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Abstract

Background: Cellobiose dehydrogenase (CDH) is an extracellular hemoflavoenzyme produced by lignocellulose-
degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus,
focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass.

Results: First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under
cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the
contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail
was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat
straw was observed with (i) the production of a large amount of gluconic acid, (ii) increased hemicellulose
degradation, and (iii) increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was
heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the
recombinant CDH (rCDH) expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters
similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-
binding module (CBM). Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of
gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results
observed with P. cinnabarinus secretome.

Conclusions: We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to
gluconic acid production from raw lignocellulosic material.
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Background
In natural environments, cellulolytic microorganisms
secrete enzymes that function synergistically, in associa-
tion with the microorganism or independently. Although
it is not fully known how many enzymes are involved in
cell wall deconstruction, three general categories of
enzymes are considered necessary to hydrolyze native
cell wall materials: cellulases, hemicellulases and acces-
sory enzymes such as hemicellulose debranching

enzymes, phenolic acid esterase, and possibly lignin-
degrading and modifying enzymes [1].
The main industrial source of cellulases and hemicel-

lulases is the mesophilic soft-rot fungus T. reesei (teleo-
morph Hypocrea jecorina), valued for the high protein
secretion capacity of its mutant strains obtained by ran-
dom mutagenesis (producing up to 100 g of extracellu-
lar protein per liter of culture) [2,3].
Among fungal classes, basidiomycetes are known to be

efficient degraders of cellulose, many species growing on
dead wood or litter. The lignocellulolytic system of basi-
diomycetes has been studied intensively in the last dec-
ades. Genome sequencing and proteomic tools are often
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used, but the cellulolytic system is still not completely
understood, especially the oxidative part of this system
[4,5].
Cellobiose dehydrogenases (CDH; E.C. 1.1.99.18; cello-

biose: [acceptor] 1-oxidoreductase) are extracellular fun-
gal hemoflavoenzymes produced by many white-rot
fungi including Trametes versicolor, Phanerochaete chry-
sosporium, Ceriporiopsis subvermispora and P. cinnabar-
inus [6-9]. CDH are also produced by the brown-rot
fungus Coniophora puteana [10] and the soft-rot fungus
Humicola insolens [11]. More recently, CDH from the
ascomycetes Myriococcum thermophilum [12] and Neu-
rospora crassa [13] were cloned and successfully
expressed in Pichia pastoris. CDH are monomeric
enzymes carrying two prosthetic groups, a heme and a
flavin domain. The heme-binding domain in the N-
terminal position contains a cytochrome b-type heme
which presents an unusual heme binding by Met/His
ligation [14]. The flavin domain in C-terminal binds
FAD non-covalently and is classified as a member of the
glucose-methanol-choline family of oxidoreductases.
These two regions are separated by a Thr-Ser-rich long
linker region [15]. The flavoprotein domain of CDH cat-
alyzes two-electron oxidation of cellobiose and more
generally cellodextrines, mannodextrines and lactose to
corresponding lactones [16] using electron acceptors
such as dioxygen, quinones, phenoxyradicals and others
[17-19]. Also, one-electron transfer occurs. Heme is
implicated in one internal electron transfer to FAD or
another electron acceptor such as Fe3+ [20,21].
Among oxidoreductases, laccases have been the most

intensively studied, while CDHs are less well-researched.
To date, thirteen CDHs have been characterised (P.
chrysosporium [7], Sclerotium (Athelia) rolfsii [22], Mon-
ilia sp. [23], T. versicolor [9], Trametes hirsuta [24], P.
cinnabarinus [25], Schizophyllum commune [26], C. sub-
vermispora [6], Sporotrichum thermophilum [27], C.
puteana [10], Chaetomium sp. [28], M. thermophillum
[12], Termitomyces clipeatus [29], H. insolens [11], Gri-
fola frondosa [30] and N. crassa [13]).
Although the role of CDHs is still unclear, it is estab-

lished that CDHs are produced in cellulolytic conditions
and are involved in cellulose and lignin degradation.
CDHs have been shown to bind cellulose in different ways
depending on species: a long aromatic-rich region for P.
chrysosporium [31] or a cellulose-binding domain for asco-
mycetes and soft-rot fungi, similar to that observed for cel-
lulases [32]. Their involvement in many reactions has been
demonstrated, e.g. reduction of quinones [33,34], inhibi-
tion of phenol radical repolymerization [35,20], production
of hydrogen peroxide [36,37] and one of the most often
cited reactions, the production of hydroxyl radicals by a
Fenton-type reaction, which may participate in the degra-
dation of cellulose, lignin and xylan [38]. CDHs are known

to enhance the action of cellulases on crystalline cellulose
[39,40] and also to degrade wood components, but their
role in complex lignocellulosic substrate degradation has
never been investigated.
Here we examined the cellulolytic system of P. cinna-

barinus and the involvement of CDH therein. Given its
relevance to saccharification processes, we heterolo-
gously expressed the P. cinnabarinus CDH in Pichia
pastoris. The recombinant enzyme was thoroughly char-
acterized and assessed for its ability to degrade natural
substrate as a supplement to commercial Trichoderma
reesei cocktail.

