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The Beginner’s Guide to O-GlcNAc:
From Nutrient Sensitive Pathway
Regulation to Its Impact on
the Immune System
Michael P. Mannino and Gerald W. Hart*

Complex Carbohydrate Research Center, University of Georgia Athens, Athens, GA, United States

The addition of N-acetyl glucosamine (GlcNAc) on the hydroxy group of serine/threonine
residues is known as O-GlcNAcylation (OGN). The dynamic cycling of this
monosaccharide on and off substrates occurs via O-linked b-N-acetylglucosamine
transferase (OGT) and O-linked b-N-acetylglucosaminase (OGA) respectively. These
enzymes are found ubiquitously in eukaryotes and genetic knock outs of the ogt gene
has been found to be lethal in embryonic mice. The substrate scope of these enzymes is
vast, over 15,000 proteins across 43 species have been identified with O-GlcNAc. OGN
has been known to play a key role in several cellular processes such as: transcription,
translation, cell signaling, nutrient sensing, immune cell development and various steps of
the cell cycle. However, its dysregulation is present in various diseases: cancer,
neurodegenerative diseases, diabetes. O-GlcNAc is heavily involved in cross talk with
other post-translational modifications (PTM), such as phosphorylation, acetylation, and
ubiquitination, by regulating each other’s cycling enzymes or directly competing addition
on the same substrate. This crosstalk between PTMs can affect gene expression, protein
localization, and protein stability; therefore, regulating a multitude of cell signaling
pathways. In this review the roles of OGN will be discussed. The effect O-GlcNAc
exerts over protein-protein interactions, the various forms of crosstalk with other PTMs,
and its role as a nutrient sensor will be highlighted. A summary of how these O-GlcNAc
driven processes effect the immune system will also be included.

Keywords: GlcNAc, immune system, post translational modification, protein-protein interactions, glycobiology,
nutrient sensing, cell signaling, lymphocyte activation
INTRODUCTION

O-N-acetylglucosamine (O-GlcNAc) is a monosaccharide, post translational modification (PTM)
covalently bound to serine and/or threonine residues. Unlike traditional forms of glycosylation, the
addition of a O-GlcNAc moiety, O-GlcNAcylation, occurs within nucleocytoplasmic and
mitochondrial compartments of the cell and remains as a monosaccharide opposed to further
elaboration to a polysaccharide (1, 2). Similar to other PTMs like phosphorylation, O-GlcNAc is
cycled on and off substrates, regulating their biological functions. However, unlike phosphorylation,
org January 2022 | Volume 13 | Article 8286481
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the addition and removal of this modification is performed with a
single set of enzymes,O-b-N-acetylglucosamine transferase (OGT)
and O-b-N-acetylglucosamidase (OGA) respectively (3, 4).

These enzymes are found primarily in the nucleus, cytoplasm,
and mitochondria in all metazoans, including plants viruses, and
some bacteria (5, 6). Deletion of OGT or OGA is embryonically
and perinatally lethal in mice, demonstrating its importance to
survival and development (7, 8). The number of identified
O-GlcNAcylated substrates is continuously growing at a rapid
pace thanks to technological advances. Perhaps due to its
ubiquitous nature and biological importance, various O-
GlcNAc databases have been developed to mainstream
pertinent information regarding O-GlcNAcylated substrates,
such as corresponding literature references and, in some cases,
the amino acid site of the modification (9, 10).

O-GlcNAcylation plays a role in a broad range of biological
processes, such as transcription, translation, enzyme activity, cell
division, protein localization and degradation. How these and
other cellular operations are regulated is, in part, dependent on
which substrates are O-GlcNAcylated and to what extent. As will
be discussed later in more detail, OGT’s activity and substrate
specificity vary with the concentration of UDP-GlcNAc within
cells (11), the donor for O-GlcNAc, which is proportional to the
flux of several metabolites (12–15). Thus, O-GlcNAc directly
links the regulation of important biological processes with the
cellular nutrient status to serve as a major nutrient sensor. This is
further highlighted in metabolic diseases, such as diabetes and
cancer, whose aberrant O-GlcNAc levels are correlated with
pathologic phenotypes (16–20).
O-GlcNAc CYCLING ENZYMES

