptive statistics of the final feature data (mean, 
standard deviation, minimum, first quartile, median, third quartile, and maximum), and draw box plots and 
regression scatter plots to visualize the distribution of the feature data; Data processing and feature scaling of 
anomalous data based on descriptive statistics results, box plots and regression scatter plots to improve data 
quality and accelerate machine learning model convergence.

Morgan E. Levine et al., in a study exploring epigenetic biomarkers of aging using an integrated clinical 
measure that combines phenotypic age, argued that differences in the rate of aging would have implications 
for a wide range of diseases and conditions28. Accordingly, the Mann-Whitney U and Kolmogorov-Smirnov 
tests were employed to investigate the discrepancies in biological age between the healthy and diseased groups. 
Additionally, histograms were constructed to illustrate the distribution of biological age between the two groups. 
The Kruskal-Wallis H-test was employed to investigate the variance in biological age across different disease 
groups. At the same time, ridge and box plots were utilized to visualize the distribution of biological age within 
these groups.

Machine learning model training and evaluation
Following data preprocessing, feature selection, and statistical analysis, we employed XGBoost, LightGBM, 
CatBoost, and deep neural networks as machine learning models for training. This was conducted using 10-
fold cross-validation and grid search for hyper-parameter tuning of the optimal models. The metrics employed 
to assess model training efficacy included the training MAE and the testing MAE. The consistency of model 
predictions was evaluated using R2 values for the predicted biological age and the actual biological age. The 
stability of model predictions was gauged by examining the mean residuals of the predicted biological age and 
the actual biological age. The optimal model was selected through a comparative analysis of the metrics above.

To enhance the model’s interpretability and comprehend the impact of methylation at disparate sites on 
biological age prediction, we employed SHAP to ascertain the SHAP values of methylated sites. We generated 
SHAP summary plots and bar-stacked plots to illustrate the SHAP of the methylation data. Additionally, we 
conducted GO and KEGG analyses to investigate the biological significance of genes associated with methylated 
sites.

Data availability
DNA methylation data is available at https://tianchi.aliyun.com/competition/entrance/532114/introduction?sp-
m=a2c22.12281925.0.0.22bc7137BkwykY, and the code and images covered in this article are available at https://
github.com/Kosonora/DNA-methylation-and-biological-age-study.git.
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