Results
Production and characterization of P. cinnabarinus ss3
secretome in cellulolytic conditions
CDH is produced by P. cinnabarinus when cellulose is
added to the culture medium. The best production (355
U/L) appeared after 10 days of cultivation when cellu-
lose was used as sole carbon source. To understand the
role of CDH when secreted in cellulolytic conditions, we
characterized the P. cinnabarinus secretome after 11
days of growth.
Main enzymatic activities present in P. cinnabarinus

secretome in cellulolytic conditions were measured by
assay on a range of substrates (Table 1). No significant
laccase or peroxidase activities were detected under our
experimental conditions. However, P. cinnabarinus
secretome contained enzymes able to hydrolyze a broad
range of polysaccharides. Significant levels of activities
towards pNP-glucose, CMC and pNP-cellobiose were
detected, corresponding to b-glucosidase (0.35 U/mg),
endoglucanase (0.55 U/mg) and cellobiohydrolase (0.32

Table 1 Lignocellulose-degrading enzyme activities
measured in P.cinnabarinus secretome

Type of activity Substrate Activity (U/mg)

CDH Cellobiose 0.53

Laccase ABTS nda

Glucose oxidase Glucose nda

Manganese peroxidase Vanillyl acetone nda

Lignin peroxidase Veratryl alcohol nda

b-Glucosidase pNP-glucose 0.35 ± 0.00

Endoglucanase CMC 0.55 ± 0.00

Cellobiohydrolase pNP-Cellobiose 0.32 ± 0.00

b-Xylosidase pNP-Xylose 0.01 ± 0.00

Endo-xylanase Low viscosity arabinoxylan 2.03 ± 0.08

b-Mannosidase pNP-Mannose nda

Endo-mannanase Galactomannan 2.03 ± 0.11

Pectinase Pectin 0.45 ± 0.02

a-Galactosidase pNP-Galactose 0.85 ± 0.00

Results are expressed in U/mg of total proteins.
a no activity detected
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U/mg). A variety of hemicellulases were also identified
in P. cinnabarinus secretome. The two main endo-gly-
cosidase activities were present corresponding to endo-
mannanase and endo-xylanase with about 2 U/mg.
Hemicellulase exoglycosidase enzymes were detected to
a lesser extent: 0.85 U/mg of a-galactosidase and 0.01
U/mg of b-xylosidase were measured.
Zymogram assays were performed on the culture

extract of P. cinnabarinus to give insight into the num-
ber of isoforms present for the main enzymatic activities
previously measured.
SDS-PAGE of P. cinnabarinus (Figure 1, lane 2) grown

in cellulolytic conditions presented two main differences
when compared with reference culture supernatant
grown in non-cellulolytic conditions: (i) the presence of
a band around 100 kDa, attributable to CDH and (ii)
the absence of 70 kDa band corresponding to laccase.
Confirmation by the zymogram technique showed the
DCPIP decoloration by the 100 kDa band corresponding
to CDH activity (Figure 1, lane 3). Oxidation of ABTS
occurred at around 50 kDa (Figure 1, lane 4) and could
not be attributed to laccase, which has a molecular mass
of 70 kDa. The xylanase zymogram (Figure 1, lane 5)
demonstrated the presence of a weak activity at 50 kDa
corresponding to the results previously described [41].
CMCase zymogram (Figure 1, lane 6) showed at least
five bands with the brightest one at 25 kDa. For manna-
nase activity (Figure 1, lane 7), some bands were repre-
sented around one major band at 60 kDa.

P. cinnabarinus CDH sequence analysis
Based on P. cinnabarinus ss3 cdh sequence, primers were
designed to clone the cdh gene starting from 4-day-old

culture induced with cellulose. The cdh sequence of 2310
bp was compared with available cdh sequences. Nucleo-
tide sequence analysis showed 97% identity between cdh
of P. cinnabarinus I-937 described by Moukha et al. [8]
and the cdh from P. cinnabarinus ss3, a monokaryotic
strain isolated from the fruit-like structure of P. cinna-
barinus I-937, a wild-type dikaryotic strain. These
observed differences in the nucleotide sequence resulted
in eight amino acid differences at positions 96 (Ala®-
Glu), 331 (Arg®Ser), 354 (Ala®Thr), 357 (Asn®Lys),
386 (Tyr®Ser), 426 (Tyr®Phe) and 495 (Gln®Glu).
Comparison with T. versicolor CDH and P. chrysospor-
ium CDH resulted in amino acid sequence identities of
77% and 70%, respectively. P. cinnabarinus CDH amino
acid sequence exhibited conserved regions with GMC
oxidoreductase [42] conserved domain. The linker region
rich in Thr-Ser (from position 182 to position 215), the
FAD binding site and the Met/His ligands for heme fixa-
tion were also identified. Interestingly, the Thr-Ser region
was also rich in Pro (28% Thr, 25% Pro, 13% Ser). Analy-
sis of the gene encoding the CDH from P. cinnabarinus
has shown high sequence homology with cdh from class
I. Indeed, phylogenetic analysis of cdh genes revealed two
major classes [42]. The class I cdh genes are found only
in basidiomycetes while the class II contain more com-
plex ascomycetes CDHs, that sometimes present a family
1 carbohydrate-binding module (CBM) at the C-terminal
position. Emergence of a third class of CDHs in ascomy-
cetes fungi was recently reported [32].