O-GlcNAc Transferase (OGT)
The ogt gene is highly conserved in numerous organisms from
C. elegans to humans and is encoded on the X chromosome near
the centromere, exhibiting greater than 60-80% amino acid
identity between species (8). OGT was initially purified from
rat liver and reticulocyte lysates (3, 21), sequenced and cloned
(22, 23). The tertiary structure of the enzyme was determined in
2011 by overlapping two semi-complete crystal structures, the
breakthrough of which contained a UDP and CKII peptide
molecules bound to the active site (24). Belonging to the GT-B
superfamily of glycosyltransferases, OGT is made up of four
domains: 1) a N-terminal domain containing continuous helix-
turn-helix tetratricopeptide repeats (TPRs), 2) C-terminal region
bearing the GT41 catalytic domain containing two Rossmann-
folded lobes, 3) an intervening region that bridges the two lobes
and 4) a nuclear localization sequence between the TPR and
catalytic domain (25). OGT has three different isoforms, all
varying in the length of their respective TPR domains. ncOGT
(nuclear cytoplasmic) and sOGT (short) have 13.5 and 2.5 TPRs,
both of which are found in the cytoplasm and nucleus. mOGT
(mitochondria) consists of 9 TPR domains and is localized in the
mitochondrial inner membrane (26). ncOGT is the predominant
isoform (27).
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Much work has been done to elucidate OGT’s binding modes
and substrate specificity, most of which is done through
crystallization and related mutagenesis studies. One of the
earliest was a crystal structure of OGT with the non-
hydrolyzable GlcNAc derivative and OGT inhibiter UDP-
5SGlcNAc, which identified an ordered bi-bi mechanism of
glycosylation where UDP-GlcNAc initially binds to the active
site and then is covered by the acceptor (28). Although there is
one example of substrate binding to the catalytic domain alone
(29), the majority of substrate binding is suggested to occur in
the TPR domain of OGT. The removal of the TPR domain is
known to abrogate OGT activity toward protein substrates but
not to small peptide substrates (30, 31). Interestingly, unlike
other small peptides, OGT does not modify the C-terminal
domain (CTD) of RNA polymerase II, which consists of a
degenerate seven amino acid repeats, if it has less than five
repeats (35 amino acids). However, ten CTD repeats is an
excellent substrate in vitro (32). Key structural features of the
TPR domain have been identified thanks to crystal structures of
various substrate-bound OGT complexes. The TPR domain
forms a superhelix made up of two layers, the inner layer
contains a highly conserved asparagine ladder which binds the
amide backbone of the acceptor substrates (33). This ladder
extends the length of the TPR region, the mutations of which
were shown to impair protein O-GlcNAcylation (24, 34). Recent
contributions in the literature have revealed the presence of two
aspartate residues along the inner layer of the TPR domain
proximal to the active site, the alanine mutation of which
diminishes substrate binding (35). In this study and several
earlier ones, an attempt to determine a consensus substrate
sequence was attempted (3, 36, 37). From these investigations
it is suggested that about half of the known OGT substrates
contain acidic arginine or lysine residues within 7-11 amino
acids of the functionalized threonine or serine.

Given these statistical findings, it has largely been agreed
upon that there is no consensus sequence for OGT substrates.
This may in part be due to OGT’s employment of adapter
proteins. These are proteins that form complexes with OGT
and subsequently direct substrate specificity by altering binding
modes or localization. Various adapter proteins, such as mSin3a,
PCG-1a and HDAC1 have been identified (38, 39), the most
studied are OGT’s interactions and targeting by ten-eleven
translocation (TET) family enzymes. OGT-TET complexes
target OGT to chromatin or histones that are involved in
chromatin remodeling (40). Although adapter protein
identification and significance can be difficult to determine,
recent advancements in labeling technology utilizing a biotin
transferase-TPR fusion protein may provide additional examples
of proteins acting in this manner (41). Expanding the list of
known adapter proteins and their specific functions will help
explain the promiscuity and specificity of OGT.

O-GlcNAcase (OGA)
The oga gene (mgea5), which was initially identified as a putative
hyaluronidase and cloned from a meningioma, is present on the
somatic chromosome 10. OGA protein was first purified from rat
spleen (4) and rat brain (42). The rat brain OGA was sequenced
January 2022 | Volume 13 | Article 828648
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and cloned and it was found to be identical to mgea5. OGA
protein exists in two isoforms, the predominant 916 amino acid
OGA-L and the less common short OGA-S truncated in the
C-terminus. OGA consists of three domains: 1) a N-terminal
catalytic domain, similar to glycoside hydrolase family 84
(GH84) enzymes with a [(b/a)8] triose-phosphate isomerase
(TIM) barrel structure, 2) a stalk region or a-helical bundle,
and 3) a C-terminal pseudo-histone acetyltransferase (HAT)
domain which does not have any acetyl transferase activity (42).

Several crystallization studies in 2017 have elucidated various
aspects of OGA’s structure (43, 44). These studies indicate that
human OGA forms homo dimmers with a single stalk a-helix of
the opposing monomer. Li and coworkers showed that removing
one of the stalk helices exhibited 100-fold lower catalytic activity.
OGA is cleaved in half by caspase 3 during apoptosis, but the
enzyme remains active and the catalytic domain and HAT
domains remain non-covalently associated (45). Two
conserved aspartate residues were found in OGA’s active site
and binding pocket flanking the O-GlcNAc glycosidic bond,
potentially catalyzing its hydrolysis (43, 46). The OGA dimer
forms a V-shaped cleft at the interface of the catalytic domain
and stalk domain of the two monomers, providing a potential
substrate binding pocket. For a more detailed discussion on OGT
and OGA substrate specificity see (47).
O-GlcNAc REGULATES
PROTEIN FUNCTION

In thefirst two and a half decades since the discovery of intracellular
O-GlcNAc, around 500 O-GlcNAcylated proteins had been
reported in the literature (48). Since then, advancements in
analytical methods, specifically mass spectrometry and labeling
techniques, have simplified and fast-tracked the elucidation of the
O-GlcNAcome (49–52). Recently, multiple databases have been
constructed mainstreaming the search forO-GlcNAcylated targets
and even providing site-specificmapping when available (9, 10). As
ofNovember 2021, according to thehttps://www.oglcnac.mcw.edu/
statistics/, there are over 15,000 GlcNAcylated proteins from 43
different species reported in the literature curated from around
2,300 articles. The role of theseO-GlcNAcylated substrates extends
to nearly every intracellular biological process imaginable: cell
metabolism (53, 54), cell death (55), the circadian clock (56–58),
cell cycle progression (13), various signaling pathways (59, 60),
transcription (61), translation (62, 63), protein degradation (64),
and cell development (65). Like other PTMs, such as
phosphorylation, O-GlcNAc’s cycling conveys a bevy of biological
outcomes bymodifying the substrate’s function.A brief overviewof
these O-GlcNAc modified activities will be discussed below,
however for a more complete discussion please see the references
(53, 66).

A common result of O-GlcNAcylation is the relocalization of
its substrate. This effect is most often observed with transcription
factors, resulting in their activation or inhibition. NeuroD1 is a
transcription factor in pancreatic b-cells which induces gene
expression responsible for insulin production (67). Upon
Frontiers in Immunology | www.frontiersin.org 3
O-GlcNAcylation, this cytosolic protein is localized to the
nucleus to initiate transcription (Figure 1). This was
determined in the context of elevated glucose concentrations
driving NeuroD1 nuclear translocation, which was ameliorated
upon ogt silencing via siRNA (68). O-GlcNAcylation of b-
catenin has the opposite effect. Modification at Ser23 was
shown to induce plasma membrane localization, where it
activates cell adhesion functionality, consequently blocking its
nuclear localization and gene transcription (69).

Another key function of O-GlcNAc cycling is the inhibition
or activation of enzymes. Calcium/calmodulin-dependent
protein kinase II (CaMKII) is a regulatory kinase involved in
Ca2+ release events important for heart and brain function.
Hyperglycemia is correlated with the chronic activation of this
protein, which has been shown to induce arrhythmias and other
cardiomyopathic phenotypes (70). Elevated O-GlcNAcylation of
this protein, specifically at S279, was shown to induce
autonomous activation of CaMKII under hyperglycemic
conditions even in the absence of Ca2+/calmodulin (Figure 1).
FRET analysis demonstrated that this activation is perpetuated
by inhibiting its reversion to an apo-conformation. Mutation of
this site attenuated these effects (71).