Heterologous expression of CDH in P. pastoris
The coding sequence of cdh was inserted into the P.
pastoris expression vector in frame with sequences
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Figure 1 SDS-PAGE and zymogram on the supernatant of P. cinnabarinus ss3 grown in cellulolytic conditions. 1, pre-stained molecular
weight marker; 2, SDS-PAGE with 10 μg of protein supernatant after ultrafiltration step; 3, CDH zymogram; 4, zymogram with ABTS; 5, soluble
xylan birchwood (xylanase) zymogram; 6, CMC (endoglucanase) zymogram and 7, locust bean gum (mannanase) zymogram.
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encoding the yeast a-factor secretion peptide and a
(His)6 tag located at the C terminus. The recombinant
gene was then introduced into the Pichia genome under
the control of the methanol-inducible promoter. Multi-
copy transformants were screened to select a clone that
exhibited satisfactory levels of production. CDH activity
was successfully detected in the supernatant after induc-
tion, indicating correct processing of the a-factor signal
sequence.
A maximum activity of 1176 U/L was observed after 4

days of induction, and this clone was chosen for this
study. To scale up enzyme production, we optimized
CDH expression in a 1 liter bioreactor with the best-per-
forming clone of P. pastoris. The recombinant CDH was
secreted at high levels, reaching 7800 U/L. Recombinant
CDH was purified after 4 days of induction, taking
advantage of the (His)6 tag. Also, only trace amounts of
endogenous proteins were present in the culture super-
natant of the transformant secreting CDH. The purified
enzyme exhibited a specific activity of 22.2 U/mg.

Biochemical characterization of rCDH
Recombinant CDH was purified to homogeneity, i.e. one
major band displaying a relative molecular weight
around 110 kDa (Figure 2, lane 2) appeared on SDS-
PAGE. Western blot analysis (Figure 2, lane 4) con-
firmed the presence of CDH at 110 kDa.
Zymogram analysis of CDH activity revealed active

bands on the gel corresponding to 70 and 110 kDa (Fig-
ure 2, lane 3). Deglycosylation (Figure 2, lane 5) of CDH
showed enhanced degradation between the two enzyme
moieties and a loss of approximately 10 kDa. Following
papain cleavage of CDH, a band corresponding to the

FAD-containing moieties was observed on SDS-PAGE
(Figure 2, lane 6). The heme-containing domain was not
seen after staining, probably owing to the weak presence
of aromatic residues [43].
Binding studies of CDH confirmed the ability of the

enzyme to bind cellulose without the presence of a cel-
lulose-binding domain. Dissociation constant (Kd) and
binding capacities (Bmax) of CDH were determined and
were respectively 0.064 μM and 0.2 μmol/g of Avicel
(Figure 3).
When DCPIP is used as electron acceptor, the optimal

temperature for CDH is 70°C. The recombinant enzyme
displayed activity over a wide range of temperatures,
16% of residual activity at 10°C and 55% of residual
activity at 80°C (Figure 4A).
After incubation of CDH at 45, 50 and 55°C for 33 h,

residual enzyme activity was 90%, 80% and 63% respec-
tively. However, CDH was not stable at 65°C, with only
15% of activity remaining after 9 h (Figure 4C). The
optimal pH for recombinant CDH (Figure 4A) was pH
4.5. The recombinant CDH had Vmax = 22.2 U/mg and
KM = 35.5 μM for cellobiose with DCPIP as electron
acceptor. Using cyt c as electron acceptor, we found
Vmax = 3.9 U/mg and KM = 14.7 μM (Table 2).

Effect of CDH on the saccharification of wheat straw
The range of lignocellulosic enzymes found in the
supernatant of P. cinnabarinus makes it a candidate for
supplementation of the T. reesei cocktail for saccharifi-
cation of wheat straw. We thus set out to compare the
efficiency of the P. cinnabarinus supernatant with the
purified rCDH for supplementation of industrial
cocktails.
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Figure 2 SDS-PAGE, zymogram, immunoblot analysis, deglycosylation and cleavage by papain of purified recombinant rCDH. 1, pre-
stained molecular weight marker; 2, 10 μg of purified CDH; 3, CDH zymogram on the sample 2; 4, Western blot analysis using anti-His
antibodies; 5, CDH deglycosylated; 6, CDH digested by papain.
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The T. reesei cocktail supplemented with b-glucosi-
dase was used as reference. Addition of P. cinnabarinus
secretome (10, 20 and 40 U of CDH) or pure rCDH (10
and 20 U) gave similar results (Figure 5 and Figure 6).
DNS assays were used to measure reducing ends of
sugars released after saccharification. Supplementation
with purified rCDH or secretome containing CDH
showed less response on DNS titration than control
with cocktails (Figure 5). However, overall hydrolysis
was increased by addition of CDH, with the production
of large amounts of gluconic acid, from 5 to 100 mg per
g of wheat straw, compared with control. Also, greater
yields of xylose, galactose and arabinose, which
increased respectively from 35 to 44, 1.9 to 4 and 9.5 to
13.5 mg/g of wheat straw were observed with addition
of 10 U of CDH (Figure 6A). Production of gluconic
acid by CDH can be explained by the formation of cel-
lobionolactone following by its spontaneous hydrolysis
in cellobionic acid. This last compound can be cleaved
by b-glucosidase into glucose and gluconic acid. Experi-
ments were performed on Dionex (data not shown).
To confirm the strong production of gluconic acid,

purified recombinant CDH was used to supplement the
T. reesei and A. niger cocktails. The effect on wheat
straw was comparable to that obtained with P. cinnabar-
inus secretome (Figure 6B). Also, supplementation with
10 U of rCDH did not affect the yield of glucose,
increased hemicellulose yield and resulted in the forma-
tion of gluconic acid in large amounts.