The previous example also demonstrates howO-GlcNAcylation
can alter substrate conformation and consequently its function. A
more indirect example is themodification’s influence onheat shock
proteins and other molecular chaperones. Elevated O-GlcNAc
levels prior to heat stress causes increased HSP40 and HSP72
expression, which help to maintain protein folding and solubility
during periods of stress (72).Additionally,NMR studies comparing
O-GlcNAcylated andphosphorylatedpeptides found that the larger
O-GlcNAc moiety destabilized a-helicies found in the phospho-
peptides, and instead induces a bend (73).
O-GlcNAc CROSSTALK WITH
OTHER PTMs

The addition or removal of O-GlcNAc can alter a variety of
biological activities. These changes often occur in concert with
other PTMs in an inhibitory or promotive manner. This
crosstalk phenomenon helps regulate the dynamic nature of
cellular signaling in response to nutrient status. For a more
detailed summary ofO-GlcNAc cross talk with other PTMs, refer
to the references (64, 74, 75).

The most direct form of crosstalk is O-GlcNAc’s relationship
with phosphorylation. This is because both are serine and/or
threonine modifications and, therefore, have the potential to
compete for the same or proximal sites. This inhibitory form is
referred to as reciprocal crosstalk. An example of this can be seen
in the oncoprotein c-Myc at thr58, regulating its transactivation
(76–78). Crosstalk PTMs more commonly occurs at a distance
rather than at the same site. This can occur on near-by amino
acids or at a distance, referred to as proximal or distal crosstalk,
respectively. For these types, O-GlcNAcylation can either
promote or inhibit the addition of subsequent PTMs. O-
GlcNAcylation of p53, a tumor suppressor gene, at ser149
January 2022 | Volume 13 | Article 828648
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blocks its phosphorylation at thr155, which is known to induce
its ubiquitin-proteasomal degradation. As a result, p53
accumulates in the cytoplasm, allowing for increased apoptotic
activity (Figure 1) (79).

Furthermore, different PTMs often regulate each other’s cycling
enzymes. Microarray studies have indicated that over 80% of the
human kinome are substrates for OGT (53) and a search of the
https://www.oglcnac.mcw.edu/statistics/ yields over 700 results for
O-GlcNAcylated kinases as of November 2021. These
modifications have been known to both inhibit and promote
enzymatic activity and even change their substrate specificity, as
is the case forCasein kinase 2a (CK2a).O-GlcNAcylation at ser347
blocks its phosphorylation at thr344. These two modified CK2a
enzymes were screened against a protein microarray and found to
have different substrate specificity (80).

Additionally, tyrosine phosphorylation of OGT, resulting
from stimulation of the insulin receptor, shows increased
transferase activity (81). O-GlcNAcylation of other PTM
cycling enzymes is also known to regulate activity. O-GlcNAc
modification of the histone lysine methyltransferase MLL5 was
demonstrated to promote methylation of H3K4, triggering cell
lineage determination in HL60 lymphocytes (82).
NUTRIENT SENSING

While the majority of cellular glucose uptake is directed to
glycolytic pathways primarily used for energy generation and
storage, about 2-5% is processed through the hexosamine
Frontiers in Immunology | www.frontiersin.org 4
biosynthetic pathway (HBP) (15). The formation of the final
product in this pathway, alpha uridine diphosphate-N-
acetylglucosamine (UDP-GlcNAc), combines to monitor the
metabolism of glucose, amino acids, fatty acids, and
nucleotides. Consequently, the cellular concentration of UDP-
GlcNAc is responsive to nutrient levels and flux through the
pathway (83, 84). This product is either transported to the ER
and Golgi for constructing extracellular, endomembrane
oligosaccharides or remains in the nucleus and cytoplasm as
the donor for O-GlcNAcylation (1, 85, 86).

The intracellular UDP-GlcNAc levels are known to affect
OGT’s activity and substrate specificity. This was demonstrated
in 1999 by Hart and Kreppel using recombinant OGT in in vitro-
based experiments comparing its activity and affinity for different
peptide substrates under various UDP-GlcNAc concentrations.
Remarkably multiple apparent Km values were found by varying
UDP-GlcNAc concentrations for different substrates.
Furthermore different substrates exhibited varying degrees of
GlcNAcylation over a range of UDP-GlcNAc concentrations,
indicating that O-GlcNAcylation is highly responsive to nutrient
levels in a substrate specific manner (11). These early
experiments have since been demonstrated in both cell and
animal models, particularly in relationship to hyperglycemia or
nutrient deprivation (87–89).

The nutrient status of a cell and the corresponding levels of
UDP-GlcNAc and subsets of O-GlcNAcylated proteins act as a
nutritional fingerprint imparting changes in biological processes,
resulting in nutrient-based phenotypes. Due to this relationship
O-GlcNAc is often referred to as a nutrient sensing rheostat
FIGURE 1 | Depiction of the biosynthesis of UDP-GlcNAc and the effects conveyed on its substrates. UDP-GlcNAc is formed through the hexosamine biosynthetic
pathway (HBP), combining several metabolites. O-GlcNAc cycling can modulate activity (CaMKII), stability (p53), and localization (NeuroD1) of its substrates.
January 2022 | Volume 13 | Article 828648

https://www.oglcnac.mcw.edu/statistics/
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Mannino and Hart The Beginner’s Guide to O-GlcNAc
(Figure 2). For example, O-GlcNAcylation of the proteasome
subunit 19S is correlated with reduced activity (90), which has
been demonstrated in the degradation of Sp1 transcription factor
under nutrient deprivation (88). This increase in proteasome
activity under reduced nutrient levels has been speculated to
serve as a catabolic mechanism to regulate amino acid availability
(54). Similarly O-GlcNAc has been shown to regulate cellular
processes under increased nutrient levels, an example of which
occurs in the insulin signaling pathway. Upon insulin
stimulation, glucose uptake is increased and a signaling
cascade initiates various processes (glycolysis, glycogen
synthesis, lipogenesis). One of the early stages of this pathway
is the phosphorylation of insulin receptor substrate 1 (IRS-1),
which induces its association with PI3K and further propagates
the signaling cascade towards Akt phosphorylation and
activation (91). Various groups have shown that IRS-1 is O-
GlcNAcylated upon insulin stimulation and that increasing this
PTM, via OGA inhibition or OGT overexpression, reduces its
association with PI3K, attenuating insulin signaling (92–94).

Although O-GlcNAc acts to regulate cellular functions during
alterations in nutrient levels, prolonged extremes of nutritional
flux are linked to disease states. For example, hyperglycemia in
type 2 diabetes mellitus is associated with consistently elevated
levels of O-GlcNAc (16). Similarly OGT overexpression or OGA
inhibition has been shown to induce insulin resistance in various
cell and animal models (95, 96), and insulin sensitivity is
improved via OGT KO in mice (97). At the other end of the
Frontiers in Immunology | www.frontiersin.org 5
spectrum is hypoglycemia, which is consequently liked to
decreased protein O-GlcNAcylation, is a common feature of
many neurodegenerative diseases such as Alzheimer’s disease
(AD) (98, 99). Studies in this area have found that
hyperphosphorylation of b-amyloid precursor protein (APP)
and Tau induces Ab plaque formations, but O-GlcNAcylation
of these proteins prevents this aggregation (Figure 2) (100).
O-GlcNAc’s INVOLVEMENT IN THE
IMMUNE SYSTEM

As described above, O-GlcNAc is extensively involved in a
multitude of cellular processes, and the immune system is no
exception. Many reviews have been written detailing O-GlcNAc’s
role in various immune system aspects, such as: T-cell development
(65), inflammation (101), infection (102), autoimmunity (103),
lymphocytic cancers (104), immunometabolism (105), and broad
overviews (106). In this section a brief overview of several aspects
will be discussed highlighting O-GlcNAc’s function in the immune
system, particularly as it relates to sensing nutritional cues that
govern protein activities.