Discussion
In the last few decades the white-rot fungus P. cinna-
barinus has been studied for its ligninolytic system,

which is based on phenoloxidases such as laccases, with-
out the presence of peroxidases [44]. This system, and
especially laccase, has been used to produce high value
compounds [45,46] and applied to the design of biotech-
nological processes [47]. Here we investigated the cellu-
lolytic and oxidative system of P. cinnabarinus grown in
cellulolytic conditions.
In the P. cinnabarinus secretome, we found hemicel-

lulase activities already reported in the literature: a-
galactosidase, xylanase or b-galactosidase [48,49,41],
together with mannosidase and arabinofuranosidase
activities not hitherto described in P. cinnabarinus.
Endoglucanase and exoglucanase were identified by
zymogram (CMCase) and by hydrolysis of Avicel and
CMC. Peroxidase activity assay (manganese peroxidase
and lignin peroxidase) was performed on the secre-
tome, but no activity was recovered. P. cinnabarinus is
a well-known producer of laccase [50], but in celluloly-
tic conditions, laccase production seems to be
repressed, whereas the zymogram shows activity on
ABTS around 50 kDa. Similar results were observed in
P. chrysosporium grown in cellulolytic condition with
the presence of several laccase bands on the zymogram
around 50 kDa confirmed by electron paramagnetic
resonance [51]. Production of CDH was previously
described [41,25] and its activity was followed in P.
cinnabarinus culture.
We cloned and expressed P. cinnabarinus CDH in P.

pastoris. CDH of T. versicolor [52], P. chrysosporium
[53] and more recently N. crassa [13] were previously
expressed in the same host. These results confirm that
P. pastoris heterologous expression is an efficient way to
produce fungal CDHs at high levels.

0

0,05

0,1

0,15

0,2

0,25

0 1 2 3 4 5 6 7 8

Free enzyme (μM)

y
(μ

g

Free enzyme (μM)

Bo
un

d 
en

zy
m

e 
(μ

m
ol

/g
 o

f 
ce

llu
lo

se
)

Figure 3 Kinetics of the binding of rCDH. Experiments were performed on Avicel at 30°C, pH 4.5. Error bars indicate standard deviations from
triplicate measures performed independently.
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Enzymatic characterization of recombinant CDH gave
values of kinetic parameters (Vmax, KM) in the same
range as those observed previously for the native
enzyme [25] and more generally for the recombinant
CDH cited in the literature [12,52]. However, recombi-
nant CDH of P. cinnabarinus is more thermostable than
the other fungal CDHs, with an optimal temperature
around 70°C. Optimal pH 4.5 is in close agreement with
the literature.
Some CDHs produced by ascomycetes and soft-rot

fungi contain a carbohydrate binding module (CBM)
and are able to bind cellulose. In the case of P. chrysos-
porium CDH, the ability to bind cellulose seems to be
mediated by a specific domain with a structure different
from CBM [31]. The ability of the purified enzyme to
bind Avicel in the absence of CBM was confirmed
experimentally.
CDH is produced simultaneously with cellulase. Its

role in the degradation of cellulose was shown by Bao et
al., who found that P. chrysosporium CDH increased the
sugar yield from cellulose and produced cellobionolac-
tone [39]. In this work, we decided to use CDH to sup-
plement cellulase cocktail on complex substrate such as
wheat straw.
In a first set of experiments, we used the P. cinnabari-

nus secretome containing CDH added directly to cellu-
lase cocktail for the saccharification of wheat straw.
Results on wheat straw showed (i) increased yield in

C5 sugars from hemicelluloses, consistent with the lig-
nin degradation effect of the secretome, and (ii) a slight
decrease in glucose yield correlated with the formation
of large amounts of gluconic acid due to cleavage of cel-
lobionic acid (the main product of the reaction per-
formed by CDH) by b-glucosidase.
Supplementation with purified rCDH gave similar

results on wheat straw and even no decrease in glucose
yield, but gluconic acid and C5 sugar hemicellulose pro-
duction was enhanced for 10 U CDH supplementation.
Results point to synergy between CDH and cellulases for
degradation of raw material. In P. cinnabarinus secre-
tome, b-glucosidase activity was significantly detected
(Table 1). However, when no b-glucosidase was added to
the saccharification assay, more cellobionic acid was pro-
duced instead of gluconic acid by T. reesei cocktail sup-
plemented with P. cinnabarinus secretome (data not
shown). It is well established that b-glucosidases are

inhibited by gluconolactone and more generally that lac-
tones are inhibitors of many glycosidases [54,55]. Never-
theless, sugar lactones are unstable in aqueous solution,
and the rate of spontaneous hydrolysis to the corre-
sponding aldonic acid, i.e. gluconic acid or cellobionic
acid, depends on the pH and temperature of the reaction.
Aldonolactonase, found in several fungi, catalyzes the
hydrolysis of lactones to aldonic acid [56]. This hydrolysis
should relieve inhibition of b-glucosidase and glycosidase
by lactone, as suggested by Bruchman et al. [57]. b-Glu-
cosidase is able to cleave cellobionic acid into glucose
and gluconic acid [58]; cellobionic acid and gluconic acid
production decreases the number of reducing ends as
shown by the decrease in DNS titration. In the presence
of CDH, DNS titration is not a relevant method for mon-
itoring cellulose degradation. The presence of cellobionic
acid seems due to a faster reaction rate of CDH than b-
glucosidase versus cellobiose, as shown by Yoshida et al.
[59]. Supplementation with b-glucosidase compensates
for the difference in reaction rate, leading to a greater
production of gluconic acid. Conversely, as the accumu-
lation of cellobiose induces inhibitory effects on cellulase
[60], CDH may decrease the cellobiose concentration in
the medium faster and so avert inhibition.

Conclusions
Supplementation of T. reesei secretome by CDH increases
the overall degradation of lignocellulose and produces
appreciable amounts of gluconic acid. In saccharification
processes, the use of gluconic acid should offer a way to
improve the profitability of the whole process. Several
organisms use gluconic acid through the pentose phos-
phate pathway. Zymomonas mobilis, for example, is able
to produce ethanol from gluconic acid by the Entner-Dou-
doroff pathway [61]. Alcoholic fermentation from gluconic
acid by Saccharomyces bulderi has also been reported [62].
The introduction of such organisms able to use pentose
and gluconic acid should increase the overall yield of etha-
nol by using less fermentable components and should
offer a way to design a sustainable process for second gen-
eration bioethanol production.