There are several instances during lymphocyte development
and activation that requires a metabolic shift from relying on
oxidative phosphorylation to glycolysis and glutaminolytic
metabolism. In these situations, glucose and amino acids,
particularly glutamine, uptake is dramatically increased, the
FIGURE 2 | Depiction of O-GlcNAc’s role as a nutrient sensing rheostat. Nutrient flux directly impacts the levels of UDP-GlcNAc, which regulates the activity and
substrate specificity of OGT. As a result the O-GlcNAcylated proteins and their corresponding biological functions are a response to the nutrient levels. Below are
several examples of O-GlcNAc’s effect at various nutrient levels. Green area is “normal” effects of O-GlcNAcylation and the red areas are O-GlcNAcylation’s effects
under extreme nutrient levels.
January 2022 | Volume 13 | Article 828648
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latter of which leads to increased fatty acid and cholesterol
synthesis (107–109). This influx in metabolites is necessary to
fulfil the needs of increased cell growth and proliferation
required in T-cell development (65) and lymphocyte activation
(110). Accompanying this increase in nutrient flux is an increase
in UDP-GlcNAc and O-GlcNAcylated protein levels (111),
which have been found to impart signaling cues important to
the required cellular process. One of the most studied of which is
T-cell differentiation. Following TCR activation, T cells undergo
several stages ultimately becoming various effector lineages based
on its microenvironment and signaling. Increased O-GlcNAc
levels were found during the transition from DN3 to DN4 stage
and during positive selection, corresponding to increased glucose
and glutamine uptake. In these studies, ogt knock out just before
the DP stage in mice, diminished the population of mature T
cells (112). O-GLcNAc has also been shown to be key in B cell
survival and activity. Conditional ogt allele deletion at various
stages of B cell development in mice showed increased apoptosis
in mature B cells via defects in BAFFR mediated pathways,
indicating OGT’s importance in maintaining homeostasis. The
same study also showed that OGT KO had reduced B-cell
activation corresponding to a decrease in NF-kB nuclear
translocation (113).

While sufficient nutrient flux is important to survival,
differentiation, and activation in immune cells, chronic
aberration of nutrients levels are known to be detrimental.
Hyperglycemic conditions, as in diabetes, increases the O-
GlcNAcylation and activation of the nuclear factor kappa-
light-chain-enhancer of activated B cells (NF-kB), similarly
increasing the production of pro-inflammatory cytokines (114,
115). Hyperglycemia has also been shown to alter the
polarization of macrophages to the less immunogenic M2 state,
which correlated with tumorgenicity, suggesting a possible
mechanism of immune system evasion (116).

One of the earliest indications of O-GlcNAc’s impact on the
immune system came in 1991 from Kearse and Hart who
demonstrated that, upon T-cell activation O-GlcNAcylated
protein density rapidly change from the cytosol to the nucleus
in a protein-specific manner (111). These results foreshadowed
future research demonstrating O-GlcNAc’s regulation of key
transcription factors, one of the most studied and significant of
which being NF-kB (117). NF-kB is a dimeric protein that
regulates cytokine production and cell proliferation, and is key
in the activation and maturation of lymphocytes. Upon TCR or
BCR-activation, the cytosolic dimer is phosphorylated resulting
in the ubiquitination and degradation of its complexed inhibitor,
inhibitor of kB protein (IkB). This dissociation event in turn
induces nuclear localization of NF-kB and subsequent gene
expression (118). O-GlcNAcylation of NF-kB’s subunits was
found to be paramount for this translocalization process in B
and T cells (117). Mutagenesis studies in T-cells revealed that O-
GlcNAcylation of the subunit c-Rel was directly related to its
nuclear localization, promoter binding and gene expression of
IL2, IFNG, and CSF2 (119). Interestingly the location of this O-
GlcNAcylation site is directly adjacent to the IkB binding
domain of NF-kB and its phosphorylation was not found to be
Frontiers in Immunology | www.frontiersin.org 6
altered. Other studies performed in epithelial cell lines have
demonstrated that O-GlcNAc functionalization of NF-kB is not
only necessary for its translocation but also helps to mediate
acetylation of p65 subunit which increases NF-kB gene
transcription. This acetylation results from an interaction with
the acetyltransferase CBP/p300, which is weakened by p65
phosphorylation (120). This inhibitory phosphorylation was
shown to be blocked by O-GlcNAcylation of p65 on thr305
and ser319 (121). O-GlcNAc modification of NF-kB has been
shown to inhibit activation in various cells. For example, In
macrophages NF-kB activation promotes inducible nitric oxide
synthase (iNOS) expression which is a key enzyme in the innate
immune system for killing infectious bacteria (122).
Overexpression of OGT in RAW264.7 macrophage cells and
BV2 microglial cells resulted in suppressed iNOS expression
corresponding to increased O-GlcNAcylation of p65 and c-Rel
(123). Supporting this inhibitory effect, OGA inhibition in LPS
treated RAW264.7 microglial cells increased iNOS expression
(124). These results highlight the fact thatO-GlcNAc’s regulatory
roles are cell specific.
DISCUSSION