Methods
Biological material
P. cinnabarinus ss3 monokaryotic strain BRFM 137 iso-
lated from the fruit-like structure of the P. cinnabarinus

Table 2 Apparent kinetic constants of purified rCDH for cellobiose

Electron acceptor KM (μM) Vmax a (μmol/min/mg) kcat (s-1) kcat/KM (s-1. mM-1)

DCPIP 35.5 22.2 40.8 1148

Cyt c 14.7 3.9 7.0 474

Reactions were performed at 30°C, pH 4.5 using selected electron acceptors.
a Kinetic parameters were determined using DCPIP or cyt c as electron acceptor and cellobiose as substrate under standard assay conditions.
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Figure 5 Analysis of total reducing sugar yield after 96 h of enzymatic treatment on wheat straw. Reducing sugars (mM) release during
hydrolysis were quantified spectrophotometrically using the DNS method as described in Navarro et al., 2010 [69]. Assay conditions for
hydrolysis were conducted in 20 mL of 50 mM sodium phosphate buffer (pH 4.8) containing 5% (w/v) wheat straw. (A) P. cinnabarinus
secretome containing CDH or (B) purified rCDH were assayed in the presence of cellulose cocktail at 45°C with an orbital agitation (140 rpm)
during 96 h. C: control reaction without CDH. Error bars are for triplicate, each measured once.
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Figure 6 Determination of sugar yield in mg of sugars formed/g of wheat straw after 96 h of enzymatic treatment on wheat straw.
Saccharification assays were performed in 20 mL of 50 mM sodium phosphate buffer (pH 4.8) containing 5% (w/v) wheat straw. (A) P.
cinnabarinus secretome containing CDH or (B) purified rCDH were assayed in the presence of cellulose cocktail at 45°C with an orbital agitation
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coupled with amperometric detection (PAD) equipped with a Carbo-Pac PA-1 analytical column. These experiments were repeated at least three
times with similar results. For all-sugars analysis in (A) and (B) statistical significance was P < 0.1 and P < 0.05 respectively.
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I-937 dikaryotic strain was maintained as previously
described [50]. P. pastoris strain X33 is a component of
the Pichia Easy Select Expression System and the pPIC-
ZaA vector (Invitrogen, Cergy-Pontoise, France).

Media and culture conditions
P. cinnabarinus was grown at 30°C on MYA2 plates
(maltose: 20 g/L; yeast extract: 1 g/L; agar 16 g/L). After
10 days of incubation, precultures in Roux flasks con-
taining 200 mL of medium were inoculated with five
disks of P. cinnabarinus grown in MYA2 plates. Inocu-
lum was obtained from 10-day-old static precultures
incubated at 30°C.
We used 10 mL of inoculum suspension obtained

from Ultra-Turrax-mixed mycelial mats to inoculate 500
mL baffled conical flasks containing 250 mL of basal
medium composed of cellulose fibrous medium (Sigma,
St. Louis, Mo, USA) (15 g/L), diammonium tartrate
(1.84 g/L), disodium tartrate (2.3 g/L), KH2PO4 (1.33 g/
L), CaCl2.H2O (0.1 g/L), MgSO4.7H2O (0.5 g/L), FeS-
O4.7H2O (0.07 g/L), ZnSO4.7H2O (0.046 g/L), MnSO4.
H2O (0.035 g/L), CuSO4.5H2O (0.007 g/L), yeast extract
(1 g/L), vitamin solution (1 mL/L) according to Tatum
et al. [63] maltose (2.5 g/L) used as starter and Tween
80 (1.5 g/L), according to [41]. For the heterologous
expression of CDH in Pichia pastoris, all media and pro-
tocols are described in the Pichia expression manual
(Invitrogen). Cloning procedures were performed using
one-shot TOP 10 and DH5a chemically competent
Escherichia coli cells (Invitrogen).

Isolation of mRNA and cloning of cdh cDNA gene
Isolation of total RNA was performed on a 4-day-old
culture of P. cinnabarinus on cellulose medium using
Total RNA Purification from Plant (Macherey-Nagel,
Düren, Germany) as prescribed by the manufacturer.
Contaminant DNA was digested by Turbo DNase
(Ambion Inc., Austin, TX, USA) according to the manu-
facturer’s instructions. First-strand cDNA synthesis was
performed using SuperScript reverse transcriptase (Invi-
trogen) and oligo(dT18) primer following the manufac-
turer’s instructions. The amplification of the full-length
cdh cDNA was performed using specific primers (with
restriction sites underlined): forward primer cdhF (5’ TA
GAA TTC CAA GTG GCA GCG CCA TAC 3’) and
reverse primer cdhR (5’ TA TCT AGA CCA GGA CCT
CCC GCA AGG GC 3’) designed from P. cinnabarinus
I-937 cdh gene (NCBI AF081574): 315 ng of cDNA was
mixed with 300 pmol of each primer cdhF and cdhR,
200 μM dNTPs, and 0.5U Pfu DNA polymerase (Pro-
mega, Madison, WI, USA). The reaction was performed
with the following amplification program: 1 cycle at 95°
C for 5 min, 30 cycles composed of three steps for each

cycle (95°C for 1 min, 65°C for 30 s and 72°C for 4
min), and a final step at 72°C for 10 min. PCR ampli-
cons generated by Pfu DNA polymerase are blunt-
ended. To add an A-tail on these PCR fragments before
subcloning into pGEMT-easy vector, Taq DNA poly-
merase (Promega) was used as described in the
pGEMT-easy vector Technical Manual (Promega). The
2.3 kb PCR product was purified using the Qiaquick gel
extraction kit (Qiagen, Valencia, CA, USA) and sub-
cloned into pGEMT easy vector.
The cdh cDNA was further sequenced (GATC Bio-