Since its discovery in 1983 (1, 2), the O-linked-N-
acetylglucosamine monosaccharide post-translational-
modification has been demonstrated to be a key modification
for regulating and maintaining a variety of biological functions in
response to nutrient levels. These processes are controlled by
changes in protein function driven by intricate crosstalk between
O-GlcNAc and other PTMs. Aberrations in nutrient flux and O-
GlcNAc levels has been demonstrated in numerous disease
states. Disease phenotypes can be induced by directly altering
O-GlcNAc cycling (enzyme inhibition or knockout) or via
nutrient manipulation, indicating that changes in O-
GlcNAcylation can have a direct effect on the progression or
development of various pathologies.

Most work regarding O-GlcNAc in the immunology field has
been focused around lymphocyte activation, survival, and
development. The majority of these studies focus on
macrophages, B cells and T cells. As a result, little is known
about O-GlcNAc’s role in other immune cells. For example,
changes in O-GlcNAcylation have been found in natural killer
(NK) cells and neutrophils during cytotoxicity events and
chemotactic stimulation respectively (125, 126). Furthermore
glucosamine supplementation results in increased Rac activity
in neutrophils, important for neutrophil mobilization, and
decreased cytotoxic activity in NK cells (127, 128). These
studies suggest that O-GlcNAc is involved in these processes,
however specific mechanisms have yet to be determined. Even
less work has been done with regards to dendritic cells,
eosinophils, and basophils. Considering that O-GlcNAc’s
effects may be cell specific, recall the effect on NF-kB and pro-/
anti-inflammatory responses in various cells, these fundamental
gaps in understanding may be significant.
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Additionally, O-GlcNAc’s role in lymphoid cancers and
autoimmune disease remains unexplored. Elevated glucose flux
and metabolism is observed in nearly all cancers known as the
Warburg effect. Consequently O-GlcNAcylated protein levels are
also elevated (129). In Chronic Lymphoid Leukemia (CLL) O-
GlcNAcylation levels of p53, Akt, c-Myc, and STAT5 are increased
with respect to normal basal levels, promoting cell proliferation
(130, 131). However, OGA inhibition with thiamet G increased cell
sensitivity of chemotherapy for human leukemia cell lines (132).
Although exciting, these contradictory effects highlight the need for
further investigation before they can be applied in therapeutics.

Similar to cancer, increased glucose uptake in immune cells is
a key feature of acute inflammation (133). Furthermore,
prolonged hyperglycemia observed in type 2 diabetes mellitus
is known to lead to chronic inflammation in patients that leads to
an increased risk of autoimmunity development (134). A recent
study performed by Liu et al. demonstrated enhanced pro-
inflammatory cytokine production in virus-challenged primary
mononuclear blood cells and pulmonary epithelial cells when
treated with OGA inhibitor or glucosamine. These effects were
extended to a mouse model and found to correlate with
decreased survival rates. Further studies determined OGT’s
interaction with interferon regulatory factor 5 (IRF5) as key
regulator of the increased cytokine production (135). Conversely
Frontiers in Immunology | www.frontiersin.org 7
OGT was found to be paramount to the lineage stability of
regulatory T cells (Treg cells). Ogt knockout in Treg cells in
culture and mice exhibited a severe autoimmune phenotype
resulting from attenuated IL-2/STAT5 signaling attributed to
decreased glycosylation (136). This Ogt knockout-related Treg
pathology was also found to exacerbate hepatitis in an
autoimmune rat model (137). Taken together O-GlcNAc seems
to play different roles in different aspects of autoimmunity. More
studies are required to fully detail the relationship between
aberrant nutrient flux, O-GlcNAcylation, and autoimmunity.
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