tech, Mulhouse, France) using sp6 and T7 universal pri-
mers and cdhint (5’ CGA CGC CCA GAA CTC GAA C
3’). The P. cinnabarinus sequence was deposited in the
NCBI databank (GenBank accession number:
BankIt1421219 Pycnoporus HQ825322). Comparisons of
P. cinnabarinus I-937 cdh (GenBank accession number:
AF081574.1), T. versicolor cdh (GenBank accession
number: AY187939.1) and P. chrysosporium cdh (Gen-
Bank accession number: U46081.1) were performed with
ClustalW2 software http://www.ebi.ac.uk/Tools/msa/
clustalw2/.

Construction of pPiCZaA expression vector
The cdh cDNA cloned into pGEMT easy vector was
digested using EcoRI and XbaI and purified with a Qia-
quick gel extraction kit. In parallel, pPICZaA was line-
arized using the same restriction enzymes, and cdh
cDNA was ligated at the corresponding sites into pPIC-
ZaA in frame with both the yeast a-secretion factor and
C-term-(His)6-tag encoding sequences. Expression vec-
tor pPICZaA-cdh was purified by Qiagen Midiprep and
sequenced using 3’AOX and 5’AOX primers to confirm
the correct sequence insertion.

Transformation and screening
Transformation of competent P. pastoris X33 was per-
formed by electroporation with PmeI linearized pPICZa
A-cdh as described in Couturier et al. 2010 [64]. The vec-
tor pPICZa without insert was used as a control. Trans-
formants were first screened on YPDS plates with
different concentrations of zeocin (100 to 1000 μg/mL).
After incubation at 30°C, transformants were picked from
minimal dextrose (MD) plates and transferred to minimal
methanol plates (MM). Zeocin-resistant P. pastoris trans-
formants were then screened for protein expression in 10
mL of BMGY (in 50 mL tubes) at 30°C in an orbital shaker
(200 rpm) for 16 h to an OD600 of 2-6, and expression was
induced by transferring cells into 2 mL of BMMY and
growing for a further 3 days. Each day the medium was
supplemented with 3% (v/v) methanol. The supernatant
was then analyzed by SDS-PAGE to determine which
transformant had the best secretion yield.
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Recombinant CDH production
The best-producing transformant was grown in 1 liter of
BMGY in shaken flasks as described above. The cells
were then transferred to 200 mL of BMMY and stirred
at 200 rpm at 30°C for 4 days.
Bioreactor production of the best-producing transfor-

mant was carried out in a 1-liter bioreactor Tryton
(Pierre Guerin, Mauze, France) according to the Pichia
Fermentation Process Guidelines (Invitrogen) except for
the volume of methanol added in the methanol fed
batch, which was changed from 3.6 mL/h/L to 3 mL/h/
L.

Enzyme purification
Culture supernatant was concentrated at least 10 times
using Amicon centrifugal units with a 30 kDa cut-off,
4000× g or Amicon vivaflow (Millipore, Bedford, MA,
USA) with a 30 kDa cut-off, depending on culture
volume. The concentrated supernatant was dialyzed
against buffer A (Tris-HCl 50 mM 7.8, NaCl 150 mM
and imidazole 10 mM), and loaded on a nickel chelate
His-Bind Resin (GE Healthcare, Buc, France) column
(0.7 × 5 cm) connected to an Äkta FPLC (GE Health-
care) and equilibrated with buffer A. The His-tagged
rCDH was eluted with buffer B (Tris-HCl 50 mM pH
7.7, imidazole 500 mM and NaCl 150 mM). Active frac-
tions were pooled, concentrated and dialyzed against
sodium acetate buffer (50 mM, pH 5)

SDS-PAGE, Western blot and zymogram
Polyacrylamide gel electrophoresis (SDS-PAGE) (12%)
was prepared as described by Laemmli [65]. Protein
bands were stained with Coomassie blue G 250. The
molecular mass under denaturating conditions was
determined with reference standard proteins (LMW,
Amersham Pharmacia Biotech, Orsay, France or
unstained protein molecular weight marker, Euromedex,
Souffelweyersheim, France).
Enzyme activities were assayed in polyacrylamide gels

containing the appropriate substrates. Enzyme prepara-
tions were run on an SDS-PAGE gel copolymerized
with 0.2% soluble xylan, 0.2% carboxymethylcellulose
(CMC) or 0.2% locust bean gum for the analysis of xyla-
nase, CMCase or mannanase activities, respectively. The
protein samples were mixed in the loading buffer (3%
SDS w/v, 10% glycerol w/v and 30 mM Tris-HCl buffer
pH 6.8) without reducing agent, heated at 100°C for 1
min and then separated using a 12% polyacrylamide gel.
After electrophoresis, the gel was washed with de-
ionized water and soaked in 2.5% (v/v) Triton X-100.
After 1 h incubation at 4°C, the gel was soaked in 100
mM sodium phosphate buffer (pH 5) at 45°C for 2 h for
the detection of xylanase and CMCase activity or in 100
mM sodium phosphate buffer (pH 7) for 1 h at 50°C for

the detection of mannanase activity. After incubation
the gel was stained with 0.1% Congo red solution under
gentle shaking for 1 h and destained with 1 M NaCl for
1 h. Protein bands exhibiting xylanase, CMCase and
mannanase activity were seen as clear bands on the red
background.
For laccase and CDH zymograms, samples were

mixed with the same loading buffer as described
above without heating; they were incubated at ambient
temperature for 15 min and the gel was run. After
electrophoresis the gel was soaked in 2.5% Triton X-
100 for 1 h at 4°C, rinsed with deionized water and
incubated for 2 h at 25°C in 50 mM sodium acetate
buffer (pH 5) with 4 mM sodium fluoride for CDH
and 50 mM sodium tartrate buffer (pH 4) for laccase.
Visualization was performed by adding 5 mM ABTS
to stain for laccase and adding 50 mM DCPIP for
CDH, staining the gel dark blue. CDH activity was
then visualized by adding 100 mM cellobiose. Protein
bands exhibiting CDH activity were seen as clear
bands on the dark blue background. Western blot ana-
lysis was performed as described previously, using the
monoclonal anti-polyhistidine alkaline phosphatase
conjugate (Sigma) for Western blot analysis of rCDH
expressed in P. pastoris. For Western blot analysis,
purified rCDH was run on a 12% SDS/polyacrylamide
gel and blotted onto a PVDF membrane using the
iBlot Dry Blotting System (Invitrogen). Membranes
were placed in a Snap Protein Detection System
(Millipore, Bedford, MA, USA) used for immunodetec-
tion. Following the manufacturer’s instructions, the
PVDF membrane was incubated in TBS blocking solu-
tion (10 mM Tris, 150 mM NaCl and 0.1% Tween 20,
pH 8) with addition of 0.1% (w/v) of skimmed milk
powder and then washed with TBS. Immunodetection
was performed using the monoclonal anti-polyhisti-
dine alkaline phosphatase conjugate (Sigma,). Signal
detection was carried out using 60 μL of BCIP (5-
bromo-4-chloro-3-indolyl-phosphate), 60 μL of NBT
(4-nitro blue tetrazolium) (Roche Applied Science,
Meylan, France) in 20 mL carbonate buffer 0.05 M pH
9.6 with addition of 5 mM MgCl2.
Papain cleavage of the two CDH domains was carried

out as described by Henriksson et al. [43]. Deglycosyla-
tion was performed using PGNase (New England Bio-
labs, Saint-Quentin-en-Yvelines, France) to remove
rCDH N-linked glycans according to the manufacturer’s
instructions.

Protein assay
Protein concentration was determined using the Bio-Rad
Protein Assay (Bio-Rad, Marnes-la-Coquette, France),
based on the Bradford procedure, using bovine serum
albumin as standard [66].
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Binding studies
Assays were performed with 1 mg/mL of Avicel PH-101
(Sigma) in 50 mM citrate phosphate buffer pH 5 under
orbital agitation at room temperature, and rCDH was
added in the range 0.02-0.8 μg/L. After 3 h, Avicel PH-
101 was removed by centrifuging, and the concentration
of free enzyme ([FE], μM) in the supernatant was mea-
sured by activity assay. The bound enzyme concentra-
tion ([BE] in μmol per gram of Avicel PH-101) was
determined by subtracting [FE] from the total protein
concentration. All the assays were carried out in tripli-
cate. Adsorption parameters were based on typical dou-
ble-reciprocal plots using the equation [B] = [UB] × [B]

max/ (Kd + [UB]), where Kd (μM) and [B]max (μmol per
gram of Avicel PH-101) are the equilibrium dissociation
constant and the maximum amount of protein bound.
Two controls were run, one without rCDH and the
other with BSA at 1 μg/μL to estimate unspecific fixa-
tion of rCDH. Measures were repeated at least three
times.

Enzyme assays
To measure enzyme activities in the P. cinnabarinus
culture supernatant, each aliquot was centrifuged for 5
min at 3500 rpm and filtered through a 0.45 μm mem-
brane (Millipore, Bedford, MA, USA). CDH activities
were determined by monitoring the reduction of 0.2
mM 2,6-dichlorophenol indophenol (DCPIP) in 100
mM sodium acetate buffer (pH 5) containing 2 mM cel-
lobiose and 4 mM of sodium fluoride (sodium fluoride
was used as a laccase inhibitor). The decrease in absorp-
tion at 520 nm (ε = 6800 M-1.cm-1) was monitored at
30°C for 1 min. Alternatively, CDH activity was deter-
mined by monitoring the reduction of 50 μM cyto-
chrome c (cyt c) in 100 mM sodium-acetate buffer (pH
5) containing 2 mM cellobiose. The decrease in absorp-
tion at 550 nm (ε = 33,700 M-1.cm-1) was monitored at
30°C for 1 min. Glucose oxidase was measured using
the D-gluconic acid / D-glucono-δ-lactone assay (Mega-
zyme). Laccase activity was determined quantitatively by
monitoring the oxidation of 5 mM ABTS (2, 2’-azino-
bis (3-ethylbenzthiazoline-6-sulfonic acid)) at 420 nm
(extinction coefficient 36,000 mM.-1 cm.-1) in the pre-
sence of 50 mM NaK tartrate, pH 4.0. Lignin peroxidase
activity was determined spectrophotometrically at 30°C
by the method of Tien and Kirk [67]. Manganese perox-
idase activity was determined spectrophotometrically at
30°C by the method of Paszczynski et al. [68] using
H2O2 and vanillylacetone as substrate. Enzyme activity
was expressed in international units (IU). One unit of
activity is defined as the quantity of enzyme that trans-
forms 1 μmol of substrate in one minute.
Hydrolysis assays for glycosidases were carried out in

50 mM acetate buffer pH 5 containing 1 mM of

substrate in a final volume of 100 μL. Substrates pNP-b-
D-glucopyranoside, pNP-b-D-cellobiopyranoside, pNP-
b-D-xylopyranoside, a-D-galactopyranoside and pNP-b-
D-mannopyranoside were purchased from Sigma. Assays
were performed with 0.5 and 1 μg of protein, and incu-
bated for 37°C for 1 h with shaking (300 rpm). To stop
the reaction, 130 μL of Na2CO3 1 M was added, and
absorbance was read at 410 nm. A control was run with
100 μL of 50 mM acetate buffer pH 5 and references
ranging from 0.02 to 0.2 mM of 4-nitrophenyl were
measured in parallel. Enzymatic activity was based on
colorimetric assay of free pNP present in the reaction
after hydrolysis. This activity is expressed in U/mg of
proteins.
Hydrolysis assays were carried out in 50 mM acetate

buffer pH 5 containing 1% (w/v) of substrates. Carboxy-
methyl cellulose (CMC, low viscosity) and citrus pectin
were purchased from Sigma. Wheat arabinoxylan (low
viscosity) and galactomannan (low viscosity) were from
Megazyme. Assays were performed with 10 and 30 μg
of protein, and incubated at 37°C for 1 h with shaking
(150 rpm). Reducing sugars released during hydrolysis
were quantified by DNS (3, 5-dinitrosalycylic acid)
visualization at 540 nm as described in Navarro et al.,
2010 [69]. Controls were run with 50 mM acetate buffer
pH 5 and references ranging from 1 to 10 mM of glu-
cose were measured in parallel for each series. Enzy-
matic activity is expressed in U/mg of proteins. Three
controls were performed with the secretome alone to
quantify sugars present in culture supernatant. Controls
were subtracted from measured values. All assays were
performed in triplicate.

Effect of pH and temperature on the activity and stability
of rCDH
To determine the optimum pH of the rCDH, the activ-
ity was measured with DCPIP using 50 mM citrate
phosphate buffer in the pH range 2.5-7 at 30°C. For
optimum temperature determination, activity on
DCPIP was measured using 50 mM citrate phosphate
buffer in the temperature range 10-80°C. Thermal sta-
bility of rCDH was determined by incubating enzymes
for 33 h at 45, 50 and 55°C and for 10 h at 65°C.
Native CDH activity assay was performed in triplicate
as described above.

Enzyme kinetics
The kinetic parameters (Vmax and Km) were determined
for cellobiose oxidation measured at 30°C in 50 mM
citrate phosphate buffer pH 4.5 using DCPIP or cyto-
chrome c. The concentration of cellobiose ranged from
10 to 700 μM with both electron acceptors (DCPIP and
cytochrome c). Triplicates were run to ensure reliable
kinetic parameter determination.
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Graphpad prism v.4 (Graphpad Software) was used for
the nonlinear regression calculation and kinetic para-
meter determination.

Saccharification assays
Saccharification assays were performed in 50 mL Falcon
tubes (BD Bioscience) containing 5% (w/v) wheat straw
in 50 mM sodium phosphate buffer (pH 4.8) with addi-
tion of tetracycline (12.6 mg/mL) and cycloheximide (10
mg/mL). The final reaction volume was 20 mL. Enzymes
were added to the basal medium: industrial cocktail
GC220 (Genencor-Danisco, Rochester, NY, USA) from
T. reesei and Novozyme 188 (Novozyme, Franklinton,
NC, USA) from Aspergillus niger, P. cinnabarinus super-
natants containing CDH activity and purified rCDH
expressed by P. pastoris. T. reesei GC220 enzyme cock-
tail contained 1.41 U CMCase, 0.79 U b-glucosidase,
0.11 U cellobiohydrolase, 3.85 U xylanase, 0.26 U man-
nanase and 0.14 U pectinase per mg of total protein. A.
niger Novozyme 188 enzyme cocktail contained 0.06 cel-
lobiohydrolase, 0.18 U CMCase, 1.15 U b-glucosidase,
0.33 U xylanase, 0.20 U mannanase, 0.14 U a-galactosi-
dase and 0.43 U pectinase per mg of total protein.
Activities were measured at 37°C, pH 5.0. Saccharifica-
tion assays were performed in incubators (Infors AG,
Switzerland) at 45°C with an orbital shaker (140 rpm)
for 96 h. After 96 h of incubation, all the samples were
centrifuged at 3500 rpm for 15 min. The supernatants
were filtered through a 0.45 μm membrane and carbo-
hydrate was then assayed. Saccharification assays were
performed in triplicate.

Carbohydrate determination
Monosaccharides, cellobiose and gluconic acid generated
after hydrolysis of wheat straw were quantified by high-
performance anion exchange chromatography (HPAEC)
coupled with amperometric detection (PAD) (ICS 3000,
Dionex, Sunnyvale, CA, USA) equipped with a Carbo-
Pac PA-1 analytical column (250 × 4 mm). Enzymatic
reactions were stopped by adding 18 mM NaOH before
injection (5 μL) into the HPAEC system. Elution (1 mL/
min) was carried out on a sodium acetate gradient (0-
250 mM in 25 min). Calibration curves were plotted
using galactose, arabinose, glucose, xylose, cellobiose
and gluconic acid standards (Sigma-Aldrich), from
which response factors were calculated (Chromeleon
program, Dionex) and used to estimate the amount of
product released in test incubations. All the assays were
carried out in triplicate. Reducing sugars released during
saccharification assays were quantified by DNS (3, 5-
dinitrosalycylic acid) method and visualized at 540 nm
as described by Navarro et al. [69]. Controls were run
with 50 mM acetate buffer pH 5 and references of

glucose were ranging from 1 to 10 mM. All assays were
performed in triplicate.
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